Last updated: 2022-02-16

Checks: 5 1

Knit directory: Padgett-Dissertation/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity itโ€™s best to always run the code in an empty environment.

The command set.seed(20210401) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init in your project directory.


This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start.


# Load packages & utility functions
source("code/load_packages.R")
source("code/load_utility_functions.R")
# environment options
options(scipen = 999, digits=3)
library(readxl)
mydata <- read_excel("data/temp_data_extracted.xlsx") %>%
  filter(is.na(EXCLUSION_FLAG)==T)

Journal Information

mydata %>%
  select(Journal) %>%
  table()
.
Assessment       EJPA        JID        JPA         PA        PID 
        51         10         24         25         12         22 
mydata %>%
  select(`Analysis (CFA, EFA, IRT, SEM, etc.)`) %>%
  table()
.
                  CFA               CFA/IRT           Correlation 
                   70                     8                     2 
                  EFA               EFA/CFA              ESEM/CFA 
                    8                     5                     1 
                  IRT                   LCA             mediation 
                    9                     1                     1 
          Moken Scale random-effects models                 Rasch 
                    1                     1                     4 
           regression                   SEM 
                    3                    11 

Data Conditions

f <- function(x){
  c(mean(x, na.rm=T), sd(x, na.rm=T), quantile(x, c(0, 0.25, 0.5, 0.75, 1), na.rm=T))
}

sum_dat <- mydata %>% 
  summarise(
    SS = f(`Sample Size`),
    NLV = f(`Number of Latent Variables`),
    NOV = f(`Number of Observed Variables`),
    Min_Ind = f(`Minimum Number of Indicators per Factor`),
    Avg_Ind = f(`Average Number of Indicators per Factor`),
    Max_Ind = f(`Maximum Number of Indicators per Factor`),
    Min_FL = f(abs(`Minimum Factor Loading`)),
    Avg_FL = f(`Average Factor Loading`),
    Max_FL = f(`Maximum Factor Loading`),
    Min_Rel = f(`Min Reliability`),
    Avg_Rel = f(`Avg Reliability`),
    Max_Rel = f(`Max Reliability`)
  ) %>% as.data.frame()
  
rownames(sum_dat) <- c("avg", "sd", "min", "q1", "median", "q3", "max")
sum_dat <- t(sum_dat)

