Last updated: 2022-03-08
Checks: 4 2
Knit directory: Padgett-Dissertation/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity itโs best to always run the code in an empty environment.
The command set.seed(20210401)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
To ensure reproducibility of the results, delete the cache directory study1_model1_results_cache
and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE
when running wflow_build()
or wflow_publish()
.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init
in your project directory.
This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start
.
# Load packages & utility functions
source("code/load_packages.R")
source("code/load_utility_functions.R")
# environment options
options(scipen = 999, digits=3)
# get code to simulate data
source("code/study_1/study_1_generate_data.R")
# data parameters
paravec <- c(
N = 500
, J = 5 # N_items
, C = 3 # N_cat
, etaCor = .23
, etasd1 = 1
, etasd2 = sqrt(0.1)
, lambda=0.7
, nu=1.5
, sigma.ei=0.25
, rho1=0.1
)
# simulated then saved below
sim_tau <- matrix(
c(-0.822, -0.751, -0.616, -0.392, -0.865,
0.780, 0.882, 0.827, 1.030, 0.877),
ncol=2, nrow=5
)
# Use parameters to simulate data
sim.data <- simulate_data_misclass(paravec, tau=sim_tau)
d1 <- sim.data$Ysampled %>%
as.data.frame() %>%
select(contains("y")) %>%
mutate(id = 1:n()) %>%
pivot_longer(
cols = contains("y"),
names_to = c("item"),
values_to = "Response"
) %>%
mutate(item = ifelse(nchar(item) > 2, substr(item, 2, 3), substr(item, 2, 2)))
d2 <- sim.data$logt %>%
as.data.frame() %>%
select(contains("logt")) %>%
mutate(id = 1:n()) %>%
pivot_longer(
cols = contains("logt"),
names_to = c("item"),
values_to = "Time"
) %>%
mutate(item = ifelse(nchar(item) > 5, substr(item, 5, 6), substr(item, 5, 5)))
dat <- left_join(d1, d2)
Joining, by = c("id", "item")
dat_sum <- dat %>%
select(item, Response, Time) %>%
group_by(item) %>%
summarize(
p1 = table(Response)[1] / n(),
p2 = table(Response)[2] / n(),
p3 = table(Response)[3] / n(),
M1 = mean(Response, na.rm = T),
Mt = mean(Time, na.rm = T),
SDt = sd(Time, na.rm = T)
)
colnames(dat_sum) <-
c(
"Item",
"Prop. R == 1",
"Prop. R == 2",
"Prop. R == 3",
"Mean Response",
"Mean Response Time",
"SD Response Time"
)
dat_sum$Item <- paste0("item_", 1:N_items)
kable(dat_sum, format = "html", digits = 3) %>%
kable_styling(full_width = T)
Item | Prop. R == 1 | Prop. R == 2 | Prop. R == 3 | Mean Response | Mean Response Time | SD Response Time |
---|---|---|---|---|---|---|
item_1 | 0.308 | 0.404 | 0.288 | 1.98 | 1.39 | 0.597 |
item_2 | 0.310 | 0.414 | 0.276 | 1.97 | 1.43 | 0.618 |
item_3 | 0.338 | 0.386 | 0.276 | 1.94 | 1.43 | 0.613 |
item_4 | 0.362 | 0.384 | 0.254 | 1.89 | 1.40 | 0.592 |
item_5 | 0.292 | 0.422 | 0.286 | 1.99 | 1.36 | 0.582 |
# covariance among items
cov(sim.data$Ysampled)
y1 y2 y3 y4 y5
y1 0.5968 0.0634 0.0428 0.0640 0.0319
y2 0.0634 0.5860 0.0440 0.0364 0.0258
y3 0.0428 0.0440 0.6114 0.0394 0.0457
y4 0.0640 0.0364 0.0394 0.6055 0.0655
y5 0.0319 0.0258 0.0457 0.0655 0.5791
# correlation matrix
psych::polychoric(sim.data$Ysampled)
