Last updated: 2022-01-16
Checks: 4 2
Knit directory: Padgett-Dissertation/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity itโs best to always run the code in an empty environment.
The command set.seed(20210401)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
To ensure reproducibility of the results, delete the cache directory study1_model2_results_cache
and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE
when running wflow_build()
or wflow_publish()
.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init
in your project directory.
This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start
.
# Load packages & utility functions
source("code/load_packages.R")
source("code/load_utility_functions.R")
# environment options
options(scipen = 999, digits=3)
# generate data for study 1
source("code/study_1/study_1_generate_data.R")
# data parameters
paravec <- c(
N = 500
, J = 5 # N_items
, C = 3 # N_cat
, etaCor = .23
, etasd1 = 1
, etasd2 = sqrt(0.1)
, lambda=0.7
, nu=1.5
, sigma.ei=0.25
, rho1=0.1
)
# simulated then saved below
sim_tau <- matrix(
c(-0.822, -0.751, -0.616, -0.392, -0.865,
0.780, 0.882, 0.827, 1.030, 0.877),
ncol=2, nrow=5
)
# Use parameters to simulate data
sim.data <- simulate_data_misclass(paravec, tau=sim_tau)
d1 <- sim.data$Ysampled %>%
as.data.frame() %>%
select(contains("y")) %>%
mutate(id = 1:n()) %>%
pivot_longer(
cols = contains("y"),
names_to = c("item"),
values_to = "Response"
) %>%
mutate(item = ifelse(nchar(item) > 2, substr(item, 2, 3), substr(item, 2, 2)))
d2 <- sim.data$logt %>%
as.data.frame() %>%
select(contains("logt")) %>%
mutate(id = 1:n()) %>%
pivot_longer(
cols = contains("logt"),
names_to = c("item"),
values_to = "Time"
) %>%
mutate(item = ifelse(nchar(item) > 5, substr(item, 5, 6), substr(item, 5, 5)))
dat <- left_join(d1, d2)
Joining, by = c("id", "item")
dat_sum <- dat %>%
select(item, Response, Time) %>%
group_by(item) %>%
summarize(
p1 = table(Response)[1] / n(),
p2 = table(Response)[2] / n(),
p3 = table(Response)[3] / n(),
M1 = mean(Response, na.rm = T),
Mt = mean(Time, na.rm = T),
SDt = sd(Time, na.rm = T)
)
colnames(dat_sum) <-
c(
"Item",
"Prop. R == 1",
"Prop. R == 2",
"Prop. R == 3",
"Mean Response",
"Mean Response Time",
"SD Response Time"
)
dat_sum$Item <- paste0("item_", 1:N_items)
kable(dat_sum, format = "html", digits = 3) %>%
kable_styling(full_width = T)
Item | Prop. R == 1 | Prop. R == 2 | Prop. R == 3 | Mean Response | Mean Response Time | SD Response Time |
---|---|---|---|---|---|---|
item_1 | 0.308 | 0.404 | 0.288 | 1.98 | 1.39 | 0.597 |
item_2 | 0.310 | 0.414 | 0.276 | 1.97 | 1.43 | 0.618 |
item_3 | 0.338 | 0.386 | 0.276 | 1.94 | 1.43 | 0.613 |
item_4 | 0.362 | 0.384 | 0.254 | 1.89 | 1.40 | 0.592 |
item_5 | 0.292 | 0.422 | 0.286 | 1.99 | 1.36 | 0.582 |
# covariance among items
cov(sim.data$Ysampled)
y1 y2 y3 y4 y5
y1 0.5968 0.0634 0.0428 0.0640 0.0319
