Last updated: 2022-02-02

Checks: 4 2

Knit directory: Padgett-Dissertation/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity itโ€™s best to always run the code in an empty environment.

The command set.seed(20210401) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

The following chunks had caches available:
  • model1

To ensure reproducibility of the results, delete the cache directory pools_model1_results_cache and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE when running wflow_build() or wflow_publish().

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init in your project directory.


This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start.


# Load packages & utility functions
source("code/load_packages.R")
source("code/load_utility_functions.R")
# environment options
options(scipen = 999, digits=3)

POOLS Data

library(readxl)
mydata <- read_excel("data/pools/POOLS_data_2020-11-16.xlsx")

use.var <- c(paste0("Q4_",c(3:5,9,11,15,18)), 
             paste0("Q5_",c(1:3,5:6,12)), 
             paste0("Q6_",c(2,5:8, 11)), 
             paste0("Q7_",c(2, 4:5, 7:8, 14))) 

# trichotomize
f <- function(x){
  y=numeric(length(x))
  for(i in 1:length(x)){
      if(x[i] < 3){
        y[i] = 1
      }
      if(x[i] == 3){
        y[i] = 2
      }
      if(x[i] > 3){
        y[i] = 3
      }
  }
  return(y)
}

mydata <- na.omit(mydata[, use.var]) 
mydata <- apply(mydata, 2, f) %>%
  as.data.frame()

psych::describe(
  mydata
)
      vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
Q4_3     1 490 1.62 0.65      2    1.53 1.48   1   3     2  0.57    -0.68 0.03
Q4_4     2 490 1.64 0.65      2    1.56 1.48   1   3     2  0.51    -0.71 0.03
Q4_5     3 490 1.52 0.68      1    1.40 0.00   1   3     2  0.92    -0.36 0.03
Q4_9     4 490 1.65 0.76      1    1.56 0.00   1   3     2  0.69    -0.96 0.03
Q4_11    5 490 1.64 0.72      1    1.55 0.00   1   3     2  0.66    -0.85 0.03
Q4_15    6 490 1.58 0.68      1    1.47 0.00   1   3     2  0.74    -0.59 0.03
Q4_18    7 490 1.52 0.63      1    1.43 0.00   1   3     2  0.81    -0.38 0.03
Q5_1     8 490 1.73 0.77      2    1.66 1.48   1   3     2  0.50    -1.16 0.03
Q5_2     9 490 2.00 0.86      2    2.00 1.48   1   3     2  0.00    -1.64 0.04
Q5_3    10 490 1.79 0.81      2    1.73 1.48   1   3     2  0.41    -1.37 0.04
Q5_5    11 490 2.33 0.81      3    2.41 0.00   1   3     2 -0.67    -1.18 0.04
Q5_6    12 490 1.94 0.77      2    1.93 1.48   1   3     2  0.09    -1.33 0.03
Q5_12   13 490 1.92 0.78      2    1.90 1.48   1   3     2  0.14    -1.36 0.04
Q6_2    14 490 1.40 0.67      1    1.24 0.00   1   3     2  1.42     0.64 0.03
Q6_5    15 490 1.66 0.80      1    1.58 0.00   1   3     2  0.68    -1.11 0.04
Q6_6    16 490 1.22 0.52      1    1.09 0.00   1   3     2  2.29     4.28 0.02
Q6_7    17 490 1.45 0.66      1    1.32 0.00   1   3     2  1.17     0.14 0.03
Q6_8    18 490 1.43 0.65      1    1.31 0.00   1   3     2  1.21     0.27 0.03
Q6_11   19 490 1.85 0.76      2    1.81 1.48   1   3     2  0.26    -1.22 0.03
Q7_2    20 490 1.74 0.69      2    1.67 1.48   1   3     2  0.39    -0.89 0.03
Q7_4    21 490 1.89 0.79      2    1.86 1.48   1   3     2  0.20    -1.37 0.04
Q7_5    22 490 1.89 0.76      2    1.86 1.48   1   3     2  0.19    -1.24 0.03
Q7_7    23 490 2.43 0.78      3    2.54 0.00   1   3     2 -0.91    -0.76 0.04
Q7_8    24 490 1.87 0.75      2    1.84 1.48   1   3     2  0.21    -1.21 0.03
Q7_14   25 490 2.39 0.76      3    2.49 0.00   1   3     2 -0.78    -0.85 0.03

DWLS

mod <- '
EL =~ 1*Q4_3 + lam44*Q4_4 + lam45*Q4_5 + lam49*Q4_9 + lam411*Q4_11 + lam415*Q4_15 + lam418*Q4_18
SC =~ 1*Q5_1 + lam52*Q5_2 + lam53*Q5_3 + lam55*Q5_5 + lam56*Q5_6 + lam512*Q5_12
IN =~ 1*Q6_2 + lam65*Q6_5 + lam66*Q6_6 + lam67*Q6_7 + lam68*Q6_8 + lam611*Q6_11
EN =~ 1*Q7_2 + lam74*Q7_4 + lam75*Q7_5 + lam77*Q7_7 + lam78*Q7_8 + lam714*Q7_14

# Factor covarainces
EL ~~ EL + SC + IN + EN
SC ~~ SC + IN + EN
IN ~~ IN + EN
EN ~~ EN

# Factor Reliabilities
rEL := ((1 + lam44 + lam45 + lam49 + lam411 + lam415 + lam418)**2)/((1 + lam44 + lam45 + lam49 + lam411 + lam415 + lam418)**2 + 7)
rSC := ((1 + lam52 + lam53 + lam55 + lam56 + lam512)**2)/((1 + lam52 + lam53 + lam55 + lam56 + lam512)**2 + 6)
rIN := ((1 + lam65 + lam66 + lam67 + lam68 + lam611)**2)/((1 + lam65 + lam66 + lam67 + lam68 + lam611)**2 + 6)
rEN := ((1 + lam74 + lam75 + lam77 + lam78 + lam714)**2)/((1 + lam74 + lam75 + lam77 + lam78 + lam714)**2 + 6)
'
fit.dwls <- lavaan::cfa(mod, data=mydata, ordered=T, parameterization="theta")
summary(fit.dwls, standardized=T, fit.measures=T)
lavaan 0.6-7 ended normally after 66 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of free parameters                         81
                                                      
  Number of observations                           490
                                                      
Model Test User Model:
                                              Standard      Robust
  Test Statistic                               593.869     765.951
  Degrees of freedom                               269         269
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.883
  Shift parameter                                           93.760
       simple second-order correction                             

Model Test Baseline Model:

  Test statistic                             32729.962   10489.239
  Degrees of freedom                               300         300
  P-value                                        0.000       0.000
  Scaling correction factor                                  3.183

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.990       0.951
  Tucker-Lewis Index (TLI)                       0.989       0.946
                                                                  
  Robust Comparative Fit Index (CFI)                            NA
  Robust Tucker-Lewis Index (TLI)                               NA

Root Mean Square Error of Approximation:

  RMSEA                                          0.050       0.061
  90 Percent confidence interval - lower         0.044       0.056
  90 Percent confidence interval - upper         0.055       0.067
  P-value RMSEA <= 0.05                          0.529       0.000
                                                                  
  Robust RMSEA                                                  NA
  90 Percent confidence interval - lower                        NA
  90 Percent confidence interval - upper                        NA

Standardized Root Mean Square Residual:

  SRMR                                           0.065       0.065

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EL =~                                                                 
    Q4_3              1.000                               1.234    0.777
    Q4_4    (lm44)    1.445    0.145    9.972    0.000    1.783    0.872
    Q4_5    (lm45)    0.949    0.101    9.390    0.000    1.171    0.760
    Q4_9    (lm49)    0.763    0.084    9.048    0.000    0.942    0.686
    Q4_11   (l411)    1.048    0.110    9.536    0.000    1.293    0.791
    Q4_15   (l415)    0.994    0.107    9.309    0.000    1.227    0.775
    Q4_18   (l418)    1.272    0.137    9.295    0.000    1.569    0.843
  SC =~                                                                 
    Q5_1              1.000                               1.082    0.734
    Q5_2    (lm52)    0.976    0.119    8.171    0.000    1.056    0.726
    Q5_3    (lm53)    0.944    0.124    7.587    0.000    1.021    0.714
    Q5_5    (lm55)    0.803    0.114    7.052    0.000    0.869    0.656
    Q5_6    (lm56)    1.224    0.162    7.549    0.000    1.324    0.798
    Q5_12   (l512)    1.188    0.160    7.446    0.000    1.286    0.789
  IN =~                                                                 
    Q6_2              1.000                               1.054    0.725
    Q6_5    (lm65)    0.618    0.095    6.522    0.000    0.651    0.546
    Q6_6    (lm66)    1.704    0.290    5.882    0.000    1.796    0.874
    Q6_7    (lm67)    1.518    0.220    6.893    0.000    1.600    0.848
    Q6_8    (lm68)    1.234    0.157    7.839    0.000    1.301    0.793
    Q6_11   (l611)    1.602    0.256    6.258    0.000    1.688    0.860
  EN =~                                                                 
    Q7_2              1.000                               1.243    0.779
    Q7_4    (lm74)    0.800    0.088    9.095    0.000    0.994    0.705
    Q7_5    (lm75)    1.108    0.132    8.392    0.000    1.378    0.809
    Q7_7    (lm77)    0.875    0.125    6.996    0.000    1.087    0.736
    Q7_8    (lm78)    0.867    0.095    9.155    0.000    1.078    0.733
    Q7_14   (l714)    0.672    0.088    7.626    0.000    0.835    0.641

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EL ~~                                                                 
    SC                0.915    0.139    6.573    0.000    0.685    0.685
    IN                0.973    0.152    6.402    0.000    0.748    0.748
    EN                1.193    0.161    7.417    0.000    0.778    0.778
  SC ~~                                                                 
    IN                0.740    0.129    5.718    0.000    0.649    0.649
    EN                1.080    0.161    6.691    0.000    0.803    0.803
  IN ~~                                                                 
    EN                0.979    0.156    6.265    0.000    0.747    0.747

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Q4_3              0.000                               0.000    0.000
   .Q4_4              0.000                               0.000    0.000
   .Q4_5              0.000                               0.000    0.000
   .Q4_9              0.000                               0.000    0.000
   .Q4_11             0.000                               0.000    0.000
   .Q4_15             0.000                               0.000    0.000
   .Q4_18             0.000                               0.000    0.000
   .Q5_1              0.000                               0.000    0.000
   .Q5_2              0.000                               0.000    0.000
   .Q5_3              0.000                               0.000    0.000
   .Q5_5              0.000                               0.000    0.000
   .Q5_6              0.000                               0.000    0.000
   .Q5_12             0.000                               0.000    0.000
   .Q6_2              0.000                               0.000    0.000
   .Q6_5              0.000                               0.000    0.000
   .Q6_6              0.000                               0.000    0.000
   .Q6_7              0.000                               0.000    0.000
   .Q6_8              0.000                               0.000    0.000
   .Q6_11             0.000                               0.000    0.000
   .Q7_2              0.000                               0.000    0.000
   .Q7_4              0.000                               0.000    0.000
   .Q7_5              0.000                               0.000    0.000
   .Q7_7              0.000                               0.000    0.000
   .Q7_8              0.000                               0.000    0.000
   .Q7_14             0.000                               0.000    0.000
    EL                0.000                               0.000    0.000
    SC                0.000                               0.000    0.000
    IN                0.000                               0.000    0.000
    EN                0.000                               0.000    0.000