Call: psych::polychoric(x = sim.data$Ysampled)
Polychoric correlations
y1 y2 y3 y4 y5
y1 1.00
y2 0.14 1.00
y3 0.09 0.09 1.00
y4 0.13 0.08 0.08 1.00
y5 0.07 0.05 0.09 0.14 1.00
with tau of
1 2
y1 -0.50 0.56
y2 -0.50 0.59
y3 -0.42 0.59
y4 -0.35 0.66
y5 -0.55 0.57
cat(read_file(paste0(w.d, "/code/study_1/model_1.txt")))
model {
### Model
for(p in 1:N){
for(i in 1:nit){
# data model
y[p,i] ~ dcat(pi[p,i, ])
# LRV
ystar[p,i] ~ dnorm(lambda[i]*eta[p], 1)
# Pr(nu = 3)
pi[p,i,3] = phi(ystar[p,i] - tau[i,2])
# Pr(nu = 2)
pi[p,i,2] = phi(ystar[p,i] - tau[i,1]) - phi(ystar[p,i] - tau[i,2])
# Pr(nu = 1)
pi[p,i,1] = 1 - phi(ystar[p,i] - tau[i,1])
}
}
### Priors
# person parameters
for(p in 1:N){
eta[p] ~ dnorm(0, 1) # latent ability
}
for(i in 1:nit){
# Thresholds
tau[i, 1] ~ dnorm(0.0,0.1)
tau[i, 2] ~ dnorm(0, 0.1)T(tau[i, 1],)
# loadings
lambda[i] ~ dnorm(0, .44)T(0,)
# LRV total variance
# total variance = residual variance + fact. Var.
theta[i] = 1 + pow(lambda[i],2)
# standardized loading
lambda.std[i] = lambda[i]/pow(theta[i],0.5)
}
# compute omega
lambda_sum[1] = lambda[1]
for(i in 2:nit){
#lambda_sum (sum factor loadings)
lambda_sum[i] = lambda_sum[i-1]+lambda[i]
}
reli.omega = (pow(lambda_sum[nit],2))/(pow(lambda_sum[nit],2)+nit)
}
# Save parameters
jags.params <- c("tau", "lambda", "theta", "reli.omega", "lambda.std")
# initial-values
jags.inits <- function(){
list(
"tau"=matrix(c(-0.822, -0.751, -0.616, -0.392, -0.865,
0.780, 0.882, 0.827, 1.030, 0.877),
ncol=2, nrow=5),
"lambda"=rep(0.7,5),
"eta"=sim.data$eta[,1,drop=T],
"ystar"=t(sim.data$ystar)
)
}
# data
mydata <- list(y = sim.data$Ysampled,
N = nrow(sim.data$Ysampled),
nit = ncol(sim.data$Ysampled))
model.fit <- R2jags::jags(
model = paste0(w.d, "/code/study_1/model_1.txt"),
parameters.to.save = jags.params,
inits = jags.inits,
data = mydata,
n.chains = 4,
n.burnin = 5000,
n.iter = 10000
)
module glm loaded
Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 2500
Unobserved stochastic nodes: 3015
Total graph size: 25550
Initializing model
print(model.fit, width=1000)
Inference for Bugs model at "C:/Users/noahp/Documents/GitHub/Padgett-Dissertation/code/study_1/model_1.txt", fit using jags,
4 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 4000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
lambda[1] 0.573 0.234 0.213 0.420 0.542 0.690 1.108 1.02 500
lambda[2] 0.422 0.172 0.121 0.303 0.408 0.522 0.803 1.00 760
lambda[3] 0.389 0.166 0.097 0.277 0.377 0.482 0.767 1.01 400
lambda[4] 0.553 0.217 0.209 0.408 0.528 0.667 1.021 1.01 360
lambda[5] 0.389 0.160 0.106 0.277 0.379 0.487 0.733 1.00 750
lambda.std[1] 0.477 0.135 0.208 0.387 0.476 0.568 0.742 1.01 580
lambda.std[2] 0.377 0.129 0.120 0.290 0.377 0.463 0.626 1.00 860
lambda.std[3] 0.352 0.127 0.097 0.267 0.353 0.434 0.609 1.02 410
lambda.std[4] 0.466 0.131 0.205 0.378 0.467 0.555 0.714 1.01 480
lambda.std[5] 0.352 0.124 0.105 0.267 0.354 0.438 0.591 1.00 760
reli.omega 0.516 0.063 0.377 0.478 0.523 0.561 0.620 1.01 500
tau[1,1] -0.771 0.102 -0.978 -0.834 -0.767 -0.702 -0.584 1.01 1100
tau[2,1] -0.735 0.091 -0.918 -0.797 -0.732 -0.673 -0.562 1.00 2500