y2 0.0634 0.5860 0.0440 0.0364 0.0258
y3 0.0428 0.0440 0.6114 0.0394 0.0457
y4 0.0640 0.0364 0.0394 0.6055 0.0655
y5 0.0319 0.0258 0.0457 0.0655 0.5791
# correlation matrix
psych::polychoric(sim.data$Ysampled)
Call: psych::polychoric(x = sim.data$Ysampled)
Polychoric correlations
y1 y2 y3 y4 y5
y1 1.00
y2 0.14 1.00
y3 0.09 0.09 1.00
y4 0.13 0.08 0.08 1.00
y5 0.07 0.05 0.09 0.14 1.00
with tau of
1 2
y1 -0.50 0.56
y2 -0.50 0.59
y3 -0.42 0.59
y4 -0.35 0.66
y5 -0.55 0.57
cat(read_file(paste0(w.d, "/code/study_1/model_2.txt")))
model {
### Model
for(p in 1:N){
for(i in 1:nit){
# data model
y[p,i] ~ dcat(pi[p,i, ])
# LRV
ystar[p,i] ~ dnorm(lambda[i]*eta[p], 1)
# Pr(nu = 3)
pi[p,i,3] = phi(ystar[p,i] - tau[i,2])
# Pr(nu = 2)
pi[p,i,2] = phi(ystar[p,i] - tau[i,1]) - phi(ystar[p,i] - tau[i,2])
# Pr(nu = 1)
pi[p,i,1] = 1 - phi(ystar[p,i] - tau[i,1])
# log-RT model
dev[p,i]<-lambda[i]*(eta[p] - (tau[i,1]+tau[i,2])/2)
lrt[p,i] ~ dnorm(icept[i] - speed[p] - rho * abs(dev[p,i]), prec[i])
}
}
### Priors
# person parameters
for(p in 1:N){
eta[p] ~ dnorm(0, 1) # latent ability
speed[p]~dnorm(sigma.ts*eta[p],prec.s) # latent speed
}
sigma.ts ~ dnorm(0, 0.1)
prec.s ~ dgamma(.1,.1)
for(i in 1:nit){
# lrt parameters
icept[i]~dnorm(0,.1)
prec[i]~dgamma(.1,.1)
# Thresholds
tau[i, 1] ~ dnorm(0.0,0.1)
tau[i, 2] ~ dnorm(0, 0.1)T(tau[i, 1],)
# loadings
lambda[i] ~ dnorm(0, .44)T(0,)
# LRV total variance
# total variance = residual variance + fact. Var.
theta[i] = 1 + pow(lambda[i],2)
# standardized loading
lambda.std[i] = lambda[i]/pow(theta[i],0.5)
}
rho~dnorm(0,.1)I(0,)
# compute omega
lambda_sum[1] = lambda[1]
for(i in 2:nit){
#lambda_sum (sum factor loadings)
lambda_sum[i] = lambda_sum[i-1]+lambda[i]
}
reli.omega = pow(lambda_sum[nit],2)/(pow(lambda_sum[nit], 2)+ (nit))
}
This model is similar to the BL-IRT model for jointly modeling item responses and response times (Molenaar et al., 2015).
# Save parameters
jags.params <- c("tau",
"lambda","lambda.std",
"theta",
"icept",
"prec",
"prec.s",
"sigma.ts",
"rho",
"reli.omega")
# initial-values
jags.inits <- function(){
list(
"tau"=matrix(c(-0.822, -0.751, -0.616, -0.392, -0.865,
0.780, 0.882, 0.827, 1.030, 0.877), ncol=2, nrow=5),
"lambda"=rep(0.7,5),
"rho"=0.1,
"icept"=rep(1.5, 5),
"prec.s"=10,
"prec"=rep(4, 5),
"sigma.ts"=0.1,
"eta"=sim.data$eta[,1,drop=T],
"speed"=sim.data$eta[,2,drop=T],
"ystar"=t(sim.data$ystar)
)
}
mydata <- list(
y = sim.data$Ysampled,
lrt = sim.data$logt,
N = nrow(sim.data$Ysampled),
nit = ncol(sim.data$Ysampled)
)
# Run model
# Model 2
model.fit <- R2jags::jags(
model = paste0(w.d, "/code/study_1/model_2.txt"),
parameters.to.save = jags.params,
inits = jags.inits,
data = mydata,
n.chains = 4,
n.burnin = 5000,
n.iter = 10000
)
module glm loaded
Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 5000
Unobserved stochastic nodes: 3528
Total graph size: 44073
Initializing model
print(model.fit, width=1000)