kable(sum_dat, format="html", digits=2) %>%
  kable_styling(full_width = T)
avg sd min q1 median q3 max
SS 4217.78 23241.20 36.00 318.00 603.00 1451.00 263683.00
NLV 5.46 6.93 1.00 2.00 4.00 6.00 60.00
NOV 50.12 81.58 5.00 12.00 22.50 41.75 442.00
Min_Ind 6.86 6.40 1.00 4.00 5.00 8.00 40.00
Avg_Ind 8.95 7.00 2.50 4.66 6.22 10.93 40.00
Max_Ind 12.93 15.20 3.00 5.00 8.00 14.00 135.00
Min_FL 0.41 0.20 0.00 0.28 0.41 0.51 0.86
Avg_FL 0.64 0.13 0.23 0.56 0.65 0.72 0.93
Max_FL 0.85 0.10 0.49 0.80 0.87 0.92 1.08
Min_Rel 0.73 0.13 0.40 0.63 0.71 0.84 0.95
Avg_Rel 0.81 0.09 0.61 0.74 0.83 0.88 0.95
Max_Rel 0.88 0.08 0.67 0.83 0.90 0.94 0.98
print(xtable(sum_dat[,c(1:3,5,7)]))
% latex table generated in R 4.0.5 by xtable 1.8-4 package
% Wed Feb 16 13:30:50 2022
\begin{table}[ht]
\centering
\begin{tabular}{rrrrrr}
  \hline
 & avg & sd & min & median & max \\ 
  \hline
SS & 4217.78 & 23241.20 & 36.00 & 603.00 & 263683.00 \\ 
  NLV & 5.46 & 6.93 & 1.00 & 4.00 & 60.00 \\ 
  NOV & 50.12 & 81.58 & 5.00 & 22.50 & 442.00 \\ 
  Min\_Ind & 6.86 & 6.40 & 1.00 & 5.00 & 40.00 \\ 
  Avg\_Ind & 8.95 & 7.00 & 2.50 & 6.22 & 40.00 \\ 
  Max\_Ind & 12.93 & 15.20 & 3.00 & 8.00 & 135.00 \\ 
  Min\_FL & 0.41 & 0.20 & 0.00 & 0.41 & 0.86 \\ 
  Avg\_FL & 0.64 & 0.13 & 0.23 & 0.65 & 0.93 \\ 
  Max\_FL & 0.85 & 0.10 & 0.49 & 0.87 & 1.08 \\ 
  Min\_Rel & 0.73 & 0.13 & 0.40 & 0.71 & 0.95 \\ 
  Avg\_Rel & 0.81 & 0.09 & 0.61 & 0.83 & 0.95 \\ 
  Max\_Rel & 0.88 & 0.08 & 0.67 & 0.90 & 0.98 \\ 
   \hline
\end{tabular}
\end{table}
mydata %>%
  select(`Scale of Indicators (list)`) %>%
  table()
.
                                           11pt 
                                              1 
                                            3pt 
                                              5 
                                       3pt, 4pt 
                                              1 
                                       3pt, 6pt 
                                              1 
                                            4pt 
                                             22 
                                       4pt, 3pt 
                                              1 
                                       4pt, 5pt 
                                              3 
                   4pt, 5pt, 5pt, 5pt, 4pt, 5pt 
                                              1 
     4pt, 6pt, 4pt, 4pt, 4pt, count, sum-scores 
                                              1 
                                            5pt 
                                             42 
                                       5pt, 4pt 
                                              3 
                                  5pt, 4pt, 4pt 
                                              1 
                           5pt, 4pt, sum-scores 
                                              1 
                                       5pt, 5pt 
                                              1 
                                       5pt, 7pt 
                                              6 
                                  5pt, 7pt, 4pt 
                                              1 
                                   5pt, parcels 
                                              1 
                                            6pt 
                                              3 
                                  6pt, 5pt, 4pt 
                                              1 
                                       6pt, 7pt 
                                              1 
                                            7pt 
                                             10 
                     7pt, 5pt, 4pt, dichotomous 
                                              2 
                               7pt, dichotomous 
                                              1 
                                         counts 
                                              2 
                                    dichotomous 
                                             13 
                               dichotomous, 3pt 
                                              1 
                          dichotomous, 4pt, 5pt 
                                              1 
                               dichotomous, 5pt 
                                              1 
                          dichotomous, 5pt, 7pt 
                                              1 
                                     sum-scores 
                                             10 
                      sum-scores, 4pt, 5pt, 7pt 
                                              1 
                        sum-scores, dichotomous 
                                              1 
sum-scores, dichotomous, 5pt, 7pt, force-choice 
                                              1 

Sample Size

p <- mydata %>%
  mutate(`Sample Size` = ifelse(`Sample Size`>5000, 5000, `Sample Size`))%>%
  ggplot(aes(x=`Sample Size`))+
    geom_histogram(aes(y = ..density..), binwidth = 200)+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 500, color="red")+
    geom_vline(xintercept = 2500, color="red")+
    scale_x_continuous(breaks=seq(0,5000,500),limits = c(0,5000))+
    labs(y=NULL,x=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
p
Warning: Removed 1 rows containing non-finite values (stat_bin).
Warning: Removed 1 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).

ggsave(filename = "fig/study0_sample_size.pdf",plot=p,width = 4, height=3,units="in")
Warning: Removed 1 rows containing non-finite values (stat_bin).
Warning: Removed 1 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
ggsave(filename = "fig/study0_sample_size.png",plot=p,width = 4, height=3,units="in")
Warning: Removed 1 rows containing non-finite values (stat_bin).
Warning: Removed 1 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
ggsave(filename = "fig/study0_sample_size.eps",plot=p,width = 4, height=3,units="in")
Warning: Removed 1 rows containing non-finite values (stat_bin).
Warning: Removed 1 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
Warning in grid.Call.graphics(C_polygon, x$x, x$y, index): semi-transparency is
not supported on this device: reported only once per page

Indicators

p<-mydata %>%
  ggplot(aes(x=`Average Number of Indicators per Factor`))+
    geom_histogram(binwidth=1,aes(y = ..density..))+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 5, color="red")+
    geom_vline(xintercept = 10, color="red")+
    geom_vline(xintercept = 20, color="red")+
    scale_x_continuous(breaks=seq(0,40, 5),limits = c(0,45))+
    labs(y=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
p
Warning: Removed 4 rows containing non-finite values (stat_bin).
Warning: Removed 4 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).