tau[3,1] -0.618 0.088 -0.798 -0.677 -0.614 -0.559 -0.448 1.00 3900
tau[4,1] -0.540 0.095 -0.732 -0.597 -0.538 -0.479 -0.362 1.01 1000
tau[5,1] -0.808 0.091 -0.983 -0.871 -0.806 -0.746 -0.631 1.00 1300
tau[1,2] 0.861 0.109 0.669 0.789 0.855 0.926 1.094 1.01 750
tau[2,2] 0.884 0.095 0.700 0.821 0.883 0.946 1.078 1.00 850
tau[3,2] 0.879 0.092 0.706 0.816 0.877 0.938 1.063 1.00 1100
tau[4,2] 1.011 0.108 0.815 0.940 1.006 1.075 1.238 1.00 1400
tau[5,2] 0.832 0.090 0.661 0.772 0.831 0.890 1.013 1.00 4000
theta[1] 1.383 0.365 1.045 1.177 1.293 1.476 2.228 1.06 200
theta[2] 1.208 0.168 1.015 1.092 1.166 1.273 1.645 1.01 470
theta[3] 1.179 0.157 1.009 1.077 1.142 1.232 1.589 1.03 250
theta[4] 1.353 0.317 1.044 1.167 1.279 1.445 2.042 1.04 180
theta[5] 1.177 0.143 1.011 1.077 1.144 1.237 1.537 1.00 830
deviance 3947.897 68.595 3811.240 3902.434 3948.085 3993.949 4080.362 1.00 760
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 2345.3 and DIC = 6293.2
DIC is an estimate of expected predictive error (lower deviance is better).
# extract for plotting
jags.mcmc <- as.mcmc(model.fit)
a <- colnames(as.data.frame(jags.mcmc[[1]]))
fit.mcmc <- data.frame(as.matrix(jags.mcmc, chains = T, iters = T))
colnames(fit.mcmc) <- c("chain", "iter", a)
fit.mcmc.ggs <- ggmcmc::ggs(jags.mcmc) # for GRB plot
# tau
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "tau", prob = 0.8); ggsave("fig/study1_model1_tau_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "tau"); ggsave("fig/study1_model1_tau_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "tau"); ggsave("fig/study1_model1_tau_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "tau") + theme_bw()+theme(panel.grid = element_blank()); ggsave("fig/study1_model1_tau_grb.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "lambda", prob = 0.8)
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "lambda")
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "lambda")
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "lambda")
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "lambda.std", prob = 0.8); ggsave("fig/study1_model1_lambda_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "lambda.std"); ggsave("fig/study1_model1_lambda_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "lambda.std", nrow=1); ggsave("fig/study1_model1_lambda_trace.pdf")
Warning: The following arguments were unrecognized and ignored: nrow
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "lambda.std") + theme_bw()+theme(panel.grid = element_blank()); ggsave("fig/study1_model1_lambda_grb.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "theta", prob = 0.8); ggsave("fig/study1_model1_theta_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "theta"); ggsave("fig/study1_model1_theta_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "theta"); ggsave("fig/study1_model1_theta_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "theta") + theme_bw()+theme(panel.grid = element_blank()); ggsave("fig/study1_model1_theta_grb.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "reli.omega", prob = 0.8); ggsave("fig/study1_model1_omega_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "reli.omega"); ggsave("fig/study1_model1_omega_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "reli.omega"); ggsave("fig/study1_model1_omega_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "reli.omega") + theme_bw()+theme(panel.grid = element_blank()); ggsave("fig/study1_model1_omega_grb.pdf")