Inference for Bugs model at "C:/Users/noahp/Documents/GitHub/Padgett-Dissertation/code/study_1/model_2.txt", fit using jags,
4 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 4000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
icept[1] 1.542 0.061 1.433 1.499 1.540 1.583 1.667 1.01 180
icept[2] 1.552 0.063 1.438 1.508 1.547 1.591 1.687 1.03 99
icept[3] 1.655 0.082 1.492 1.599 1.655 1.711 1.810 1.01 200
icept[4] 1.571 0.063 1.458 1.529 1.569 1.612 1.696 1.01 190
icept[5] 1.569 0.078 1.423 1.515 1.569 1.623 1.722 1.02 140
lambda[1] 0.438 0.122 0.219 0.357 0.431 0.510 0.714 1.01 550
lambda[2] 0.318 0.109 0.094 0.247 0.318 0.392 0.533 1.04 240
lambda[3] 0.607 0.158 0.318 0.499 0.599 0.705 0.947 1.01 200
lambda[4] 0.448 0.124 0.232 0.363 0.441 0.521 0.706 1.01 670
lambda[5] 0.565 0.134 0.311 0.475 0.563 0.650 0.833 1.01 530
lambda.std[1] 0.395 0.092 0.214 0.336 0.396 0.455 0.581 1.01 500
lambda.std[2] 0.299 0.094 0.094 0.240 0.303 0.365 0.470 1.04 230
lambda.std[3] 0.509 0.098 0.303 0.447 0.514 0.576 0.688 1.01 260
lambda.std[4] 0.402 0.091 0.226 0.342 0.403 0.462 0.577 1.00 800
lambda.std[5] 0.484 0.089 0.297 0.429 0.490 0.545 0.640 1.01 550
prec[1] 3.982 0.297 3.432 3.779 3.969 4.177 4.590 1.00 2500
prec[2] 3.956 0.291 3.423 3.753 3.944 4.142 4.570 1.00 4000
prec[3] 4.174 0.354 3.553 3.932 4.153 4.385 4.929 1.00 820
prec[4] 4.122 0.310 3.560 3.910 4.113 4.317 4.761 1.00 3800
prec[5] 4.707 0.391 4.014 4.433 4.694 4.947 5.539 1.00 960
prec.s 10.391 1.473 8.063 9.361 10.213 11.203 13.802 1.02 180
reli.omega 0.527 0.057 0.402 0.492 0.532 0.567 0.623 1.01 240
rho 0.465 0.144 0.202 0.369 0.456 0.554 0.766 1.04 75
sigma.ts 0.077 0.030 0.017 0.057 0.077 0.097 0.134 1.00 3300
tau[1,1] -0.751 0.088 -0.928 -0.811 -0.751 -0.692 -0.582 1.00 4000
tau[2,1] -0.731 0.084 -0.899 -0.789 -0.729 -0.676 -0.568 1.00 1400
tau[3,1] -0.674 0.092 -0.859 -0.736 -0.672 -0.612 -0.498 1.01 420
tau[4,1] -0.497 0.083 -0.657 -0.554 -0.497 -0.441 -0.330 1.00 3800
tau[5,1] -0.826 0.088 -0.999 -0.885 -0.827 -0.765 -0.657 1.00 3400
tau[1,2] 0.824 0.089 0.652 0.764 0.824 0.884 0.998 1.00 3500
tau[2,2] 0.853 0.085 0.690 0.796 0.852 0.910 1.018 1.00 2900
tau[3,2] 0.884 0.092 0.703 0.822 0.882 0.945 1.064 1.00 1100
tau[4,2] 1.016 0.092 0.837 0.954 1.015 1.079 1.196 1.00 1900
tau[5,2] 0.874 0.093 0.694 0.812 0.873 0.935 1.062 1.00 750
theta[1] 1.207 0.116 1.048 1.127 1.186 1.260 1.509 1.00 1100
theta[2] 1.113 0.072 1.009 1.061 1.101 1.153 1.284 1.00 640
theta[3] 1.393 0.202 1.101 1.249 1.359 1.497 1.896 1.03 120
theta[4] 1.216 0.122 1.054 1.132 1.194 1.271 1.499 1.02 330
theta[5] 1.337 0.155 1.097 1.226 1.317 1.423 1.694 1.00 530
deviance 7467.165 76.519 7320.231 7415.326 7467.329 7518.652 7618.684 1.00 2600
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 2926.5 and DIC = 10393.6
DIC is an estimate of expected predictive error (lower deviance is better).