ggsave(filename = "fig/study0_indicators.pdf",plot=p,width = 4, height=3,units="in")
Warning: Removed 4 rows containing non-finite values (stat_bin).
Warning: Removed 4 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
ggsave(filename = "fig/study0_indicators.png",plot=p,width = 4, height=3,units="in")
Warning: Removed 4 rows containing non-finite values (stat_bin).
Warning: Removed 4 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
ggsave(filename = "fig/study0_indicators.eps",plot=p,width = 4, height=3,units="in")
Warning: Removed 4 rows containing non-finite values (stat_bin).
Warning: Removed 4 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
Warning in grid.Call.graphics(C_polygon, x$x, x$y, index): semi-transparency is
not supported on this device: reported only once per page
mydata %>%
  ggplot(aes(x=`Minimum Number of Indicators per Factor`))+
    geom_histogram(binwidth=1,aes(y = ..density..))+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 5, color="red")+
    geom_vline(xintercept = 10, color="red")+
    geom_vline(xintercept = 20, color="red")+
    scale_x_continuous(breaks=seq(0,40, 5),limits = c(0,45))+
    labs(y=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
Warning: Removed 5 rows containing non-finite values (stat_bin).
Warning: Removed 5 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).

mydata %>%
  ggplot(aes(x=`Maximum Number of Indicators per Factor`))+
    geom_histogram(binwidth=1,aes(y = ..density..))+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 5, color="red")+
    geom_vline(xintercept = 10, color="red")+
    geom_vline(xintercept = 20, color="red")+
    scale_x_continuous(breaks=seq(0,40, 5),limits = c(0,45))+
    labs(y=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
Warning: Removed 8 rows containing non-finite values (stat_bin).
Warning: Removed 8 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).

Factor Loadings

mydata %>%
  ggplot(aes(x=`Minimum Factor Loading`))+
    #geom_histogram(binwidth=1,aes(y = ..density..))+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 0.9, color="red")+
    labs(y=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
Warning: Removed 49 rows containing non-finite values (stat_density).

mydata %>%
  ggplot(aes(x=`Average Factor Loading`))+
    #geom_histogram(binwidth=1,aes(y = ..density..))+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 0.9, color="red")+
    labs(y=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
Warning: Removed 49 rows containing non-finite values (stat_density).

mydata %>%
  ggplot(aes(x=`Maximum Factor Loading`))+
    #geom_histogram(binwidth=1,aes(y = ..density..))+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 0.9, color="red")+
    labs(y=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
Warning: Removed 49 rows containing non-finite values (stat_density).

# combine for plot
p<-mydata %>%
  select(`Minimum Factor Loading`, `Average Factor Loading`, `Maximum Factor Loading`)%>%
  pivot_longer(
    cols=everything(),
    names_to="type",
    values_to="value"
  )%>%  
  ggplot(aes(x=value))+
    geom_histogram(binwidth=0.1,aes(y = ..density..))+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 0.9, color="red")+
    scale_x_continuous(breaks=seq(0,1, .25),limits = c(-0.1,1.1))+
    labs(y=NULL,x=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
p
Warning: Removed 149 rows containing non-finite values (stat_bin).
Warning: Removed 149 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).

ggsave(filename = "fig/study0_factor_loadings.pdf",plot=p,width = 4, height=3,units="in")
Warning: Removed 149 rows containing non-finite values (stat_bin).
Warning: Removed 149 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
ggsave(filename = "fig/study0_factor_loadings.png",plot=p,width = 4, height=3,units="in")
Warning: Removed 149 rows containing non-finite values (stat_bin).
Warning: Removed 149 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
ggsave(filename = "fig/study0_factor_loadings.eps",plot=p,width = 4, height=3,units="in")
Warning: Removed 149 rows containing non-finite values (stat_bin).
Warning: Removed 149 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
Warning in grid.Call.graphics(C_polygon, x$x, x$y, index): semi-transparency is
not supported on this device: reported only once per page

Reliability

mydata %>%
  ggplot(aes(x=`Min Reliability`))+
    #geom_histogram(binwidth=1,aes(y = ..density..))+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 0.80, color="red")+
    geom_vline(xintercept = 0.89, color="red")+
    geom_vline(xintercept = 0.94, color="red")+
    labs(y=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
Warning: Removed 23 rows containing non-finite values (stat_density).

mydata %>%
  ggplot(aes(x=`Avg Reliability`))+
    #geom_histogram(binwidth=1,aes(y = ..density..))+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 0.80, color="red")+
    geom_vline(xintercept = 0.89, color="red")+
    geom_vline(xintercept = 0.94, color="red")+
    labs(y=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
Warning: Removed 23 rows containing non-finite values (stat_density).

mydata %>%
  ggplot(aes(x=`Max Reliability`))+
    #geom_histogram(binwidth=1,aes(y = ..density..))+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 0.80, color="red")+
    geom_vline(xintercept = 0.89, color="red")+
    geom_vline(xintercept = 0.94, color="red")+
    labs(y=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
Warning: Removed 23 rows containing non-finite values (stat_density).