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    Q4_3|t1          -0.106    0.090   -1.181    0.238   -0.106   -0.067
    Q4_3|t2           2.073    0.136   15.218    0.000    2.073    1.305
    Q4_4|t1          -0.241    0.115   -2.098    0.036   -0.241   -0.118
    Q4_4|t2           2.644    0.185   14.260    0.000    2.644    1.293
    Q4_5|t1           0.317    0.090    3.516    0.000    0.317    0.206
    Q4_5|t2           1.938    0.128   15.163    0.000    1.938    1.259
    Q4_9|t1           0.091    0.078    1.168    0.243    0.091    0.067
    Q4_9|t2           1.292    0.097   13.316    0.000    1.292    0.941
    Q4_11|t1          0.017    0.093    0.180    0.857    0.017    0.010
    Q4_11|t2          1.716    0.126   13.628    0.000    1.716    1.050
    Q4_15|t1          0.105    0.091    1.163    0.245    0.105    0.067
    Q4_15|t2          1.974    0.139   14.200    0.000    1.974    1.247
    Q4_18|t1          0.258    0.109    2.368    0.018    0.258    0.139
    Q4_18|t2          2.672    0.190   14.079    0.000    2.672    1.436
    Q5_1|t1          -0.121    0.083   -1.451    0.147   -0.121   -0.082
    Q5_1|t2           1.251    0.104   12.001    0.000    1.251    0.849
    Q5_2|t1          -0.493    0.085   -5.781    0.000   -0.493   -0.339
    Q5_2|t2           0.501    0.084    5.987    0.000    0.501    0.344
    Q5_3|t1          -0.146    0.081   -1.813    0.070   -0.146   -0.102
    Q5_3|t2           0.987    0.094   10.505    0.000    0.987    0.691
    Q5_5|t1          -1.021    0.090  -11.329    0.000   -1.021   -0.771
    Q5_5|t2          -0.163    0.076   -2.143    0.032   -0.163   -0.123
    Q5_6|t1          -0.737    0.101   -7.317    0.000   -0.737   -0.444
    Q5_6|t2           1.000    0.106    9.460    0.000    1.000    0.602
    Q5_12|t1         -0.641    0.098   -6.572    0.000   -0.641   -0.394
    Q5_12|t2          1.001    0.108    9.310    0.000    1.001    0.615
    Q6_2|t1           0.788    0.098    8.044    0.000    0.788    0.542
    Q6_2|t2           1.845    0.133   13.877    0.000    1.845    1.270
    Q6_5|t1           0.128    0.068    1.886    0.059    0.128    0.108
    Q6_5|t2           0.979    0.079   12.392    0.000    0.979    0.820
    Q6_6|t1           1.934    0.262    7.394    0.000    1.934    0.941
    Q6_6|t2           3.402    0.391    8.706    0.000    3.402    1.655
    Q6_7|t1           0.701    0.126    5.564    0.000    0.701    0.372
    Q6_7|t2           2.509    0.216   11.601    0.000    2.509    1.330
    Q6_8|t1           0.655    0.107    6.131    0.000    0.655    0.399
    Q6_8|t2           2.244    0.170   13.237    0.000    2.244    1.368
    Q6_11|t1         -0.633    0.120   -5.279    0.000   -0.633   -0.323
    Q6_11|t2          1.513    0.156    9.676    0.000    1.513    0.771
    Q7_2|t1          -0.396    0.092   -4.325    0.000   -0.396   -0.248
    Q7_2|t2           1.718    0.125   13.767    0.000    1.718    1.077
    Q7_4|t1          -0.455    0.081   -5.608    0.000   -0.455   -0.323
    Q7_4|t2           0.911    0.087   10.467    0.000    0.911    0.646
    Q7_5|t1          -0.661    0.101   -6.551    0.000   -0.661   -0.388
    Q7_5|t2           1.220    0.107   11.362    0.000    1.220    0.717
    Q7_7|t1          -1.343    0.116  -11.624    0.000   -1.343   -0.909
    Q7_7|t2          -0.421    0.090   -4.696    0.000   -0.421   -0.285
    Q7_8|t1          -0.546    0.086   -6.388    0.000   -0.546   -0.372
    Q7_8|t2           1.103    0.093   11.889    0.000    1.103    0.750
    Q7_14|t1         -1.257    0.095  -13.256    0.000   -1.257   -0.965
    Q7_14|t2         -0.187    0.075   -2.503    0.012   -0.187   -0.144

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    EL                1.522    0.237    6.417    0.000    1.000    1.000
    SC                1.171    0.229    5.119    0.000    1.000    1.000
    IN                1.111    0.234    4.753    0.000    1.000    1.000
    EN                1.545    0.275    5.620    0.000    1.000    1.000
   .Q4_3              1.000                               1.000    0.396
   .Q4_4              1.000                               1.000    0.239
   .Q4_5              1.000                               1.000    0.422
   .Q4_9              1.000                               1.000    0.530
   .Q4_11             1.000                               1.000    0.374
   .Q4_15             1.000                               1.000    0.399
   .Q4_18             1.000                               1.000    0.289
   .Q5_1              1.000                               1.000    0.461
   .Q5_2              1.000                               1.000    0.473
   .Q5_3              1.000                               1.000    0.490
   .Q5_5              1.000                               1.000    0.570
   .Q5_6              1.000                               1.000    0.363
   .Q5_12             1.000                               1.000    0.377
   .Q6_2              1.000                               1.000    0.474
   .Q6_5              1.000                               1.000    0.702
   .Q6_6              1.000                               1.000    0.237
   .Q6_7              1.000                               1.000    0.281
   .Q6_8              1.000                               1.000    0.371
   .Q6_11             1.000                               1.000    0.260
   .Q7_2              1.000                               1.000    0.393
   .Q7_4              1.000                               1.000    0.503
   .Q7_5              1.000                               1.000    0.345
   .Q7_7              1.000                               1.000    0.458
   .Q7_8              1.000                               1.000    0.463
   .Q7_14             1.000                               1.000    0.589

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    Q4_3              0.630                               0.630    1.000
    Q4_4              0.489                               0.489    1.000
    Q4_5              0.650                               0.650    1.000
    Q4_9              0.728                               0.728    1.000
    Q4_11             0.612                               0.612    1.000
    Q4_15             0.632                               0.632    1.000
    Q4_18             0.537                               0.537    1.000
    Q5_1              0.679                               0.679    1.000
    Q5_2              0.688                               0.688    1.000
    Q5_3              0.700                               0.700    1.000
    Q5_5              0.755                               0.755    1.000
    Q5_6              0.603                               0.603    1.000
    Q5_12             0.614                               0.614    1.000
    Q6_2              0.688                               0.688    1.000
    Q6_5              0.838                               0.838    1.000
    Q6_6              0.486                               0.486    1.000
    Q6_7              0.530                               0.530    1.000
    Q6_8              0.609                               0.609    1.000
    Q6_11             0.510                               0.510    1.000
    Q7_2              0.627                               0.627    1.000
    Q7_4              0.709                               0.709    1.000
    Q7_5              0.587                               0.587    1.000
    Q7_7              0.677                               0.677    1.000
    Q7_8              0.680                               0.680    1.000
    Q7_14             0.768                               0.768    1.000

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    rEL               0.889    0.013   68.903    0.000    0.920    0.824
    rSC               0.863    0.020   42.191    0.000    0.878    0.785
    rIN               0.908    0.016   56.391    0.000    0.915    0.801
    rEN               0.825    0.022   37.817    0.000    0.871    0.781

Model 1: Traditional IFA

Model details

cat(read_file(paste0(w.d, "/code/pools_study/model_ifa.txt")))
model {
### Model
  for(p in 1:N){
    for(i in 1:nit){
      # data model
      y[p,i] ~ dcat(pi[p,i, ])

      # LRV
      ystar[p,i] ~ dnorm(lambda[i]*ksi[p,map[nit]], 1)

     # Pr(nu = 3)
      pi[p,i,3] = phi(ystar[p,i] - tau[i,2])
      # Pr(nu = 2)
      pi[p,i,2] = phi(ystar[p,i] - tau[i,1]) - phi(ystar[p,i] - tau[i,2])
      # Pr(nu = 1)
      pi[p,i,1] = 1 - phi(ystar[p,i] - tau[i,1])

    }
  }
  ### Priors
  # person parameters
  for(p in 1:N){
    #eta[p] ~ dnorm(0, 1) # latent ability
    ksi[p, 1:M] ~ dmnorm(kappa[], inv.phi[,])
  }
  for(m in 1:M){
    kappa[m] <- 0              # Means of latent variables
  }
  inv.phi[1:M,1:M] ~ dwish(dxphi.0[ , ], d);    # prior for precision matrix for the latent variables
  phi[1:M,1:M] <- inverse(inv.phi[ , ]);        # the covariance matrix for the latent vars

  for(m in 1:M){
    for(mm in 1:M){
      dxphi.0[m,mm] <- d*phi.0[m,mm];
    }
  }

  # factor correlations
  for(m in 1:M){
    for(mm in 1:M){
      phi.cor[m,mm] = (phi[m,mm])/((pow(phi[m,m], 0.5))*(pow(phi[mm,mm], 0.5)));
    }
  }


  # priors for loadings
  # loadings
  lambda[1] = 1
  lambda[8] = 1
  lambda[13] = 1
  lambda[19] = 1
  for(i in 2:7){
    lambda[i] ~ dnorm(0, 1)T(0,)
  }
  for(i in 9:12){
    lambda[i] ~ dnorm(0, 1)T(0,)
  }
  for(i in 14:18){
    lambda[i] ~ dnorm(0, 1)T(0,)
  }
  for(i in 20:25){
    lambda[i] ~ dnorm(0, 1)T(0,)
  }


  for(i in 1:nit){
    # Thresholds
    tau[i, 1] = 0
    tau[i, 2] ~ dnorm(0, 0.1)T(tau[i, 1],)
    # LRV total variance
    # total variance = residual variance + fact. Var.
    theta[i] = 1 + pow(lambda[i],2)
    # standardized loading
    lambda.std[i] = lambda[i]/pow(theta[i],0.5)
  }

  # compute omega
  lambda_sum1[1] = lambda[1]
  lambda_sum2[1] = lambda[8]
  lambda_sum3[1] = lambda[13]
  lambda_sum4[1] = lambda[19]
  for(i in 2:6){
    #lambda_sum (sum factor loadings)
    lambda_sum1[i] = lambda_sum1[i-1]+lambda[i]
    lambda_sum2[i] = lambda_sum2[i-1]+lambda[i+7]
    lambda_sum3[i] = lambda_sum3[i-1]+lambda[i+12]
    lambda_sum4[i] = lambda_sum4[i-1]+lambda[i+18]
  }
  lambda_sum1[7] = lambda_sum1[6] + lambda[7]
  # compute reliability
  reli.omega[1] = (pow(lambda_sum1[7],2))/(pow(lambda_sum1[7],2)+7)
  reli.omega[2] = (pow(lambda_sum2[6],2))/(pow(lambda_sum2[6],2)+6)
  reli.omega[3] = (pow(lambda_sum3[6],2))/(pow(lambda_sum3[6],2)+6)
  reli.omega[4] = (pow(lambda_sum4[6],2))/(pow(lambda_sum4[6],2)+6)
}