jags.mcmc <- as.mcmc(model.fit)
a <- colnames(as.data.frame(jags.mcmc[[1]]))
fit.mcmc <- data.frame(as.matrix(jags.mcmc, chains = T, iters = T))
colnames(fit.mcmc) <- c("chain", "iter", a)
fit.mcmc.ggs <- ggmcmc::ggs(jags.mcmc) # for GRB plot
# save posterior draws for later
write.csv(x=fit.mcmc, file=paste0(getwd(),"/data/study_1/posterior_draws_m2.csv"))
# tau
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "tau", prob = 0.8); ggsave("fig/study1_model2_tau_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "tau"); ggsave("fig/study1_model2_tau_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "tau"); ggsave("fig/study1_model2_tau_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "tau"); ggsave("fig/study1_model2_tau_grb.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "lambda", prob = 0.8)
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "lambda")
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "lambda")
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "lambda")
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "lambda.std", prob = 0.8); ggsave("fig/study1_model2_lambda_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "lambda.std"); ggsave("fig/study1_model2_lambda_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "lambda.std"); ggsave("fig/study1_model2_lambda_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "lambda.std"); ggsave("fig/study1_model2_lambda_grb.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "theta", prob = 0.8); ggsave("fig/study1_model2_theta_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "theta"); ggsave("fig/study1_model2_theta_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "theta"); ggsave("fig/study1_model2_theta_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "theta"); ggsave("fig/study1_model2_theta_grb.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "icept", prob = 0.8); ggsave("fig/study1_model2_icept_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "icept"); ggsave("fig/study1_model2_icept_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "icept"); ggsave("fig/study1_model2_icept_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "icept"); ggsave("fig/study1_model2_icept_grb.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "prec", prob = 0.8); ggsave("fig/study1_model2_prec_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "prec"); ggsave("fig/study1_model2_prec_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "prec"); ggsave("fig/study1_model2_prec_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "prec"); ggsave("fig/study1_model2_prec_grb.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "prec.s", prob = 0.8); ggsave("fig/study1_model2_precs_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "prec.s"); ggsave("fig/study1_model2_precs_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "prec.s"); ggsave("fig/study1_model2_precs_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "prec.s"); ggsave("fig/study1_model2_precs_grb.