Saving 7 x 5 in image
# extract omega posterior for results comparison
extracted_omega <- data.frame(model_1 = fit.mcmc$reli.omega)
write.csv(x=extracted_omega, file=paste0(getwd(),"/data/study_1/extracted_omega_m1.csv"))
# Posterior Predictive Check
Niter <- 200
model.fit$model$recompile()
Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 2500
Unobserved stochastic nodes: 3015
Total graph size: 25550
Initializing model
fit.extra <- rjags::jags.samples(model.fit$model, variable.names = "pi", n.iter = Niter)
NOTE: Stopping adaptation
N <- model.fit$model$data()[[1]]
nit <- 5
nchain=4
C <- 3
n <- i <- iter <- ppc.row.i <- 1
y.prob.ppc <- array(dim=c(Niter*nchain, nit, C))
for(chain in 1:nchain){
for(iter in 1:Niter){
# initialize simulated y for this iteration
y <- matrix(nrow=N, ncol=nit)
# loop over item
for(i in 1:nit){
# simulated data for item i for each person
for(n in 1:N){
y[n,i] <- sample(1:C, 1, prob = fit.extra$pi[n, i, 1:C, iter, chain])
}
# computer proportion of each response category
for(c in 1:C){
y.prob.ppc[ppc.row.i,i,c] <- sum(y[,i]==c)/N
}
}
# update row of output
ppc.row.i = ppc.row.i + 1
}
}
yppcmat <- matrix(c(y.prob.ppc), ncol=1)
z <- expand.grid(1:(Niter*nchain), 1:nit, 1:C)
yppcmat <- data.frame( iter = z[,1], nit=z[,2], C=z[,3], yppc = yppcmat)
ymat <- model.fit$model$data()[[3]]
y.prob <- matrix(ncol=C, nrow=nit)
for(i in 1:nit){
for(c in 1:C){
y.prob[i,c] <- sum(ymat[,i]==c)/N
}
}
yobsmat <- matrix(c(y.prob), ncol=1)
z <- expand.grid(1:nit, 1:C)
yobsmat <- data.frame(nit=z[,1], C=z[,2], yobs = yobsmat)
plot.ppc <- full_join(yppcmat, yobsmat)
Joining, by = c("nit", "C")
p <- plot.ppc %>%
mutate(C = as.factor(C),
item = nit) %>%
ggplot()+
geom_boxplot(aes(x=C,y=y.prob.ppc), outlier.colour = NA)+
geom_point(aes(x=C,y=yobs), color="red")+
lims(y=c(0, 0.67))+
labs(y="Posterior Predictive Category Proportion", x="Item Category")+
facet_wrap(.~nit, nrow=1)+
theme_bw()+
theme(
panel.grid = element_blank(),
strip.background = element_rect(fill="white")
)
p
ggsave(filename = "fig/study1_model1_ppc_y.pdf",plot=p,width = 6, height=4,units="in")
ggsave(filename = "fig/study1_model1_ppc_y.png",plot=p,width = 6, height=4,units="in")
ggsave(filename = "fig/study1_model1_ppc_y.eps",plot=p,width = 6, height=4,units="in")
# print to xtable
print(
xtable(
model.fit$BUGSoutput$summary,
caption = c("study1 Model 1 posterior distribution summary")
,align = "lrrrrrrrrr"
),
include.rownames=T,
booktabs=T
)
% latex table generated in R 4.0.5 by xtable 1.8-4 package
% Tue Mar 08 18:18:40 2022
\begin{table}[ht]
\centering
\begin{tabular}{lrrrrrrrrr}
\toprule
& mean & sd & 2.5\% & 25\% & 50\% & 75\% & 97.5\% & Rhat & n.eff \\
\midrule
deviance & 3947.90 & 68.60 & 3811.24 & 3902.43 & 3948.08 & 3993.95 & 4080.36 & 1.00 & 760.00 \\