Model results

# Save parameters
jags.params <- c("tau", "lambda", "theta", "reli.omega", "lambda.std",
                 "phi.cor", "inv.phi", "phi")
# initial-values
jags.inits <- function(){
    list(
      "inv.phi"=solve(matrix(
    c(1.52, 0.92, 0.97, 1.19,
      0.92, 1.17, 0.74, 1.08,
      0.97, 0.74, 1.11, 0.98,
      1.19, 1.08, 0.98, 1.55), ncol=4, nrow=4, byrow=T
    ))
  )
}

# data
jags.data <- list(
  y = mydata,
  N = nrow(mydata),
  nit = ncol(mydata),
  map = c(rep(1,7), rep(2,6), rep(3,6), rep(4,6)),
  d = 8,
  M = 4,
  phi.0 = matrix(
    c(1, 0.69, 0.75, 0.78,
      0.69, 1, 0.65, 0.80,
      0.75, 0.65, 1, 0.75,
      0.78, 0.80, 0.75, 1), ncol=4, nrow=4, byrow=T
    )
)

model.fit <-  R2jags::jags(
  model = paste0(w.d, "/code/pools_study/model_ifa.txt"),
  parameters.to.save = jags.params,
  inits = jags.inits,
  data = jags.data,
  n.chains = 4,
  n.burnin = 5000,
  n.iter = 10000
)
module glm loaded
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
Graph information:
   Observed stochastic nodes: 12250
   Unobserved stochastic nodes: 12787
   Total graph size: 122291