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "sigma.ts", prob = 0.8); ggsave("fig/study1_model2_sigmats_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "sigma.ts"); ggsave("fig/study1_model2_sigmats_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "sigma.ts"); ggsave("fig/study1_model2_sigmats_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "sigma.ts"); ggsave("fig/study1_model2_sigmats_grb.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "rho", prob = 0.8); ggsave("fig/study1_model2_rho_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "rho"); ggsave("fig/study1_model2_rho_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "rho"); ggsave("fig/study1_model2_rho_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "rho"); ggsave("fig/study1_model2_rho_grb.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_areas(fit.mcmc, regex_pars = "reli.omega", prob = 0.8); ggsave("fig/study1_model2_omega_dens.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_acf(fit.mcmc, regex_pars = "reli.omega"); ggsave("fig/study1_model2_omega_acf.pdf")
Saving 7 x 5 in image
bayesplot::mcmc_trace(fit.mcmc, regex_pars = "reli.omega"); ggsave("fig/study1_model2_omega_trace.pdf")
Saving 7 x 5 in image
ggmcmc::ggs_grb(fit.mcmc.ggs, family = "reli.omega"); ggsave("fig/study1_model2_omega_grb.pdf")
Saving 7 x 5 in image
# extract omega posterior for results comparison
extracted_omega <- data.frame(model_2 = fit.mcmc$reli.omega)
write.csv(x=extracted_omega, file=paste0(getwd(),"/data/study_1/extracted_omega_m2.csv"))
# Posterior Predictive Check
Niter <- 200
model.fit$model$recompile()
Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 5000
Unobserved stochastic nodes: 3528
Total graph size: 44073
Initializing model
fit.extra <- rjags::jags.samples(model.fit$model, variable.names = "pi", n.iter = Niter)
NOTE: Stopping adaptation
N <- model.fit$model$data()[[1]]
nit <- 5
nchain=4
C <- 3
n <- i <- iter <- ppc.row.i <- 1
y.prob.ppc <- array(dim=c(Niter*nchain, nit, C))
for(chain in 1:nchain){
for(iter in 1:Niter){
# initialize simulated y for this iteration
y <- matrix(nrow=N, ncol=nit)
# loop over item
for(i in 1:nit){
# simulated data for item i for each person
for(n in 1:N){
y[n,i] <- sample(1:C, 1, prob = fit.extra$pi[n, i, 1:C, iter, chain])
}
# computer proportion of each response category
for(c in 1:C){
y.prob.ppc[ppc.row.i,i,c] <- sum(y[,i]==c)/N
}
}
# update row of output
ppc.row.i = ppc.row.i + 1
}
}
yppcmat <- matrix(c(y.prob.ppc), ncol=1)
z <- expand.grid(1:(Niter*nchain), 1:nit, 1:C)
yppcmat <- data.frame( iter = z[,1], nit=z[,2], C=z[,3], yppc = yppcmat)
ymat <- model.fit$model$data()[[4]]
y.prob <- matrix(ncol=C, nrow=nit)
for(i in 1:nit){
for(c in 1:C){
y.prob[i,c] <- sum(ymat[,i]==c)/N
}
}
yobsmat <- matrix(c(y.prob), ncol=1)
z <- expand.grid(1:nit, 1:C)
yobsmat <- data.frame(nit=z[,1], C=z[,2], yobs = yobsmat)
plot.ppc <- full_join(yppcmat, yobsmat)
Joining, by = c("nit", "C")
p <- plot.ppc %>%
mutate(C = as.factor(C),
item = nit) %>%