lambda[1] & 0.57 & 0.23 & 0.21 & 0.42 & 0.54 & 0.69 & 1.11 & 1.02 & 500.00 \\
lambda[2] & 0.42 & 0.17 & 0.12 & 0.30 & 0.41 & 0.52 & 0.80 & 1.00 & 760.00 \\
lambda[3] & 0.39 & 0.17 & 0.10 & 0.28 & 0.38 & 0.48 & 0.77 & 1.01 & 400.00 \\
lambda[4] & 0.55 & 0.22 & 0.21 & 0.41 & 0.53 & 0.67 & 1.02 & 1.01 & 360.00 \\
lambda[5] & 0.39 & 0.16 & 0.11 & 0.28 & 0.38 & 0.49 & 0.73 & 1.00 & 750.00 \\
lambda.std[1] & 0.48 & 0.14 & 0.21 & 0.39 & 0.48 & 0.57 & 0.74 & 1.01 & 580.00 \\
lambda.std[2] & 0.38 & 0.13 & 0.12 & 0.29 & 0.38 & 0.46 & 0.63 & 1.00 & 860.00 \\
lambda.std[3] & 0.35 & 0.13 & 0.10 & 0.27 & 0.35 & 0.43 & 0.61 & 1.02 & 410.00 \\
lambda.std[4] & 0.47 & 0.13 & 0.20 & 0.38 & 0.47 & 0.55 & 0.71 & 1.01 & 480.00 \\
lambda.std[5] & 0.35 & 0.12 & 0.11 & 0.27 & 0.35 & 0.44 & 0.59 & 1.01 & 760.00 \\
reli.omega & 0.52 & 0.06 & 0.38 & 0.48 & 0.52 & 0.56 & 0.62 & 1.01 & 500.00 \\
tau[1,1] & -0.77 & 0.10 & -0.98 & -0.83 & -0.77 & -0.70 & -0.58 & 1.01 & 1100.00 \\
tau[2,1] & -0.73 & 0.09 & -0.92 & -0.80 & -0.73 & -0.67 & -0.56 & 1.00 & 2500.00 \\
tau[3,1] & -0.62 & 0.09 & -0.80 & -0.68 & -0.61 & -0.56 & -0.45 & 1.00 & 3900.00 \\
tau[4,1] & -0.54 & 0.09 & -0.73 & -0.60 & -0.54 & -0.48 & -0.36 & 1.01 & 1000.00 \\
tau[5,1] & -0.81 & 0.09 & -0.98 & -0.87 & -0.81 & -0.75 & -0.63 & 1.00 & 1300.00 \\
tau[1,2] & 0.86 & 0.11 & 0.67 & 0.79 & 0.85 & 0.93 & 1.09 & 1.01 & 750.00 \\
tau[2,2] & 0.88 & 0.10 & 0.70 & 0.82 & 0.88 & 0.95 & 1.08 & 1.00 & 850.00 \\
tau[3,2] & 0.88 & 0.09 & 0.71 & 0.82 & 0.88 & 0.94 & 1.06 & 1.00 & 1100.00 \\
tau[4,2] & 1.01 & 0.11 & 0.81 & 0.94 & 1.01 & 1.07 & 1.24 & 1.00 & 1400.00 \\
tau[5,2] & 0.83 & 0.09 & 0.66 & 0.77 & 0.83 & 0.89 & 1.01 & 1.00 & 4000.00 \\
theta[1] & 1.38 & 0.36 & 1.05 & 1.18 & 1.29 & 1.48 & 2.23 & 1.06 & 200.00 \\
theta[2] & 1.21 & 0.17 & 1.01 & 1.09 & 1.17 & 1.27 & 1.65 & 1.01 & 470.00 \\
theta[3] & 1.18 & 0.16 & 1.01 & 1.08 & 1.14 & 1.23 & 1.59 & 1.03 & 250.00 \\
theta[4] & 1.35 & 0.32 & 1.04 & 1.17 & 1.28 & 1.45 & 2.04 & 1.04 & 180.00 \\
theta[5] & 1.18 & 0.14 & 1.01 & 1.08 & 1.14 & 1.24 & 1.54 & 1.00 & 830.00 \\
\bottomrule
\end{tabular}
\caption{study1 Model 1 posterior distribution summary}
\end{table}
plot.dat <- fit.mcmc %>%
select(!c("iter", "deviance", "reli.omega", paste0("lambda[",1:5,"]")))%>%
pivot_longer(
cols= !c("chain"),
names_to="variable",
values_to="value"
) %>%
mutate(
variable = factor(
variable,
levels = c(
"lambda.std[1]", "theta[1]", "tau[1,1]", "tau[1,2]",
"lambda.std[2]", "theta[2]", "tau[2,1]", "tau[2,2]",
"lambda.std[3]", "theta[3]", "tau[3,1]", "tau[3,2]",
"lambda.std[4]", "theta[4]", "tau[4,1]", "tau[4,2]",
"lambda.std[5]", "theta[5]", "tau[5,1]", "tau[5,2]"
), ordered = T
)
)
p <- ggplot(plot.dat, aes(x=value, group=variable))+
geom_density(adjust=2)+
facet_wrap(variable~., scales="free_y", ncol=4) +
lims(x=c(-2, 4))+
labs(x="Magnitude of Parameter",
y="Posterior Density")+
theme_bw()+
theme(
panel.grid = element_blank(),
strip.background = element_rect(fill="white"),
axis.text.y = element_blank(),
axis.ticks.y = element_blank()
)
p
Warning: Removed 20 rows containing non-finite values (stat_density).