Initializing model
print(model.fit, width=1000)
Inference for Bugs model at "C:/Users/noahp/Documents/GitHub/Padgett-Dissertation/code/pools_study/model_ifa.txt", fit using jags,
 4 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
 n.sims = 4000 iterations saved
                 mu.vect sd.vect      2.5%       25%       50%       75%     97.5% Rhat n.eff
inv.phi[1,1]       3.156   1.614     0.760     2.008     2.900     4.000     7.169 1.03   140
inv.phi[2,1]      -0.460   1.056    -2.762    -1.056    -0.414     0.219     1.509 1.02   160
inv.phi[3,1]      -1.252   1.105    -3.846    -1.855    -1.116    -0.456     0.492 1.01   230
inv.phi[4,1]      -1.271   1.433    -4.447    -2.124    -1.135    -0.283     1.152 1.01   310
inv.phi[1,2]      -0.460   1.056    -2.762    -1.056    -0.414     0.219     1.509 1.02   160
inv.phi[2,2]       2.869   1.461     0.891     1.777     2.594     3.680     6.307 1.01   250
inv.phi[3,2]      -0.135   0.898    -1.976    -0.681    -0.115     0.424     1.689 1.01   490
inv.phi[4,2]      -1.766   1.409    -4.945    -2.551    -1.569    -0.786     0.497 1.02   180
inv.phi[1,3]      -1.252   1.105    -3.846    -1.855    -1.116    -0.456     0.492 1.01   230
inv.phi[2,3]      -0.135   0.898    -1.976    -0.681    -0.115     0.424     1.689 1.01   490
inv.phi[3,3]       2.748   1.319     0.722     1.799     2.512     3.474     5.946 1.02   180
inv.phi[4,3]      -1.000   1.135    -3.497    -1.667    -0.889    -0.225     0.910 1.01   280
inv.phi[1,4]      -1.271   1.433    -4.447    -2.124    -1.135    -0.283     1.152 1.01   310
inv.phi[2,4]      -1.766   1.409    -4.945    -2.551    -1.569    -0.786     0.497 1.02   180
inv.phi[3,4]      -1.000   1.135    -3.497    -1.667    -0.889    -0.225     0.910 1.01   280
inv.phi[4,4]       4.019   2.103     0.992     2.441     3.660     5.165     9.062 1.03   130
lambda[1]          1.000   0.000     1.000     1.000     1.000     1.000     1.000 1.00     1
lambda[2]          1.241   0.109     1.034     1.165     1.239     1.315     1.461 1.00  1600
lambda[3]          0.789   0.080     0.640     0.734     0.786     0.839     0.956 1.00  1500
lambda[4]          0.780   0.081     0.632     0.724     0.777     0.835     0.945 1.00  1100
lambda[5]          0.997   0.092     0.831     0.934     0.994     1.056     1.185 1.00   660
lambda[6]          0.916   0.085     0.756     0.858     0.914     0.972     1.094 1.00  1500
lambda[7]          1.000   0.095     0.824     0.933     0.997     1.061     1.195 1.01   380
lambda[8]          1.000   0.000     1.000     1.000     1.000     1.000     1.000 1.00     1
lambda[9]          0.865   0.083     0.709     0.808     0.863     0.920     1.030 1.00   900
lambda[10]         0.769   0.075     0.629     0.717     0.767     0.818     0.923 1.00  1500
lambda[11]         0.732   0.078     0.587     0.679     0.730     0.783     0.893 1.00  3000
lambda[12]         1.025   0.089     0.857     0.965     1.024     1.082     1.205 1.00  3900
lambda[13]         1.000   0.000     1.000     1.000     1.000     1.000     1.000 1.00     1
lambda[14]         0.421   0.064     0.298     0.378     0.419     0.462     0.550 1.00  1300
lambda[15]         0.471   0.062     0.351     0.429     0.471     0.511     0.596 1.00  1300
lambda[16]         0.292   0.062     0.175     0.250     0.292     0.332     0.416 1.00  2100
lambda[17]         0.658   0.074     0.519     0.609     0.656     0.706     0.810 1.00   560
lambda[18]         0.542   0.069     0.414     0.495     0.539     0.587     0.685 1.00   840
lambda[19]         1.000   0.000     1.000     1.000     1.000     1.000     1.000 1.00     1
lambda[20]         1.142   0.099     0.956     1.072     1.141     1.207     1.343 1.00  1400
lambda[21]         0.966   0.085     0.805     0.906     0.965     1.022     1.141 1.00  2400
lambda[22]         1.197   0.104     1.006     1.126     1.194     1.264     1.410 1.00  1200
lambda[23]         0.883   0.087     0.719     0.825     0.880     0.940     1.062 1.00  1700
lambda[24]         1.002   0.087     0.840     0.943     0.999     1.060     1.176 1.00  1600
lambda[25]         0.770   0.079     0.623     0.713     0.769     0.822     0.929 1.00   640
lambda.std[1]      0.707   0.000     0.707     0.707     0.707     0.707     0.707 1.00     1
lambda.std[2]      0.777   0.027     0.719     0.759     0.778     0.796     0.825 1.00  1900
lambda.std[3]      0.617   0.039     0.539     0.592     0.618     0.643     0.691 1.00  1500
lambda.std[4]      0.613   0.040     0.534     0.586     0.614     0.641     0.687 1.00  1100
lambda.std[5]      0.704   0.032     0.639     0.683     0.705     0.726     0.764 1.00   690
lambda.std[6]      0.673   0.034     0.603     0.651     0.675     0.697     0.738 1.00  1400
lambda.std[7]      0.705   0.033     0.636     0.682     0.706     0.728     0.767 1.01   370
lambda.std[8]      0.707   0.000     0.707     0.707     0.707     0.707     0.707 1.00     1
lambda.std[9]      0.652   0.036     0.579     0.628     0.653     0.677     0.718 1.00   830
lambda.std[10]     0.608   0.037     0.532     0.583     0.609     0.633     0.678 1.00  1500
lambda.std[11]     0.588   0.041     0.506     0.562     0.590     0.617     0.666 1.00  3100
lambda.std[12]     0.714   0.030     0.651     0.695     0.715     0.734     0.769 1.00  3600
lambda.std[13]     0.707   0.000     0.707     0.707     0.707     0.707     0.707 1.00     1
lambda.std[14]     0.386   0.050     0.286     0.354     0.386     0.419     0.482 1.00  1400
lambda.std[15]     0.424   0.046     0.331     0.394     0.426     0.455     0.512 1.00  1300
lambda.std[16]     0.279   0.054     0.172     0.243     0.280     0.315     0.384 1.00  2100
lambda.std[17]     0.548   0.043     0.460     0.520     0.549     0.577     0.629 1.00   550
lambda.std[18]     0.474   0.047     0.382     0.443     0.475     0.506     0.565 1.00   860
lambda.std[19]     0.707   0.000     0.707     0.707     0.707     0.707     0.707 1.00     1
lambda.std[20]     0.750   0.029     0.691     0.731     0.752     0.770     0.802 1.00  1300
lambda.std[21]     0.693   0.032     0.627     0.671     0.694     0.715     0.752 1.00  2800
lambda.std[22]     0.765   0.027     0.709     0.748     0.767     0.784     0.816 1.00  1100
lambda.std[23]     0.660   0.037     0.584     0.637     0.660     0.685     0.728 1.00  1800
lambda.std[24]     0.706   0.031     0.643     0.686     0.707     0.728     0.762 1.00  1700
lambda.std[25]     0.608   0.039     0.529     0.580     0.609     0.635     0.681 1.00   660
phi[1,1]           2.621   1.631     0.856     1.636     2.254     3.045     7.216 1.03   170
phi[2,1]           1.583   0.883     0.188     1.006     1.510     2.039     3.640 1.03  1800
phi[3,1]           1.931   1.046     0.465     1.233     1.774     2.384     4.552 1.02   490
phi[4,1]           1.908   0.735     0.526     1.456     1.897     2.322     3.473 1.03   360
phi[1,2]           1.583   0.883     0.188     1.006     1.510     2.039     3.640 1.03  1800
phi[2,2]           2.078   1.022     0.723     1.368     1.900     2.517     4.717 1.02   280
phi[3,2]           1.399   0.818     0.025     0.837     1.314     1.881     3.145 1.02   200
phi[4,2]           1.677   0.701     0.186     1.261     1.715     2.117     3.064 1.02   270
phi[1,3]           1.931   1.046     0.465     1.233     1.774     2.384     4.552 1.02   490
phi[2,3]           1.399   0.818     0.025     0.837     1.314     1.881     3.145 1.02   200
phi[3,3]           2.373   1.199     0.821     1.525     2.127     2.949     5.177 1.00  4000
phi[4,3]           1.781   0.671     0.426     1.336     1.785     2.224     3.074 1.00   550
phi[1,4]           1.908   0.735     0.526     1.456     1.897     2.322     3.473 1.03   360
phi[2,4]           1.677   0.701     0.186     1.261     1.715     2.117     3.064 1.02   270
phi[3,4]           1.781   0.671     0.426     1.336     1.785     2.224     3.074 1.00   550
phi[4,4]           2.290   0.242     1.855     2.124     2.279     2.439     2.811 1.00  1800
phi.cor[1,1]       1.000   0.000     1.000     1.000     1.000     1.000     1.000 1.00     1
phi.cor[2,1]       0.696   0.210     0.125     0.620     0.752     0.842     0.925 1.03   200
phi.cor[3,1]       0.784   0.157     0.368     0.723     0.833     0.895     0.951 1.01   780
phi.cor[4,1]       0.799   0.172     0.319     0.750     0.860     0.908     0.952 1.03   890
phi.cor[1,2]       0.696   0.210     0.125     0.620     0.752     0.842     0.925 1.03   200
phi.cor[2,2]       1.000   0.000     1.000     1.000     1.000     1.000     1.000 1.00     1
phi.cor[3,2]       0.642   0.241     0.022     0.533     0.707     0.821     0.914 1.02   170
phi.cor[4,2]       0.769   0.215     0.109     0.724     0.849     0.903     0.952 1.05   210
phi.cor[1,3]       0.784   0.157     0.368     0.723     0.833     0.895     0.951 1.01   780
phi.cor[2,3]       0.642   0.241     0.022     0.533     0.707     0.821     0.914 1.02   170
phi.cor[3,3]       1.000   0.000     1.000     1.000     1.000     1.000     1.000 1.00     1
phi.cor[4,3]       0.772   0.178     0.237     0.721     0.828     0.887     0.941 1.02   200
phi.cor[1,4]       0.799   0.172     0.319     0.750     0.860     0.908     0.952 1.03   890
phi.cor[2,4]       0.769   0.215     0.109     0.724     0.849     0.903     0.952 1.05   210
phi.cor[3,4]       0.772   0.178     0.237     0.721     0.828     0.887     0.941 1.02   200
phi.cor[4,4]       1.000   0.000     1.000     1.000     1.000     1.000     1.000 1.00     1
reli.omega[1]      0.865   0.011     0.843     0.858     0.866     0.873     0.886 1.01   430
reli.omega[2]      0.828   0.011     0.807     0.821     0.829     0.836     0.849 1.00  4000
reli.omega[3]      0.655   0.025     0.604     0.638     0.655     0.672     0.703 1.01   410
reli.omega[4]      0.864   0.011     0.842     0.857     0.864     0.872     0.884 1.00  3100
tau[1,1]           0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[2,1]           0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[3,1]           0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[4,1]           0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[5,1]           0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[6,1]           0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[7,1]           0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[8,1]           0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[9,1]           0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[10,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[11,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[12,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[13,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[14,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[15,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[16,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[17,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[18,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[19,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[20,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[21,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[22,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[23,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[24,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[25,1]          0.000   0.000     0.000     0.000     0.000     0.000     0.000 1.00     1
tau[1,2]           2.842   0.149     2.553     2.743     2.837     2.942     3.138 1.00  3900
tau[2,2]           3.235   0.198     2.868     3.095     3.228     3.368     3.648 1.00  2300
tau[3,2]           2.353   0.152     2.062     2.247     2.349     2.454     2.648 1.00  1800
tau[4,2]           1.780   0.117     1.556     1.699     1.778     1.858     2.011 1.00   770
tau[5,2]           2.298   0.144     2.023     2.195     2.298     2.397     2.584 1.00   840
tau[6,2]           2.586   0.157     2.297     2.475     2.582     2.689     2.909 1.00  2700
tau[7,2]           3.085   0.198     2.709     2.952     3.082     3.217     3.483 1.00  1500
tau[8,2]           1.898   0.106     1.691     1.825     1.898     1.967     2.107 1.00  4000
tau[9,2]           1.095   0.081     0.941     1.040     1.094     1.150     1.258 1.00  1200
tau[10,2]          1.436   0.099     1.245     1.372     1.435     1.501     1.644 1.00  4000
tau[11,2]          0.667   0.054     0.564     0.631     0.665     0.701     0.776 1.00  3100
tau[12,2]          1.697   0.102     1.501     1.626     1.696     1.763     1.902 1.00  3300
tau[13,2]          1.678   0.090     1.505     1.615     1.677     1.740     1.856 1.00  1500
tau[14,2]          1.637   0.132     1.380     1.547     1.638     1.724     1.901 1.00  1000
tau[15,2]          1.273   0.092     1.100     1.212     1.270     1.336     1.455 1.00  2500
tau[16,2]          1.838   0.184     1.492     1.712     1.832     1.961     2.212 1.00  4000
tau[17,2]          2.208   0.155     1.910     2.103     2.205     2.310     2.525 1.00   720
tau[18,2]          2.091   0.147     1.801     1.993     2.090     2.188     2.388 1.00  1400
tau[19,2]          1.954   0.100     1.766     1.884     1.953     2.021     2.153 1.00  2000
tau[20,2]          2.643   0.153     2.352     2.537     2.640     2.745     2.953 1.00  1300
tau[21,2]          1.650   0.103     1.450     1.581     1.648     1.719     1.854 1.00   700
tau[22,2]          2.035   0.125     1.798     1.951     2.030     2.116     2.283 1.00   700
tau[23,2]          0.583   0.051     0.488     0.547     0.582     0.617     0.687 1.00  4000
tau[24,2]          1.907   0.110     1.702     1.832     1.904     1.983     2.132 1.00  1000
tau[25,2]          0.745   0.056     0.641     0.706     0.744     0.783     0.862 1.00  2300