# combine for plot
p<-mydata %>%
  select(`Min Reliability`, `Avg Reliability`, `Max Reliability`)%>%
  pivot_longer(
    cols=everything(),
    names_to="type",
    values_to="value"
  )%>%  
  ggplot(aes(x=value))+
    geom_histogram(binwidth=0.05,aes(y = ..density..))+
    geom_density(adjust=2, fill="grey", alpha=0.5)+
    geom_vline(xintercept = 0.80, color="red")+
    geom_vline(xintercept = 0.89, color="red")+
    geom_vline(xintercept = 0.94, color="red")+
    scale_x_continuous(breaks=seq(0,1, .25),limits = c(0,1))+
    labs(y=NULL,x=NULL)+
    theme_classic()+
    theme(
      axis.text.y = element_blank(),
      axis.ticks.y = element_blank(),
      axis.line.y =element_blank()
    )
p
Warning: Removed 69 rows containing non-finite values (stat_bin).
Warning: Removed 69 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).

ggsave(filename = "fig/study0_reliability.pdf",plot=p,width = 4, height=3,units="in")
Warning: Removed 69 rows containing non-finite values (stat_bin).
Warning: Removed 69 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
ggsave(filename = "fig/study0_reliability.png",plot=p,width = 4, height=3,units="in")
Warning: Removed 69 rows containing non-finite values (stat_bin).
Warning: Removed 69 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
ggsave(filename = "fig/study0_reliability.eps",plot=p,width = 4, height=3,units="in")
Warning: Removed 69 rows containing non-finite values (stat_bin).
Warning: Removed 69 rows containing non-finite values (stat_density).
Warning: Removed 2 rows containing missing values (geom_bar).
Warning in grid.Call.graphics(C_polygon, x$x, x$y, index): semi-transparency is
not supported on this device: reported only once per page
sum(mydata$`Method of Computing Reliability` == "omega", na.rm=T)/nrow(mydata)
[1] 0.16

Response Categories

mydata %>%
  select(`Scale of Indicators (list)`) %>%
  table()
.
                                           11pt 
                                              1 
                                            3pt 
                                              5 
                                       3pt, 4pt 
                                              1 
                                       3pt, 6pt 
                                              1 
                                            4pt 
                                             22 
                                       4pt, 3pt 
                                              1 
                                       4pt, 5pt 
                                              3 
                   4pt, 5pt, 5pt, 5pt, 4pt, 5pt 
                                              1 
     4pt, 6pt, 4pt, 4pt, 4pt, count, sum-scores 
                                              1 
                                            5pt 
                                             42 
                                       5pt, 4pt 
                                              3 
                                  5pt, 4pt, 4pt 
                                              1 
                           5pt, 4pt, sum-scores 
                                              1 
                                       5pt, 5pt 
                                              1 
                                       5pt, 7pt 
                                              6 
                                  5pt, 7pt, 4pt 
                                              1 
                                   5pt, parcels 
                                              1 
                                            6pt 
                                              3 
                                  6pt, 5pt, 4pt 
                                              1 
                                       6pt, 7pt 
                                              1 
                                            7pt 
                                             10 
                     7pt, 5pt, 4pt, dichotomous 
                                              2 
                               7pt, dichotomous 
                                              1 
                                         counts 
                                              2 
                                    dichotomous 
                                             13 
                               dichotomous, 3pt 
                                              1 
                          dichotomous, 4pt, 5pt 
                                              1 
                               dichotomous, 5pt 
                                              1 
                          dichotomous, 5pt, 7pt 
                                              1 
                                     sum-scores 
                                             10 
                      sum-scores, 4pt, 5pt, 7pt 
                                              1 
                        sum-scores, dichotomous 
                                              1 
sum-scores, dichotomous, 5pt, 7pt, force-choice 
                                              1 
indCats <- mydata$`Scale of Indicators (list)`

ind2 <- ind3 <- ind4 <- ind5 <- ind6 <- ind7 <- indSS <- numeric(length(indCats))
for(i in 1:length(indCats)){
  indi <- str_split(indCats[i], ",", simplify = T)
  ind2[i] <- ifelse(any(indi %like% "dichotomous"), 1, 0)
  ind3[i] <- ifelse(any(indi %like% "3pt"), 1, 0)
  ind4[i] <- ifelse(any(indi %like% "4pt"), 1, 0)
  ind5[i] <- ifelse(any(indi %like% "5pt"), 1, 0)
  ind6[i] <- ifelse(any(indi %like% "6pt"), 1, 0)
  ind7[i] <- ifelse(any(indi %like% "7pt"), 1, 0)
  indSS[i] <- ifelse(any(indi %like% "sum-score"), 1, 0)
}

catDat <- as.data.frame(cbind(ind2, ind3, ind4, ind5, ind6, ind7, indSS))

catDat$multi <- ifelse(rowSums(catDat) > 1, 1, 0)