ggsave(filename = "fig/study1_model1_posterior_dist.pdf",plot=p,width = 7, height=5,units="in")
Warning: Removed 20 rows containing non-finite values (stat_density).
ggsave(filename = "fig/study1_model1_posterior_dist.png",plot=p,width = 7, height=5,units="in")
Warning: Removed 20 rows containing non-finite values (stat_density).
ggsave(filename = "fig/study1_model1_posterior_dist.eps",plot=p,width = 7, height=5,units="in")
Warning: Removed 20 rows containing non-finite values (stat_density).
sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] car_3.0-10 carData_3.0-4 mvtnorm_1.1-1
[4] LaplacesDemon_16.1.4 runjags_2.2.0-2 lme4_1.1-26
[7] Matrix_1.3-2 sirt_3.9-4 R2jags_0.6-1
[10] rjags_4-12 eRm_1.0-2 diffIRT_1.5
[13] statmod_1.4.35 xtable_1.8-4 kableExtra_1.3.4
[16] lavaan_0.6-10 polycor_0.7-10 bayesplot_1.8.0
[19] ggmcmc_1.5.1.1 coda_0.19-4 data.table_1.14.0
[22] patchwork_1.1.1 forcats_0.5.1 stringr_1.4.0
[25] dplyr_1.0.5 purrr_0.3.4 readr_1.4.0
[28] tidyr_1.1.3 tibble_3.1.0 ggplot2_3.3.5
[31] tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] minqa_1.2.4 TAM_3.5-19 colorspace_2.0-0 rio_0.5.26
[5] ellipsis_0.3.1 ggridges_0.5.3 rprojroot_2.0.2 fs_1.5.0
[9] rstudioapi_0.13 farver_2.1.0 fansi_0.4.2 lubridate_1.7.10
[13] xml2_1.3.2 splines_4.0.5 mnormt_2.0.2 knitr_1.31
[17] jsonlite_1.7.2 nloptr_1.2.2.2 broom_0.7.5 dbplyr_2.1.0
[21] compiler_4.0.5 httr_1.4.2 backports_1.2.1 assertthat_0.2.1
[25] cli_2.3.1 later_1.1.0.1 htmltools_0.5.1.1 tools_4.0.5
[29] gtable_0.3.0 glue_1.4.2 reshape2_1.4.4 Rcpp_1.0.7
[33] cellranger_1.1.0 jquerylib_0.1.3 vctrs_0.3.6 svglite_2.0.0
[37] nlme_3.1-152 psych_2.0.12 xfun_0.21 ps_1.6.0
[41] openxlsx_4.2.3 rvest_1.0.0 lifecycle_1.0.0 MASS_7.3-53.1
[45] scales_1.1.1 ragg_1.1.1 hms_1.0.0 promises_1.2.0.1
[49] parallel_4.0.5 RColorBrewer_1.1-2 curl_4.3 yaml_2.2.1
[53] sass_0.3.1 reshape_0.8.8 stringi_1.5.3 highr_0.8
[57] zip_2.1.1 boot_1.3-27 rlang_0.4.10 pkgconfig_2.0.3
[61] systemfonts_1.0.1 evaluate_0.14 lattice_0.20-41 labeling_0.4.2
[65] tidyselect_1.1.0 GGally_2.1.1 plyr_1.8.6 magrittr_2.0.1
[69] R6_2.5.0 generics_0.1.0 DBI_1.1.1 foreign_0.8-81
[73] pillar_1.5.1 haven_2.3.1 withr_2.4.1 abind_1.4-5
[77] modelr_0.1.8 crayon_1.4.1 utf8_1.1.4 tmvnsim_1.0-2
[81] rmarkdown_2.7 grid_4.0.5 readxl_1.3.1 CDM_7.5-15
[85] pbivnorm_0.6.0 git2r_0.28.0 reprex_1.0.0 digest_0.6.27
[89] webshot_0.5.2 httpuv_1.5.5 textshaping_0.3.1 stats4_4.0.5
[93] munsell_0.5.0 viridisLite_0.3.0 bslib_0.2.4 R2WinBUGS_2.1-21