ggplot()+
geom_boxplot(aes(x=C,y=y.prob.ppc), outlier.colour = NA)+
geom_point(aes(x=C,y=yobs), color="red")+
lims(y=c(0, 0.67))+
labs(y="Posterior Predictive Category Proportion", x="Item Category")+
facet_wrap(.~nit, nrow=1)+
theme_bw()+
theme(
panel.grid = element_blank(),
strip.background = element_rect(fill="white")
)
p
ggsave(filename = "fig/study1_model2_ppc_y.pdf",plot=p,width = 6, height=4,units="in")
ggsave(filename = "fig/study1_model2_ppc_y.png",plot=p,width = 6, height=4,units="in")
ggsave(filename = "fig/study1_model2_ppc_y.eps",plot=p,width = 6, height=4,units="in")
# print to xtable
print(
xtable(
model.fit$BUGSoutput$summary,
caption = c("study1 Model 2 posterior distribution summary")
,align = "lrrrrrrrrr"
),
include.rownames=T,
booktabs=T
)
% latex table generated in R 4.0.5 by xtable 1.8-4 package
% Sun Jan 16 14:07:35 2022
\begin{table}[ht]
\centering
\begin{tabular}{lrrrrrrrrr}
\toprule
& mean & sd & 2.5\% & 25\% & 50\% & 75\% & 97.5\% & Rhat & n.eff \\
\midrule
deviance & 7467.17 & 76.52 & 7320.23 & 7415.33 & 7467.33 & 7518.65 & 7618.68 & 1.00 & 2600.00 \\
icept[1] & 1.54 & 0.06 & 1.43 & 1.50 & 1.54 & 1.58 & 1.67 & 1.01 & 180.00 \\
icept[2] & 1.55 & 0.06 & 1.44 & 1.51 & 1.55 & 1.59 & 1.69 & 1.03 & 99.00 \\
icept[3] & 1.65 & 0.08 & 1.49 & 1.60 & 1.66 & 1.71 & 1.81 & 1.01 & 200.00 \\
icept[4] & 1.57 & 0.06 & 1.46 & 1.53 & 1.57 & 1.61 & 1.70 & 1.01 & 190.00 \\
icept[5] & 1.57 & 0.08 & 1.42 & 1.52 & 1.57 & 1.62 & 1.72 & 1.02 & 140.00 \\
lambda[1] & 0.44 & 0.12 & 0.22 & 0.36 & 0.43 & 0.51 & 0.71 & 1.01 & 550.00 \\
lambda[2] & 0.32 & 0.11 & 0.09 & 0.25 & 0.32 & 0.39 & 0.53 & 1.04 & 240.00 \\
lambda[3] & 0.61 & 0.16 & 0.32 & 0.50 & 0.60 & 0.70 & 0.95 & 1.02 & 200.00 \\
lambda[4] & 0.45 & 0.12 & 0.23 & 0.36 & 0.44 & 0.52 & 0.71 & 1.01 & 670.00 \\
lambda[5] & 0.57 & 0.13 & 0.31 & 0.48 & 0.56 & 0.65 & 0.83 & 1.01 & 530.00 \\
lambda.std[1] & 0.40 & 0.09 & 0.21 & 0.34 & 0.40 & 0.45 & 0.58 & 1.01 & 500.00 \\
lambda.std[2] & 0.30 & 0.09 & 0.09 & 0.24 & 0.30 & 0.36 & 0.47 & 1.04 & 230.00 \\
lambda.std[3] & 0.51 & 0.10 & 0.30 & 0.45 & 0.51 & 0.58 & 0.69 & 1.01 & 260.00 \\
lambda.std[4] & 0.40 & 0.09 & 0.23 & 0.34 & 0.40 & 0.46 & 0.58 & 1.01 & 800.00 \\
lambda.std[5] & 0.48 & 0.09 & 0.30 & 0.43 & 0.49 & 0.55 & 0.64 & 1.01 & 550.00 \\
prec[1] & 3.98 & 0.30 & 3.43 & 3.78 & 3.97 & 4.18 & 4.59 & 1.00 & 2500.00 \\
prec[2] & 3.96 & 0.29 & 3.42 & 3.75 & 3.94 & 4.14 & 4.57 & 1.00 & 4000.00 \\
prec[3] & 4.17 & 0.35 & 3.55 & 3.93 & 4.15 & 4.39 & 4.93 & 1.00 & 820.00 \\
prec[4] & 4.12 & 0.31 & 3.56 & 3.91 & 4.11 & 4.32 & 4.76 & 1.00 & 3800.00 \\
prec[5] & 4.71 & 0.39 & 4.01 & 4.43 & 4.69 & 4.95 & 5.54 & 1.00 & 960.00 \\
prec.s & 10.39 & 1.47 & 8.06 & 9.36 & 10.21 & 11.20 & 13.80 & 1.02 & 180.00 \\
reli.omega & 0.53 & 0.06 & 0.40 & 0.49 & 0.53 & 0.57 & 0.62 & 1.01 & 240.00 \\
rho & 0.47 & 0.14 & 0.20 & 0.37 & 0.46 & 0.55 & 0.77 & 1.04 & 75.00 \\
sigma.ts & 0.08 & 0.03 & 0.02 & 0.06 & 0.08 & 0.10 & 0.13 & 1.00 & 3300.00 \\