theta[1]           2.000   0.000     2.000     2.000     2.000     2.000     2.000 1.00     1
theta[2]           2.553   0.272     2.069     2.357     2.536     2.729     3.135 1.00  1400
theta[3]           1.628   0.128     1.409     1.539     1.617     1.704     1.914 1.00  1500
theta[4]           1.615   0.128     1.399     1.524     1.604     1.697     1.893 1.00  1300
theta[5]           2.003   0.185     1.691     1.873     1.989     2.116     2.405 1.00   630
theta[6]           1.847   0.157     1.572     1.736     1.836     1.946     2.198 1.00  1600
theta[7]           2.009   0.192     1.679     1.871     1.995     2.127     2.429 1.01   390
theta[8]           2.000   0.000     2.000     2.000     2.000     2.000     2.000 1.00     1
theta[9]           1.755   0.145     1.503     1.653     1.744     1.846     2.061 1.00  1000
theta[10]          1.597   0.117     1.395     1.514     1.589     1.670     1.852 1.00  1500
theta[11]          1.542   0.115     1.344     1.461     1.533     1.613     1.797 1.00  2900
theta[12]          2.059   0.184     1.734     1.932     2.048     2.170     2.451 1.00  4000
theta[13]          2.000   0.000     2.000     2.000     2.000     2.000     2.000 1.00     1
theta[14]          1.181   0.055     1.089     1.143     1.175     1.213     1.302 1.00  1300
theta[15]          1.225   0.059     1.123     1.184     1.222     1.261     1.355 1.00  1500
theta[16]          1.089   0.037     1.031     1.063     1.085     1.111     1.173 1.00  3100
theta[17]          1.439   0.099     1.269     1.371     1.430     1.499     1.655 1.00   580
theta[18]          1.298   0.076     1.171     1.245     1.291     1.344     1.470 1.00   810
theta[19]          2.000   0.000     2.000     2.000     2.000     2.000     2.000 1.00     1
theta[20]          2.313   0.228     1.913     2.150     2.302     2.457     2.805 1.00  1500
theta[21]          1.941   0.166     1.648     1.821     1.931     2.044     2.301 1.00  2100
theta[22]          2.445   0.253     2.013     2.267     2.425     2.597     2.987 1.00  1300
theta[23]          1.788   0.155     1.517     1.681     1.774     1.884     2.127 1.00  1500
theta[24]          2.012   0.175     1.705     1.889     1.999     2.125     2.383 1.00  1500
theta[25]          1.599   0.123     1.388     1.508     1.591     1.676     1.863 1.00   610
deviance       15091.744 119.045 14858.102 15012.531 15091.659 15170.140 15327.725 1.00  4000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 7086.0 and DIC = 22177.7
DIC is an estimate of expected predictive error (lower deviance is better).
kable(model.fit$BUGSoutput$summary, format="html", digits=3) %>%
  kable_styling(full_width = T) %>%
  scroll_box(width="100%", height="500px")
mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
deviance 15091.744 119.045 14858.102 15012.531 15091.659 15170.140 15327.725 1.00 4000
inv.phi[1,1] 3.156 1.614 0.760 2.008 2.900 4.000 7.169 1.03 140
inv.phi[2,1] -0.460 1.056 -2.762 -1.056 -0.414 0.219 1.509 1.02 160
inv.phi[3,1] -1.252 1.105 -3.846 -1.855 -1.116 -0.456 0.492 1.01 230
inv.phi[4,1] -1.271 1.433 -4.447 -2.124 -1.135 -0.283 1.152 1.01 310
inv.phi[1,2] -0.460 1.056 -2.762 -1.056 -0.414 0.219 1.509 1.02 160
inv.phi[2,2] 2.869 1.461 0.891 1.777 2.594 3.680 6.307 1.01 250
inv.phi[3,2] -0.135 0.898 -1.976 -0.681 -0.115 0.424 1.689 1.01 490
inv.phi[4,2] -1.766 1.409 -4.945 -2.551 -1.569 -0.786 0.497 1.02 180
inv.phi[1,3] -1.252 1.105 -3.846 -1.855 -1.116 -0.456 0.492 1.01 230
inv.phi[2,3] -0.135 0.898 -1.976 -0.681 -0.115 0.424 1.689 1.01 490
inv.phi[3,3] 2.748 1.319 0.722 1.799 2.512 3.474 5.946 1.02 180
inv.phi[4,3] -1.000 1.135 -3.497 -1.667 -0.889 -0.225 0.910 1.01 280
inv.phi[1,4] -1.271 1.433 -4.447 -2.124 -1.135 -0.283 1.152 1.01 310
inv.phi[2,4] -1.766 1.409 -4.945 -2.551 -1.569 -0.786 0.497 1.02 180
inv.phi[3,4] -1.000 1.135 -3.497 -1.667 -0.889 -0.225 0.910 1.01 280
inv.phi[4,4] 4.019 2.103 0.992 2.441 3.660 5.165 9.062 1.03 130
lambda[1] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.00 1
lambda[2] 1.241 0.109 1.034 1.165 1.239 1.315 1.461 1.00 1600
lambda[3] 0.789 0.080 0.640 0.734 0.786 0.839 0.956 1.00 1500
lambda[4] 0.780 0.081 0.632 0.724 0.777 0.835 0.945 1.00 1100
lambda[5] 0.997 0.092 0.831 0.934 0.994 1.056 1.185 1.00 660
lambda[6] 0.916 0.085 0.756 0.858 0.914 0.972 1.094 1.00 1500
lambda[7] 1.000 0.095 0.824 0.933 0.997 1.061 1.195 1.01 380
lambda[8] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.00 1
lambda[9] 0.865 0.083 0.709 0.808 0.863 0.920 1.030 1.00 900
lambda[10] 0.769 0.075 0.629 0.717 0.767 0.818 0.923 1.00 1500
lambda[11] 0.732 0.078 0.587 0.679 0.730 0.783 0.893 1.00 3000
lambda[12] 1.025 0.089 0.857 0.965 1.024 1.082 1.205 1.00 3900
lambda[13] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.00 1
lambda[14] 0.421 0.064 0.298 0.378 0.419 0.462 0.550 1.00 1300
lambda[15] 0.471 0.062 0.351 0.429 0.471 0.511 0.596 1.00 1300
lambda[16] 0.292 0.062 0.175 0.250 0.292 0.332 0.416 1.00 2100
lambda[17] 0.658 0.074 0.519 0.609 0.656 0.706 0.810 1.00 560
lambda[18] 0.542 0.069 0.414 0.495 0.539 0.587 0.685 1.00 840
lambda[19] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.00 1
lambda[20] 1.142 0.099 0.956 1.072 1.141 1.207 1.343 1.00 1400
lambda[21] 0.966 0.085 0.805 0.906 0.965 1.022 1.141 1.00 2400
lambda[22] 1.197 0.104 1.006 1.126 1.194 1.264 1.410 1.00 1200
lambda[23] 0.883 0.087 0.719 0.825 0.880 0.940 1.062 1.00 1700
lambda[24] 1.002 0.087 0.840 0.943 0.999 1.060 1.176 1.00 1600
lambda[25] 0.770 0.079 0.623 0.713 0.769 0.822 0.929 1.00 640
lambda.std[1] 0.707 0.000 0.707 0.707 0.707 0.707 0.707 1.00 1
lambda.std[2] 0.777 0.027 0.719 0.759 0.778 0.796 0.825 1.00 1900
lambda.std[3] 0.617 0.039 0.539 0.592 0.618 0.643 0.691 1.00 1500
lambda.std[4] 0.613 0.040 0.534 0.586 0.614 0.641 0.687 1.00 1100
lambda.std[5] 0.704 0.032 0.639 0.683 0.705 0.726 0.764 1.00 690
lambda.std[6] 0.673 0.034 0.603 0.651 0.675 0.697 0.738 1.00 1400
lambda.std[7] 0.705 0.033 0.636 0.682 0.706 0.728 0.767 1.01 370
lambda.std[8] 0.707 0.000 0.707 0.707 0.707 0.707 0.707 1.00 1
lambda.std[9] 0.652 0.036 0.579 0.628 0.653 0.677 0.718 1.00 830
lambda.std[10] 0.608 0.037 0.532 0.583 0.609 0.633 0.678 1.00 1500
lambda.std[11] 0.588 0.041 0.506 0.562 0.590 0.617 0.666 1.00 3100
lambda.std[12] 0.714 0.030 0.651 0.695 0.715 0.734 0.769 1.00 3600
lambda.std[13] 0.707 0.000 0.707 0.707 0.707 0.707 0.707 1.00 1
lambda.std[14] 0.386 0.050 0.286 0.354 0.386 0.419 0.482 1.00 1400
lambda.std[15] 0.424 0.046 0.331 0.394 0.426 0.455 0.512 1.00 1300
lambda.std[16] 0.279 0.054 0.172 0.243 0.280 0.315 0.384 1.00 2100
lambda.std[17] 0.548 0.043 0.460 0.520 0.549 0.577 0.629 1.00 550
lambda.std[18] 0.474 0.047 0.382 0.443 0.475 0.506 0.565 1.00 860
lambda.std[19] 0.707 0.000 0.707 0.707 0.707 0.707 0.707 1.00 1
lambda.std[20] 0.750 0.029 0.691 0.731 0.752 0.770 0.802 1.00 1300
lambda.std[21] 0.693 0.032 0.627 0.671 0.694 0.715 0.752 1.00 2800
lambda.std[22] 0.765 0.027 0.709 0.748 0.767 0.784 0.816 1.00 1100
lambda.std[23] 0.660 0.037 0.584 0.637 0.660 0.685 0.728 1.00 1800
lambda.std[24] 0.706 0.031 0.643 0.686 0.707 0.728 0.762 1.00 1700
lambda.std[25] 0.608 0.039 0.529 0.580 0.609 0.635 0.681 1.00 660
phi[1,1] 2.621 1.631 0.856 1.636 2.254 3.045 7.216 1.03 170
phi[2,1] 1.583 0.883 0.188 1.006 1.510 2.039 3.640 1.03 1800
phi[3,1] 1.931 1.046 0.465 1.233 1.774 2.384 4.552 1.02 490
phi[4,1] 1.908 0.735 0.526 1.456 1.897 2.322 3.473 1.03 360
phi[1,2] 1.583 0.883 0.188 1.006 1.510 2.039 3.640 1.03 1800
phi[2,2] 2.078 1.022 0.723 1.368 1.900 2.517 4.717 1.02 280
phi[3,2] 1.399 0.818 0.025 0.837 1.314 1.881 3.145 1.02 200
phi[4,2] 1.677 0.701 0.186 1.261 1.715 2.117 3.064 1.02 270
phi[1,3] 1.931 1.046 0.465 1.233 1.774 2.384 4.552 1.02 490
phi[2,3] 1.399 0.818 0.025 0.837 1.314 1.881 3.145 1.02 200
phi[3,3] 2.373 1.199 0.821 1.525 2.127 2.949 5.177 1.00 4000
phi[4,3] 1.781 0.671 0.426 1.336 1.785 2.224 3.074 1.00 550
phi[1,4] 1.908 0.735 0.526 1.456 1.897 2.322 3.473 1.03 360
phi[2,4] 1.677 0.701 0.186 1.261 1.715 2.117 3.064 1.02 270
phi[3,4] 1.781 0.671 0.426 1.336 1.785 2.224 3.074 1.00 550
phi[4,4] 2.290 0.242 1.855 2.124 2.279 2.439 2.811 1.00 1800
phi.cor[1,1] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.00 1
phi.cor[2,1] 0.696 0.210 0.125 0.620 0.752 0.842 0.925 1.03 200
phi.cor[3,1] 0.784 0.157 0.368 0.723 0.833 0.895 0.951 1.01 780
phi.cor[4,1] 0.799 0.172 0.319 0.750 0.860 0.908 0.952 1.03 890
phi.cor[1,2] 0.696 0.210 0.125 0.620 0.752 0.842 0.925 1.03 200
phi.cor[2,2] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.00 1
phi.cor[3,2] 0.642 0.241 0.022 0.533 0.707 0.821 0.914 1.02 170
phi.cor[4,2] 0.769 0.215 0.109 0.724 0.849 0.903 0.952 1.05 210
phi.cor[1,3] 0.784 0.157 0.368 0.723 0.833 0.895 0.951 1.01 780
phi.cor[2,3] 0.642 0.241 0.022 0.533 0.707 0.821 0.914 1.02 170
phi.cor[3,3] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.00 1
phi.cor[4,3] 0.772 0.178 0.237 0.721 0.828 0.887 0.941 1.02 200
phi.cor[1,4] 0.799 0.172 0.319 0.750 0.860 0.908 0.952 1.03 890
phi.cor[2,4] 0.769 0.215 0.109 0.724 0.849 0.903 0.952 1.05 210
phi.cor[3,4] 0.772 0.178 0.237 0.721 0.828 0.887 0.941 1.02 200
phi.cor[4,4] 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.00 1
reli.omega[1] 0.865 0.011 0.843 0.858 0.866 0.873 0.886 1.01 430
reli.omega[2] 0.828 0.011 0.807 0.821 0.829 0.836 0.849 1.00 4000
reli.omega[3] 0.655 0.025 0.604 0.638 0.655 0.672 0.703 1.01 410
reli.omega[4] 0.864 0.011 0.842 0.857 0.864 0.872 0.884 1.00 3100
tau[1,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[2,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[3,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[4,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[5,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[6,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[7,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[8,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[9,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[10,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[11,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[12,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[13,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[14,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[15,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[16,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[17,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[18,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[19,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[20,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[21,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[22,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[23,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[24,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[25,1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 1
tau[1,2] 2.842 0.149 2.553 2.743 2.837 2.942 3.138 1.00 3900
tau[2,2] 3.235 0.198 2.868 3.095 3.228 3.368 3.648 1.00 2300
tau[3,2] 2.353 0.152 2.062 2.247 2.349 2.454 2.648 1.00 1800
tau[4,2] 1.780 0.117 1.556 1.699 1.778 1.858 2.011 1.00 770
tau[5,2] 2.298 0.144 2.023 2.195 2.298 2.397 2.584 1.00 840
tau[6,2] 2.586 0.157 2.297 2.475 2.582 2.689 2.909 1.00 2700
tau[7,2] 3.085 0.198 2.709 2.952 3.082 3.217 3.483 1.00 1500
tau[8,2] 1.898 0.106 1.691 1.825 1.898 1.967 2.107 1.00 4000
tau[9,2] 1.095 0.081 0.941 1.040 1.094 1.150 1.258 1.00 1200
tau[10,2] 1.436 0.099 1.245 1.372 1.435 1.501 1.644 1.00 4000
tau[11,2] 0.667 0.054 0.564 0.631 0.665 0.701 0.776 1.00 3100
tau[12,2] 1.697 0.102 1.501 1.626 1.696 1.763 1.902 1.00 3300
tau[13,2] 1.678 0.090 1.505 1.615 1.677 1.740 1.856 1.00 1500
tau[14,2] 1.637 0.132 1.380 1.547 1.638 1.724 1.901 1.00 1000
tau[15,2] 1.273 0.092 1.100 1.212 1.270 1.336 1.455 1.00 2500
tau[16,2] 1.838 0.184 1.492 1.712 1.832 1.961 2.212 1.00 4000
tau[17,2] 2.208 0.155 1.910 2.103 2.205 2.310 2.525 1.00 720
tau[18,2] 2.091 0.147 1.801 1.993 2.090 2.188 2.388 1.00 1400
tau[19,2] 1.954 0.100 1.766 1.884 1.953 2.021 2.153 1.00 2000
tau[20,2] 2.643 0.153 2.352 2.537 2.640 2.745 2.953 1.00 1300
tau[21,2] 1.650 0.103 1.450 1.581 1.648 1.719 1.854 1.00 700
tau[22,2] 2.035 0.125 1.798 1.951 2.030 2.116 2.283 1.00 700
tau[23,2] 0.583 0.051 0.488 0.547 0.582 0.617 0.687 1.00 4000
tau[24,2] 1.907 0.110 1.702 1.832 1.904 1.983 2.132 1.00 1000
tau[25,2] 0.745 0.056 0.641 0.706 0.744 0.783 0.862 1.00 2300
theta[1] 2.000 0.000 2.000 2.000 2.000 2.000 2.000 1.00 1
theta[2] 2.553 0.272 2.069 2.357 2.536 2.729 3.135 1.00 1400
theta[3] 1.628 0.128 1.409 1.539 1.617 1.704 1.914 1.00 1500
theta[4] 1.615 0.128 1.399 1.524 1.604 1.697 1.893 1.00 1300
theta[5] 2.003 0.185 1.691 1.873 1.989 2.116 2.405 1.00 630
theta[6] 1.847 0.157 1.572 1.736 1.836 1.946 2.198 1.00 1600
theta[7] 2.009 0.192 1.679 1.871 1.995 2.127 2.429 1.01 390
theta[8] 2.000 0.000 2.000 2.000 2.000 2.000 2.000 1.00 1
theta[9] 1.755 0.145 1.503 1.653 1.744 1.846 2.061 1.00 1000
theta[10] 1.597 0.117 1.395 1.514 1.589 1.670 1.852 1.00 1500
theta[11] 1.542 0.115 1.344 1.461 1.533 1.613 1.797 1.00 2900
theta[12] 2.059 0.184 1.734 1.932 2.048 2.170 2.451 1.00 4000
theta[13] 2.000 0.000 2.000 2.000 2.000 2.000 2.000 1.00 1
theta[14] 1.181 0.055 1.089 1.143 1.175 1.213 1.302 1.00 1300
theta[15] 1.225 0.059 1.123 1.184 1.222 1.261 1.355 1.00 1500
theta[16] 1.089 0.037 1.031 1.063 1.085 1.111 1.173 1.00 3100
theta[17] 1.439 0.099 1.269 1.371 1.430 1.499 1.655 1.00 580
theta[18] 1.298 0.076 1.171 1.245 1.291 1.344 1.470 1.00 810
theta[19] 2.000 0.000 2.000 2.000 2.000 2.000 2.000 1.00 1
theta[20] 2.313 0.228 1.913 2.150 2.302 2.457 2.805 1.00 1500
theta[21] 1.941 0.166 1.648 1.821 1.931 2.044 2.301 1.00 2100
theta[22] 2.445 0.253 2.013 2.267 2.425 2.597 2.987 1.00 1300
theta[23] 1.788 0.155 1.517 1.681 1.774 1.884 2.127 1.00 1500
theta[24] 2.012 0.175 1.705 1.889 1.999 2.125 2.383 1.00 1500
theta[25] 1.599 0.123 1.388 1.508 1.591 1.676 1.863 1.00 610