# summarizing
mean(ind2)
[1] 0.153
mean(ind3)
[1] 0.0625
mean(ind4)
[1] 0.278
mean(ind5)
[1] 0.472
mean(ind6)
[1] 0.0486
mean(ind7)
[1] 0.167
mean(indSS)
[1] 0.104
mean(catDat$multi)
[1] 0.222

sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1         car_3.0-10           carData_3.0-4       
 [4] mvtnorm_1.1-1        LaplacesDemon_16.1.4 runjags_2.2.0-2     
 [7] lme4_1.1-26          Matrix_1.3-2         sirt_3.9-4          
[10] R2jags_0.6-1         rjags_4-12           eRm_1.0-2           
[13] diffIRT_1.5          statmod_1.4.35       xtable_1.8-4        
[16] kableExtra_1.3.4     lavaan_0.6-7         polycor_0.7-10      
[19] bayesplot_1.8.0      ggmcmc_1.5.1.1       coda_0.19-4         
[22] data.table_1.14.0    patchwork_1.1.1      forcats_0.5.1       
[25] stringr_1.4.0        dplyr_1.0.5          purrr_0.3.4         
[28] readr_1.4.0          tidyr_1.1.3          tibble_3.1.0        
[31] ggplot2_3.3.5        tidyverse_1.3.0      workflowr_1.6.2     

loaded via a namespace (and not attached):
 [1] minqa_1.2.4        TAM_3.5-19         colorspace_2.0-0   rio_0.5.26        
 [5] ellipsis_0.3.1     ggridges_0.5.3     rprojroot_2.0.2    fs_1.5.0          
 [9] rstudioapi_0.13    farver_2.1.0       fansi_0.4.2        lubridate_1.7.10  
[13] xml2_1.3.2         splines_4.0.5      mnormt_2.0.2       knitr_1.31        
[17] jsonlite_1.7.2     nloptr_1.2.2.2     broom_0.7.5        dbplyr_2.1.0      
[21] compiler_4.0.5     httr_1.4.2         backports_1.2.1    assertthat_0.2.1  
[25] cli_2.3.1          later_1.1.0.1      htmltools_0.5.1.1  tools_4.0.5       
[29] gtable_0.3.0       glue_1.4.2         Rcpp_1.0.7         cellranger_1.1.0  
[33] jquerylib_0.1.3    vctrs_0.3.6        svglite_2.0.0      nlme_3.1-152      
[37] psych_2.0.12       xfun_0.21          ps_1.6.0           openxlsx_4.2.3    
[41] rvest_1.0.0        lifecycle_1.0.0    MASS_7.3-53.1      scales_1.1.1      
[45] ragg_1.1.1         hms_1.0.0          promises_1.2.0.1   parallel_4.0.5    
[49] RColorBrewer_1.1-2 curl_4.3           yaml_2.2.1         sass_0.3.1        
[53] reshape_0.8.8      stringi_1.5.3      highr_0.8          zip_2.1.1         
[57] boot_1.3-27        rlang_0.4.10       pkgconfig_2.0.3    systemfonts_1.0.1 
[61] evaluate_0.14      lattice_0.20-41    labeling_0.4.2     tidyselect_1.1.0  
[65] GGally_2.1.1       plyr_1.8.6         magrittr_2.0.1     R6_2.5.0          
[69] generics_0.1.0     DBI_1.1.1          foreign_0.8-81     pillar_1.5.1      
[73] haven_2.3.1        withr_2.4.1        abind_1.4-5        modelr_0.1.8      
[77] crayon_1.4.1       utf8_1.1.4         tmvnsim_1.0-2      rmarkdown_2.7     
[81] grid_4.0.5         CDM_7.5-15         pbivnorm_0.6.0     git2r_0.28.0      
[85] reprex_1.0.0       digest_0.6.27      webshot_0.5.2      httpuv_1.5.5      
[89] textshaping_0.3.1  stats4_4.0.5       munsell_0.5.0      viridisLite_0.3.0 
[93] bslib_0.2.4        R2WinBUGS_2.1-21