tau[1,1] & -0.75 & 0.09 & -0.93 & -0.81 & -0.75 & -0.69 & -0.58 & 1.00 & 4000.00 \\
tau[2,1] & -0.73 & 0.08 & -0.90 & -0.79 & -0.73 & -0.68 & -0.57 & 1.00 & 1400.00 \\
tau[3,1] & -0.67 & 0.09 & -0.86 & -0.74 & -0.67 & -0.61 & -0.50 & 1.01 & 420.00 \\
tau[4,1] & -0.50 & 0.08 & -0.66 & -0.55 & -0.50 & -0.44 & -0.33 & 1.00 & 3800.00 \\
tau[5,1] & -0.83 & 0.09 & -1.00 & -0.89 & -0.83 & -0.76 & -0.66 & 1.00 & 3400.00 \\
tau[1,2] & 0.82 & 0.09 & 0.65 & 0.76 & 0.82 & 0.88 & 1.00 & 1.00 & 3500.00 \\
tau[2,2] & 0.85 & 0.08 & 0.69 & 0.80 & 0.85 & 0.91 & 1.02 & 1.00 & 2900.00 \\
tau[3,2] & 0.88 & 0.09 & 0.70 & 0.82 & 0.88 & 0.95 & 1.06 & 1.00 & 1100.00 \\
tau[4,2] & 1.02 & 0.09 & 0.84 & 0.95 & 1.01 & 1.08 & 1.20 & 1.00 & 1900.00 \\
tau[5,2] & 0.87 & 0.09 & 0.69 & 0.81 & 0.87 & 0.93 & 1.06 & 1.00 & 750.00 \\
theta[1] & 1.21 & 0.12 & 1.05 & 1.13 & 1.19 & 1.26 & 1.51 & 1.01 & 1100.00 \\
theta[2] & 1.11 & 0.07 & 1.01 & 1.06 & 1.10 & 1.15 & 1.28 & 1.00 & 640.00 \\
theta[3] & 1.39 & 0.20 & 1.10 & 1.25 & 1.36 & 1.50 & 1.90 & 1.03 & 120.00 \\
theta[4] & 1.22 & 0.12 & 1.05 & 1.13 & 1.19 & 1.27 & 1.50 & 1.02 & 330.00 \\
theta[5] & 1.34 & 0.16 & 1.10 & 1.23 & 1.32 & 1.42 & 1.69 & 1.01 & 530.00 \\
\bottomrule
\end{tabular}
\caption{study1 Model 2 posterior distribution summary}
\end{table}
plot.dat <- fit.mcmc %>%
select(!c("iter", "deviance", "reli.omega", paste0("lambda[",1:5,"]")))%>%
pivot_longer(
cols= !c("chain"),
names_to="variable",
values_to="value"
)
meas.var <- c(
"lambda.std[1]", "theta[1]", "tau[1,1]", "tau[1,2]",
"lambda.std[2]", "theta[2]", "tau[2,1]", "tau[2,2]",
"lambda.std[3]", "theta[3]", "tau[3,1]", "tau[3,2]",
"lambda.std[4]", "theta[4]", "tau[4,1]", "tau[4,2]",
"lambda.std[5]", "theta[5]", "tau[5,1]", "tau[5,2]"
)
plot.dat1 <- plot.dat %>%
filter(variable %in% meas.var) %>%
mutate(
variable = factor(
variable,
levels = meas.var, ordered = T
)
)
spd.var <- c(
"icept[1]", "icept[2]", "icept[3]", "icept[4]", "icept[5]",
"prec[1]", "prec[2]", "prec[3]", "prec[4]", "prec[5]",
"rho", "prec.s", "sigma.ts"
)
plot.dat2 <- plot.dat %>%
filter(variable %in% spd.var) %>%
mutate(
variable = factor(
variable,
levels = spd.var, ordered = T
)
)
p1 <- ggplot(plot.dat1, aes(x=value, group=variable))+
geom_density(adjust=2)+
facet_wrap(variable~., scales="free_y", ncol=4) +
labs(x="Magnitude of Parameter",
y="Posterior Density")+
theme_bw()+
theme(
panel.grid = element_blank(),
strip.background = element_rect(fill="white"),
axis.text.y = element_blank(),
axis.ticks.y = element_blank()
)
p1
p2 <- ggplot(plot.dat2, aes(x=value, group=variable))+
geom_density(adjust=2)+
facet_wrap(variable~., scales="free", ncol=5) +
labs(x="Magnitude of Parameter",
y="Posterior Density")+
theme_bw()+
theme(
panel.grid = element_blank(),
strip.background = element_rect(fill="white"),
axis.text.y = element_blank(),
axis.ticks.y = element_blank() ,
axis.text.x = element_text(size=8, angle=90, hjust=1, vjust=0.50)
)
p2
# all as one
plot.dat <- fit.mcmc %>%
select(!c("iter", "deviance", "reli.omega", paste0("lambda[",1:5,"]")))%>%