Posterior Distribution Summary

# extract for plotting
jags.mcmc <- as.mcmc(model.fit)
a <- colnames(as.data.frame(jags.mcmc[[1]]))
fit.mcmc <- data.frame(as.matrix(jags.mcmc, chains = T, iters = T))
colnames(fit.mcmc) <- c("chain", "iter", a)
fit.mcmc.ggs <- ggmcmc::ggs(jags.mcmc) # for GRB plot

Factor Loadings (\(\lambda\))

bayesplot::mcmc_areas(fit.mcmc, regex_pars = "lambda.std", prob = 0.8); ggsave("fig/pools_model1_lambda_dens.pdf")

Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "lambda.std"); ggsave("fig/pools_model1_lambda_acf.pdf")
Warning: Removed 336 rows containing missing values (geom_segment).
Warning: Removed 21 row(s) containing missing values (geom_path).

Saving 7 x 5 in image
Warning: Removed 336 rows containing missing values (geom_segment).

Warning: Removed 21 row(s) containing missing values (geom_path).
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "lambda.std"); ggsave("fig/pools_model1_lambda_trace.pdf")

Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "lambda.std"); ggsave("fig/pools_model1_lambda_grb.pdf")
Warning: Removed 50 row(s) containing missing values (geom_path).

Saving 7 x 5 in image
Warning: Removed 50 row(s) containing missing values (geom_path).

Factor Correlations

bayesplot::mcmc_areas(
  fit.mcmc,
  pars = c('phi.cor[1,2]', 'phi.cor[1,3]', 'phi.cor[1,4]',
           'phi.cor[2,3]', 'phi.cor[2,4]', 'phi.cor[3,4]'), prob = 0.8)

bayesplot::mcmc_acf(
  fit.mcmc,
  pars = c('phi.cor[1,2]', 'phi.cor[1,3]', 'phi.cor[1,4]',
           'phi.cor[2,3]', 'phi.cor[2,4]', 'phi.cor[3,4]'))

bayesplot::mcmc_trace(
  fit.mcmc,
  pars = c('phi.cor[1,2]', 'phi.cor[1,3]', 'phi.cor[1,4]',
           'phi.cor[2,3]', 'phi.cor[2,4]', 'phi.cor[3,4]'))

ggmcmc::ggs_grb(fit.mcmc.ggs, family = "phi.cor")
Warning: Removed 50 row(s) containing missing values (geom_path).

# save factor correlations
use.vars <- c('phi.cor[1,2]', 'phi.cor[1,3]', 'phi.cor[1,4]',
           'phi.cor[2,3]', 'phi.cor[2,4]', 'phi.cor[3,4]')
extracted_cor <- fit.mcmc[,use.vars]
write.csv(x=extracted_cor, file=paste0(getwd(),"/data/pools/extracted_cor_m1.csv"))

Factor Reliability Omega (\(\omega\))

bayesplot::mcmc_areas(fit.mcmc, regex_pars = "reli.omega", prob = 0.8); ggsave("fig/pools_model1_omega_dens.pdf")

Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "reli.omega"); ggsave("fig/pools_model1_omega_acf.pdf")

Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "reli.omega"); ggsave("fig/pools_model1_omega_trace.pdf")

Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "reli.omega"); ggsave("fig/pools_model1_omega_grb.pdf")

Saving 7 x 5 in image
# extract omega posterior for results comparison
extracted_omega <- data.frame(model_1_f1 = fit.mcmc$`reli.omega[1]`,
                              model_1_f2 = fit.mcmc$`reli.omega[2]`,
                              model_1_f3 = fit.mcmc$`reli.omega[3]`,
                              model_1_f4 = fit.mcmc$`reli.omega[4]`)
write.csv(x=extracted_omega, file=paste0(getwd(),"/data/pools/extracted_omega_m1.csv"))