pivot_longer(
cols= !c("chain"),
names_to="variable",
values_to="value"
) %>%
mutate(
variable = factor(
variable,
# 33
# 10x3 + 3 === horizontal page
levels = c(
paste0("lambda.std[",1:5,"]"), paste0("theta[",1:5,"]"),
paste0("tau[",1:5,",1]"), paste0("tau[",1:5,",2]"),
paste0("icept[",1:5,"]"), paste0("prec[",1:5,"]"),
"rho", "prec.s","sigma.ts"
), ordered = T
)
)
p <- ggplot(plot.dat, aes(x=value, group=variable))+
geom_density(adjust=2)+
facet_wrap(variable~., scales="free", ncol=5) +
labs(x="Magnitude of Parameter",
y="Posterior Density")+
theme_bw()+
theme(
panel.grid = element_blank(),
strip.background = element_rect(fill="white"),
axis.text.y = element_blank(),
axis.ticks.y = element_blank() ,
axis.text.x = element_text(size=7)
)
p
ggsave(filename = "fig/study1_model2_posterior_dist.pdf",plot=p,width = 10, height=7,units="in")
ggsave(filename = "fig/study1_model2_posterior_dist.png",plot=p,width = 10, height=7,units="in")
ggsave(filename = "fig/study1_model2_posterior_dist.eps",plot=p,width = 10, height=7,units="in")
sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] car_3.0-10 carData_3.0-4 mvtnorm_1.1-1
[4] LaplacesDemon_16.1.4 runjags_2.2.0-2 lme4_1.1-26
[7] Matrix_1.3-2 sirt_3.9-4 R2jags_0.6-1
[10] rjags_4-12 eRm_1.0-2 diffIRT_1.5
[13] statmod_1.4.35 xtable_1.8-4 kableExtra_1.3.4
[16] lavaan_0.6-7 polycor_0.7-10 bayesplot_1.8.0
[19] ggmcmc_1.5.1.1 coda_0.19-4 data.table_1.14.0
[22] patchwork_1.1.1 forcats_0.5.1 stringr_1.4.0
[25] dplyr_1.0.5 purrr_0.3.4 readr_1.4.0
[28] tidyr_1.1.3 tibble_3.1.0 ggplot2_3.3.5
[31] tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] minqa_1.2.4 TAM_3.5-19 colorspace_2.0-0 rio_0.5.26
[5] ellipsis_0.3.1 ggridges_0.5.3 rprojroot_2.0.2 fs_1.5.0
[9] rstudioapi_0.13 farver_2.1.0 fansi_0.4.2 lubridate_1.7.10
[13] xml2_1.3.2 splines_4.0.5 mnormt_2.0.2 knitr_1.31
[17] jsonlite_1.7.2 nloptr_1.2.2.2 broom_0.7.5 dbplyr_2.1.0
[21] compiler_4.0.5 httr_1.4.2 backports_1.2.1 assertthat_0.2.1
[25] cli_2.3.1 later_1.1.0.1 htmltools_0.5.1.1 tools_4.0.5
[29] gtable_0.3.0 glue_1.4.2 reshape2_1.4.4 Rcpp_1.0.7
[33] cellranger_1.1.0 jquerylib_0.1.3 vctrs_0.3.6 svglite_2.0.0
[37] nlme_3.1-152 psych_2.0.12 xfun_0.21 ps_1.6.0
[41] openxlsx_4.2.3 rvest_1.0.0 lifecycle_1.0.0 MASS_7.3-53.1
[45] scales_1.1.1 ragg_1.1.1 hms_1.0.0 promises_1.2.0.1
[49] parallel_4.0.5 RColorBrewer_1.1-2 curl_4.3 yaml_2.2.1
[53] sass_0.3.1 reshape_0.8.8 stringi_1.5.3 highr_0.8
[57] zip_2.1.1 boot_1.3-27 rlang_0.4.10 pkgconfig_2.0.3
[61] systemfonts_1.0.1 evaluate_0.14 lattice_0.20-41 labeling_0.4.2
[65] tidyselect_1.1.0 GGally_2.1.1 plyr_1.8.6 magrittr_2.0.1
[69] R6_2.5.0 generics_0.1.0 DBI_1.1.1 foreign_0.8-81
[73] pillar_1.5.1 haven_2.3.1 withr_2.4.1 abind_1.4-5
[77] modelr_0.1.8 crayon_1.4.1 utf8_1.1.4 tmvnsim_1.0-2
[81] rmarkdown_2.7 grid_4.0.5 readxl_1.3.1 CDM_7.5-15
[85] pbivnorm_0.6.0 git2r_0.28.0 reprex_1.0.0 digest_0.6.27
[89] webshot_0.5.2 httpuv_1.5.5 textshaping_0.3.1 stats4_4.0.5
[93] munsell_0.5.0 viridisLite_0.3.0 bslib_0.2.4 R2WinBUGS_2.1-21