Manuscript Table and Figures

Table

# print to xtable
print(
  xtable(
    model.fit$BUGSoutput$summary,
    caption = c("pools Model 1 posterior distribution summary")
    ,align = "lrrrrrrrrr"
  ),
  include.rownames=T,
  booktabs=T
)
% latex table generated in R 4.0.5 by xtable 1.8-4 package
% Wed Feb 02 04:13:56 2022
\begin{table}[ht]
\centering
\begin{tabular}{lrrrrrrrrr}
  \toprule
 & mean & sd & 2.5\% & 25\% & 50\% & 75\% & 97.5\% & Rhat & n.eff \\ 
  \midrule
deviance & 15091.74 & 119.05 & 14858.10 & 15012.53 & 15091.66 & 15170.14 & 15327.72 & 1.00 & 4000.00 \\ 
  inv.phi[1,1] & 3.16 & 1.61 & 0.76 & 2.01 & 2.90 & 4.00 & 7.17 & 1.03 & 140.00 \\ 
  inv.phi[2,1] & -0.46 & 1.06 & -2.76 & -1.06 & -0.41 & 0.22 & 1.51 & 1.02 & 160.00 \\ 
  inv.phi[3,1] & -1.25 & 1.10 & -3.85 & -1.85 & -1.12 & -0.46 & 0.49 & 1.01 & 230.00 \\ 
  inv.phi[4,1] & -1.27 & 1.43 & -4.45 & -2.12 & -1.13 & -0.28 & 1.15 & 1.01 & 310.00 \\ 
  inv.phi[1,2] & -0.46 & 1.06 & -2.76 & -1.06 & -0.41 & 0.22 & 1.51 & 1.02 & 160.00 \\ 
  inv.phi[2,2] & 2.87 & 1.46 & 0.89 & 1.78 & 2.59 & 3.68 & 6.31 & 1.01 & 250.00 \\ 
  inv.phi[3,2] & -0.13 & 0.90 & -1.98 & -0.68 & -0.11 & 0.42 & 1.69 & 1.01 & 490.00 \\ 
  inv.phi[4,2] & -1.77 & 1.41 & -4.95 & -2.55 & -1.57 & -0.79 & 0.50 & 1.02 & 180.00 \\ 
  inv.phi[1,3] & -1.25 & 1.10 & -3.85 & -1.85 & -1.12 & -0.46 & 0.49 & 1.01 & 230.00 \\ 
  inv.phi[2,3] & -0.13 & 0.90 & -1.98 & -0.68 & -0.11 & 0.42 & 1.69 & 1.01 & 490.00 \\ 
  inv.phi[3,3] & 2.75 & 1.32 & 0.72 & 1.80 & 2.51 & 3.47 & 5.95 & 1.02 & 180.00 \\ 
  inv.phi[4,3] & -1.00 & 1.14 & -3.50 & -1.67 & -0.89 & -0.23 & 0.91 & 1.01 & 280.00 \\ 
  inv.phi[1,4] & -1.27 & 1.43 & -4.45 & -2.12 & -1.13 & -0.28 & 1.15 & 1.01 & 310.00 \\ 
  inv.phi[2,4] & -1.77 & 1.41 & -4.95 & -2.55 & -1.57 & -0.79 & 0.50 & 1.02 & 180.00 \\ 
  inv.phi[3,4] & -1.00 & 1.14 & -3.50 & -1.67 & -0.89 & -0.23 & 0.91 & 1.01 & 280.00 \\ 
  inv.phi[4,4] & 4.02 & 2.10 & 0.99 & 2.44 & 3.66 & 5.17 & 9.06 & 1.03 & 130.00 \\ 
  lambda[1] & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 
  lambda[2] & 1.24 & 0.11 & 1.03 & 1.16 & 1.24 & 1.31 & 1.46 & 1.00 & 1600.00 \\ 
  lambda[3] & 0.79 & 0.08 & 0.64 & 0.73 & 0.79 & 0.84 & 0.96 & 1.00 & 1500.00 \\ 
  lambda[4] & 0.78 & 0.08 & 0.63 & 0.72 & 0.78 & 0.84 & 0.95 & 1.00 & 1100.00 \\ 
  lambda[5] & 1.00 & 0.09 & 0.83 & 0.93 & 0.99 & 1.06 & 1.19 & 1.00 & 660.00 \\ 
  lambda[6] & 0.92 & 0.09 & 0.76 & 0.86 & 0.91 & 0.97 & 1.09 & 1.00 & 1500.00 \\ 
  lambda[7] & 1.00 & 0.09 & 0.82 & 0.93 & 1.00 & 1.06 & 1.20 & 1.01 & 380.00 \\ 
  lambda[8] & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 
  lambda[9] & 0.86 & 0.08 & 0.71 & 0.81 & 0.86 & 0.92 & 1.03 & 1.00 & 900.00 \\ 
  lambda[10] & 0.77 & 0.08 & 0.63 & 0.72 & 0.77 & 0.82 & 0.92 & 1.00 & 1500.00 \\ 
  lambda[11] & 0.73 & 0.08 & 0.59 & 0.68 & 0.73 & 0.78 & 0.89 & 1.00 & 3000.00 \\ 
  lambda[12] & 1.03 & 0.09 & 0.86 & 0.97 & 1.02 & 1.08 & 1.20 & 1.00 & 3900.00 \\ 
  lambda[13] & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 
  lambda[14] & 0.42 & 0.06 & 0.30 & 0.38 & 0.42 & 0.46 & 0.55 & 1.00 & 1300.00 \\ 
  lambda[15] & 0.47 & 0.06 & 0.35 & 0.43 & 0.47 & 0.51 & 0.60 & 1.00 & 1300.00 \\ 
  lambda[16] & 0.29 & 0.06 & 0.17 & 0.25 & 0.29 & 0.33 & 0.42 & 1.00 & 2100.00 \\ 
  lambda[17] & 0.66 & 0.07 & 0.52 & 0.61 & 0.66 & 0.71 & 0.81 & 1.01 & 560.00 \\ 
  lambda[18] & 0.54 & 0.07 & 0.41 & 0.49 & 0.54 & 0.59 & 0.69 & 1.00 & 840.00 \\ 
  lambda[19] & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 
  lambda[20] & 1.14 & 0.10 & 0.96 & 1.07 & 1.14 & 1.21 & 1.34 & 1.00 & 1400.00 \\ 
  lambda[21] & 0.97 & 0.09 & 0.80 & 0.91 & 0.97 & 1.02 & 1.14 & 1.00 & 2400.00 \\ 
  lambda[22] & 1.20 & 0.10 & 1.01 & 1.13 & 1.19 & 1.26 & 1.41 & 1.00 & 1200.00 \\ 
  lambda[23] & 0.88 & 0.09 & 0.72 & 0.83 & 0.88 & 0.94 & 1.06 & 1.00 & 1700.00 \\ 
  lambda[24] & 1.00 & 0.09 & 0.84 & 0.94 & 1.00 & 1.06 & 1.18 & 1.00 & 1600.00 \\ 
  lambda[25] & 0.77 & 0.08 & 0.62 & 0.71 & 0.77 & 0.82 & 0.93 & 1.00 & 640.00 \\ 
  lambda.std[1] & 0.71 & 0.00 & 0.71 & 0.71 & 0.71 & 0.71 & 0.71 & 1.00 & 1.00 \\ 
  lambda.std[2] & 0.78 & 0.03 & 0.72 & 0.76 & 0.78 & 0.80 & 0.83 & 1.00 & 1900.00 \\ 
  lambda.std[3] & 0.62 & 0.04 & 0.54 & 0.59 & 0.62 & 0.64 & 0.69 & 1.00 & 1500.00 \\ 
  lambda.std[4] & 0.61 & 0.04 & 0.53 & 0.59 & 0.61 & 0.64 & 0.69 & 1.00 & 1100.00 \\ 
  lambda.std[5] & 0.70 & 0.03 & 0.64 & 0.68 & 0.71 & 0.73 & 0.76 & 1.00 & 690.00 \\ 
  lambda.std[6] & 0.67 & 0.03 & 0.60 & 0.65 & 0.67 & 0.70 & 0.74 & 1.00 & 1400.00 \\ 
  lambda.std[7] & 0.70 & 0.03 & 0.64 & 0.68 & 0.71 & 0.73 & 0.77 & 1.01 & 370.00 \\ 
  lambda.std[8] & 0.71 & 0.00 & 0.71 & 0.71 & 0.71 & 0.71 & 0.71 & 1.00 & 1.00 \\ 
  lambda.std[9] & 0.65 & 0.04 & 0.58 & 0.63 & 0.65 & 0.68 & 0.72 & 1.00 & 830.00 \\ 
  lambda.std[10] & 0.61 & 0.04 & 0.53 & 0.58 & 0.61 & 0.63 & 0.68 & 1.00 & 1500.00 \\ 
  lambda.std[11] & 0.59 & 0.04 & 0.51 & 0.56 & 0.59 & 0.62 & 0.67 & 1.00 & 3100.00 \\ 
  lambda.std[12] & 0.71 & 0.03 & 0.65 & 0.69 & 0.72 & 0.73 & 0.77 & 1.00 & 3600.00 \\ 
  lambda.std[13] & 0.71 & 0.00 & 0.71 & 0.71 & 0.71 & 0.71 & 0.71 & 1.00 & 1.00 \\ 
  lambda.std[14] & 0.39 & 0.05 & 0.29 & 0.35 & 0.39 & 0.42 & 0.48 & 1.00 & 1400.00 \\ 
  lambda.std[15] & 0.42 & 0.05 & 0.33 & 0.39 & 0.43 & 0.45 & 0.51 & 1.00 & 1300.00 \\ 
  lambda.std[16] & 0.28 & 0.05 & 0.17 & 0.24 & 0.28 & 0.32 & 0.38 & 1.00 & 2100.00 \\ 
  lambda.std[17] & 0.55 & 0.04 & 0.46 & 0.52 & 0.55 & 0.58 & 0.63 & 1.01 & 550.00 \\ 
  lambda.std[18] & 0.47 & 0.05 & 0.38 & 0.44 & 0.47 & 0.51 & 0.57 & 1.00 & 860.00 \\ 
  lambda.std[19] & 0.71 & 0.00 & 0.71 & 0.71 & 0.71 & 0.71 & 0.71 & 1.00 & 1.00 \\ 
  lambda.std[20] & 0.75 & 0.03 & 0.69 & 0.73 & 0.75 & 0.77 & 0.80 & 1.00 & 1300.00 \\ 
  lambda.std[21] & 0.69 & 0.03 & 0.63 & 0.67 & 0.69 & 0.71 & 0.75 & 1.00 & 2800.00 \\ 
  lambda.std[22] & 0.77 & 0.03 & 0.71 & 0.75 & 0.77 & 0.78 & 0.82 & 1.00 & 1100.00 \\ 
  lambda.std[23] & 0.66 & 0.04 & 0.58 & 0.64 & 0.66 & 0.68 & 0.73 & 1.00 & 1800.00 \\ 
  lambda.std[24] & 0.71 & 0.03 & 0.64 & 0.69 & 0.71 & 0.73 & 0.76 & 1.00 & 1700.00 \\ 
  lambda.std[25] & 0.61 & 0.04 & 0.53 & 0.58 & 0.61 & 0.64 & 0.68 & 1.00 & 660.00 \\ 
  phi[1,1] & 2.62 & 1.63 & 0.86 & 1.64 & 2.25 & 3.05 & 7.22 & 1.03 & 170.00 \\ 
  phi[2,1] & 1.58 & 0.88 & 0.19 & 1.01 & 1.51 & 2.04 & 3.64 & 1.03 & 1800.00 \\ 
  phi[3,1] & 1.93 & 1.05 & 0.46 & 1.23 & 1.77 & 2.38 & 4.55 & 1.02 & 490.00 \\ 
  phi[4,1] & 1.91 & 0.74 & 0.53 & 1.46 & 1.90 & 2.32 & 3.47 & 1.03 & 360.00 \\ 
  phi[1,2] & 1.58 & 0.88 & 0.19 & 1.01 & 1.51 & 2.04 & 3.64 & 1.03 & 1800.00 \\ 
  phi[2,2] & 2.08 & 1.02 & 0.72 & 1.37 & 1.90 & 2.52 & 4.72 & 1.02 & 280.00 \\ 
  phi[3,2] & 1.40 & 0.82 & 0.03 & 0.84 & 1.31 & 1.88 & 3.14 & 1.02 & 200.00 \\ 
  phi[4,2] & 1.68 & 0.70 & 0.19 & 1.26 & 1.71 & 2.12 & 3.06 & 1.02 & 270.00 \\ 
  phi[1,3] & 1.93 & 1.05 & 0.46 & 1.23 & 1.77 & 2.38 & 4.55 & 1.02 & 490.00 \\ 
  phi[2,3] & 1.40 & 0.82 & 0.03 & 0.84 & 1.31 & 1.88 & 3.14 & 1.02 & 200.00 \\ 
  phi[3,3] & 2.37 & 1.20 & 0.82 & 1.52 & 2.13 & 2.95 & 5.18 & 1.00 & 4000.00 \\ 
  phi[4,3] & 1.78 & 0.67 & 0.43 & 1.34 & 1.78 & 2.22 & 3.07 & 1.01 & 550.00 \\ 
  phi[1,4] & 1.91 & 0.74 & 0.53 & 1.46 & 1.90 & 2.32 & 3.47 & 1.03 & 360.00 \\ 
  phi[2,4] & 1.68 & 0.70 & 0.19 & 1.26 & 1.71 & 2.12 & 3.06 & 1.02 & 270.00 \\ 
  phi[3,4] & 1.78 & 0.67 & 0.43 & 1.34 & 1.78 & 2.22 & 3.07 & 1.01 & 550.00 \\ 
  phi[4,4] & 2.29 & 0.24 & 1.86 & 2.12 & 2.28 & 2.44 & 2.81 & 1.00 & 1800.00 \\ 
  phi.cor[1,1] & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 
  phi.cor[2,1] & 0.70 & 0.21 & 0.12 & 0.62 & 0.75 & 0.84 & 0.93 & 1.03 & 200.00 \\ 
  phi.cor[3,1] & 0.78 & 0.16 & 0.37 & 0.72 & 0.83 & 0.89 & 0.95 & 1.01 & 780.00 \\ 
  phi.cor[4,1] & 0.80 & 0.17 & 0.32 & 0.75 & 0.86 & 0.91 & 0.95 & 1.03 & 890.00 \\ 
  phi.cor[1,2] & 0.70 & 0.21 & 0.12 & 0.62 & 0.75 & 0.84 & 0.93 & 1.03 & 200.00 \\ 
  phi.cor[2,2] & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 
  phi.cor[3,2] & 0.64 & 0.24 & 0.02 & 0.53 & 0.71 & 0.82 & 0.91 & 1.02 & 170.00 \\ 
  phi.cor[4,2] & 0.77 & 0.22 & 0.11 & 0.72 & 0.85 & 0.90 & 0.95 & 1.05 & 210.00 \\ 
  phi.cor[1,3] & 0.78 & 0.16 & 0.37 & 0.72 & 0.83 & 0.89 & 0.95 & 1.01 & 780.00 \\ 
  phi.cor[2,3] & 0.64 & 0.24 & 0.02 & 0.53 & 0.71 & 0.82 & 0.91 & 1.02 & 170.00 \\ 
  phi.cor[3,3] & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 
  phi.cor[4,3] & 0.77 & 0.18 & 0.24 & 0.72 & 0.83 & 0.89 & 0.94 & 1.02 & 200.00 \\ 
  phi.cor[1,4] & 0.80 & 0.17 & 0.32 & 0.75 & 0.86 & 0.91 & 0.95 & 1.03 & 890.00 \\ 
  phi.cor[2,4] & 0.77 & 0.22 & 0.11 & 0.72 & 0.85 & 0.90 & 0.95 & 1.05 & 210.00 \\ 
  phi.cor[3,4] & 0.77 & 0.18 & 0.24 & 0.72 & 0.83 & 0.89 & 0.94 & 1.02 & 200.00 \\ 
  phi.cor[4,4] & 1.00 & 0.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 
  reli.omega[1] & 0.87 & 0.01 & 0.84 & 0.86 & 0.87 & 0.87 & 0.89 & 1.01 & 430.00 \\ 
  reli.omega[2] & 0.83 & 0.01 & 0.81 & 0.82 & 0.83 & 0.84 & 0.85 & 1.00 & 4000.00 \\ 
  reli.omega[3] & 0.65 & 0.03 & 0.60 & 0.64 & 0.66 & 0.67 & 0.70 & 1.01 & 410.00 \\ 
  reli.omega[4] & 0.86 & 0.01 & 0.84 & 0.86 & 0.86 & 0.87 & 0.88 & 1.00 & 3100.00 \\ 
  tau[1,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[2,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[3,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[4,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[5,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[6,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[7,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[8,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[9,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[10,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[11,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[12,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[13,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[14,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[15,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[16,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[17,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[18,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[19,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[20,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[21,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[22,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[23,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[24,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[25,1] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 1.00 \\ 
  tau[1,2] & 2.84 & 0.15 & 2.55 & 2.74 & 2.84 & 2.94 & 3.14 & 1.00 & 3900.00 \\ 
  tau[2,2] & 3.23 & 0.20 & 2.87 & 3.10 & 3.23 & 3.37 & 3.65 & 1.00 & 2300.00 \\ 
  tau[3,2] & 2.35 & 0.15 & 2.06 & 2.25 & 2.35 & 2.45 & 2.65 & 1.00 & 1800.00 \\ 
  tau[4,2] & 1.78 & 0.12 & 1.56 & 1.70 & 1.78 & 1.86 & 2.01 & 1.00 & 770.00 \\ 
  tau[5,2] & 2.30 & 0.14 & 2.02 & 2.19 & 2.30 & 2.40 & 2.58 & 1.00 & 840.00 \\ 
  tau[6,2] & 2.59 & 0.16 & 2.30 & 2.47 & 2.58 & 2.69 & 2.91 & 1.00 & 2700.00 \\ 
  tau[7,2] & 3.09 & 0.20 & 2.71 & 2.95 & 3.08 & 3.22 & 3.48 & 1.00 & 1500.00 \\ 
  tau[8,2] & 1.90 & 0.11 & 1.69 & 1.83 & 1.90 & 1.97 & 2.11 & 1.00 & 4000.00 \\ 
  tau[9,2] & 1.10 & 0.08 & 0.94 & 1.04 & 1.09 & 1.15 & 1.26 & 1.00 & 1200.00 \\ 
  tau[10,2] & 1.44 & 0.10 & 1.25 & 1.37 & 1.44 & 1.50 & 1.64 & 1.00 & 4000.00 \\ 
  tau[11,2] & 0.67 & 0.05 & 0.56 & 0.63 & 0.66 & 0.70 & 0.78 & 1.00 & 3100.00 \\ 
  tau[12,2] & 1.70 & 0.10 & 1.50 & 1.63 & 1.70 & 1.76 & 1.90 & 1.00 & 3300.00 \\ 
  tau[13,2] & 1.68 & 0.09 & 1.50 & 1.61 & 1.68 & 1.74 & 1.86 & 1.00 & 1500.00 \\ 
  tau[14,2] & 1.64 & 0.13 & 1.38 & 1.55 & 1.64 & 1.72 & 1.90 & 1.00 & 1000.00 \\ 
  tau[15,2] & 1.27 & 0.09 & 1.10 & 1.21 & 1.27 & 1.34 & 1.46 & 1.00 & 2500.00 \\ 
  tau[16,2] & 1.84 & 0.18 & 1.49 & 1.71 & 1.83 & 1.96 & 2.21 & 1.00 & 4000.00 \\ 
  tau[17,2] & 2.21 & 0.16 & 1.91 & 2.10 & 2.21 & 2.31 & 2.52 & 1.00 & 720.00 \\ 
  tau[18,2] & 2.09 & 0.15 & 1.80 & 1.99 & 2.09 & 2.19 & 2.39 & 1.00 & 1400.00 \\ 
  tau[19,2] & 1.95 & 0.10 & 1.77 & 1.88 & 1.95 & 2.02 & 2.15 & 1.00 & 2000.00 \\ 
  tau[20,2] & 2.64 & 0.15 & 2.35 & 2.54 & 2.64 & 2.75 & 2.95 & 1.00 & 1300.00 \\ 
  tau[21,2] & 1.65 & 0.10 & 1.45 & 1.58 & 1.65 & 1.72 & 1.85 & 1.00 & 700.00 \\ 
  tau[22,2] & 2.03 & 0.12 & 1.80 & 1.95 & 2.03 & 2.12 & 2.28 & 1.00 & 700.00 \\ 
  tau[23,2] & 0.58 & 0.05 & 0.49 & 0.55 & 0.58 & 0.62 & 0.69 & 1.00 & 4000.00 \\ 
  tau[24,2] & 1.91 & 0.11 & 1.70 & 1.83 & 1.90 & 1.98 & 2.13 & 1.00 & 1000.00 \\ 
  tau[25,2] & 0.75 & 0.06 & 0.64 & 0.71 & 0.74 & 0.78 & 0.86 & 1.00 & 2300.00 \\ 
  theta[1] & 2.00 & 0.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 1.00 & 1.00 \\ 
  theta[2] & 2.55 & 0.27 & 2.07 & 2.36 & 2.54 & 2.73 & 3.13 & 1.00 & 1400.00 \\ 
  theta[3] & 1.63 & 0.13 & 1.41 & 1.54 & 1.62 & 1.70 & 1.91 & 1.00 & 1500.00 \\ 
  theta[4] & 1.62 & 0.13 & 1.40 & 1.52 & 1.60 & 1.70 & 1.89 & 1.00 & 1300.00 \\ 
  theta[5] & 2.00 & 0.19 & 1.69 & 1.87 & 1.99 & 2.12 & 2.40 & 1.00 & 630.00 \\ 
  theta[6] & 1.85 & 0.16 & 1.57 & 1.74 & 1.84 & 1.95 & 2.20 & 1.00 & 1600.00 \\ 
  theta[7] & 2.01 & 0.19 & 1.68 & 1.87 & 1.99 & 2.13 & 2.43 & 1.01 & 390.00 \\ 
  theta[8] & 2.00 & 0.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 1.00 & 1.00 \\ 
  theta[9] & 1.75 & 0.14 & 1.50 & 1.65 & 1.74 & 1.85 & 2.06 & 1.00 & 1000.00 \\ 
  theta[10] & 1.60 & 0.12 & 1.40 & 1.51 & 1.59 & 1.67 & 1.85 & 1.00 & 1500.00 \\ 
  theta[11] & 1.54 & 0.12 & 1.34 & 1.46 & 1.53 & 1.61 & 1.80 & 1.00 & 2900.00 \\ 
  theta[12] & 2.06 & 0.18 & 1.73 & 1.93 & 2.05 & 2.17 & 2.45 & 1.00 & 4000.00 \\ 
  theta[13] & 2.00 & 0.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 1.00 & 1.00 \\ 
  theta[14] & 1.18 & 0.05 & 1.09 & 1.14 & 1.18 & 1.21 & 1.30 & 1.00 & 1300.00 \\ 
  theta[15] & 1.23 & 0.06 & 1.12 & 1.18 & 1.22 & 1.26 & 1.36 & 1.00 & 1500.00 \\ 
  theta[16] & 1.09 & 0.04 & 1.03 & 1.06 & 1.09 & 1.11 & 1.17 & 1.00 & 3100.00 \\ 
  theta[17] & 1.44 & 0.10 & 1.27 & 1.37 & 1.43 & 1.50 & 1.66 & 1.00 & 580.00 \\ 
  theta[18] & 1.30 & 0.08 & 1.17 & 1.24 & 1.29 & 1.34 & 1.47 & 1.00 & 810.00 \\ 
  theta[19] & 2.00 & 0.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 1.00 & 1.00 \\ 
  theta[20] & 2.31 & 0.23 & 1.91 & 2.15 & 2.30 & 2.46 & 2.80 & 1.00 & 1500.00 \\ 
  theta[21] & 1.94 & 0.17 & 1.65 & 1.82 & 1.93 & 2.04 & 2.30 & 1.00 & 2100.00 \\ 
  theta[22] & 2.44 & 0.25 & 2.01 & 2.27 & 2.42 & 2.60 & 2.99 & 1.00 & 1300.00 \\ 
  theta[23] & 1.79 & 0.16 & 1.52 & 1.68 & 1.77 & 1.88 & 2.13 & 1.00 & 1500.00 \\ 
  theta[24] & 2.01 & 0.17 & 1.70 & 1.89 & 2.00 & 2.12 & 2.38 & 1.00 & 1500.00 \\ 
  theta[25] & 1.60 & 0.12 & 1.39 & 1.51 & 1.59 & 1.68 & 1.86 & 1.00 & 610.00 \\ 
   \bottomrule
\end{tabular}
\caption{pools Model 1 posterior distribution summary} 
\end{table}

sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1         car_3.0-10           carData_3.0-4       
 [4] mvtnorm_1.1-1        LaplacesDemon_16.1.4 runjags_2.2.0-2     
 [7] lme4_1.1-26          Matrix_1.3-2         sirt_3.9-4          
[10] R2jags_0.6-1         rjags_4-12           eRm_1.0-2           
[13] diffIRT_1.5          statmod_1.4.35       xtable_1.8-4        
[16] kableExtra_1.3.4     lavaan_0.6-7         polycor_0.7-10      
[19] bayesplot_1.8.0      ggmcmc_1.5.1.1       coda_0.19-4         
[22] data.table_1.14.0    patchwork_1.1.1      forcats_0.5.1       
[25] stringr_1.4.0        dplyr_1.0.5          purrr_0.3.4         
[28] readr_1.4.0          tidyr_1.1.3          tibble_3.1.0        
[31] ggplot2_3.3.5        tidyverse_1.3.0      workflowr_1.6.2     

loaded via a namespace (and not attached):
 [1] minqa_1.2.4        TAM_3.5-19         colorspace_2.0-0   rio_0.5.26        
 [5] ellipsis_0.3.1     ggridges_0.5.3     rprojroot_2.0.2    fs_1.5.0          
 [9] rstudioapi_0.13    farver_2.1.0       fansi_0.4.2        lubridate_1.7.10  
[13] xml2_1.3.2         splines_4.0.5      mnormt_2.0.2       knitr_1.31        
[17] jsonlite_1.7.2     nloptr_1.2.2.2     broom_0.7.5        dbplyr_2.1.0      
[21] compiler_4.0.5     httr_1.4.2         backports_1.2.1    assertthat_0.2.1  
[25] cli_2.3.1          later_1.1.0.1      htmltools_0.5.1.1  tools_4.0.5       
[29] gtable_0.3.0       glue_1.4.2         reshape2_1.4.4     Rcpp_1.0.7        
[33] cellranger_1.1.0   jquerylib_0.1.3    vctrs_0.3.6        svglite_2.0.0     
[37] nlme_3.1-152       psych_2.0.12       xfun_0.21          ps_1.6.0          
[41] openxlsx_4.2.3     rvest_1.0.0        lifecycle_1.0.0    MASS_7.3-53.1     
[45] scales_1.1.1       ragg_1.1.1         hms_1.0.0          promises_1.2.0.1  
[49] parallel_4.0.5     RColorBrewer_1.1-2 curl_4.3           yaml_2.2.1        
[53] sass_0.3.1         reshape_0.8.8      stringi_1.5.3      highr_0.8         
[57] zip_2.1.1          boot_1.3-27        rlang_0.4.10       pkgconfig_2.0.3   
[61] systemfonts_1.0.1  evaluate_0.14      lattice_0.20-41    labeling_0.4.2    
[65] tidyselect_1.1.0   GGally_2.1.1       plyr_1.8.6         magrittr_2.0.1    
[69] R6_2.5.0           generics_0.1.0     DBI_1.1.1          foreign_0.8-81    
[73] pillar_1.5.1       haven_2.3.1        withr_2.4.1        abind_1.4-5       
[77] modelr_0.1.8       crayon_1.4.1       utf8_1.1.4         tmvnsim_1.0-2     
[81] rmarkdown_2.7      grid_4.0.5         CDM_7.5-15         pbivnorm_0.6.0    
[85] git2r_0.28.0       reprex_1.0.0       digest_0.6.27      webshot_0.5.2     
[89] httpuv_1.5.5       textshaping_0.3.1  stats4_4.0.5       munsell_0.5.0     
[93] viridisLite_0.3.0  bslib_0.2.4        R2WinBUGS_2.1-21