Last updated: 2019-09-29

Checks: 7 0

Knit directory: mcfa-fit/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190507) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .RDataTmp
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 6457362 noah-padgett 2019-09-29 general update after first SEM review
html 6457362 noah-padgett 2019-09-29 general update after first SEM review

Purpose of this file:

  1. Creating simple descriptive statistics across conditions
  2. Generating tables of those stats

The output is mostly just a lot of latex ready tables. Not all of these tables are included in the final publication, but we wanted to be as precise as possible with respect to the summary of the fit statistics.

Packages and Set-Up

##Chunk iptions
knitr::opts_chunk$set(out.width = "225%")

#setwd('C:/Users/noahp/Dropbox/MCFA Thesis/Code Results')

## Packages
## General Packages
library(tidyverse)
-- Attaching packages ---------------------------------------- tidyverse 1.2.1 --
v ggplot2 3.2.0     v purrr   0.3.2
v tibble  2.1.1     v dplyr   0.8.1
v tidyr   0.8.3     v stringr 1.4.0
v readr   1.3.1     v forcats 0.4.0
-- Conflicts ------------------------------------------- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
# Formatting and Tables
library(kableExtra)

Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':

    group_rows
library(xtable)
# For plotting
library(ggplot2)
theme_set(theme_bw())
# Data manipulating
library(dplyr)

Data Management

sim_results <- as_tibble(read.table('data/compiled_fit_results.txt', header=T,sep='\t'))

## Next, turn condition into a factor for plotting
sim_results$Condition <- as.factor(sim_results$Condition)

## Next, since TLI is non-normed, any value greater than 1 needs to be rescaled to 1.
sim_results$TLI <- ifelse(sim_results$TLI > 1, 1, sim_results$TLI)
sim_results$TLI <- ifelse(sim_results$TLI < 0, 0, sim_results$TLI)
## Next, summarize the results of the chi-square test of model fit. This is done simply by comparing the p-value to alpha (0.05) and indicating whether the model was flagged as fitting or not.
# Note: if  p < 0.05 then this variable is flagged as 0, and 1 otherwise
sim_results$Chi2_pvalue_decision <- ifelse(sim_results$chisqu_pvalue < 0.05, 0, 1)
# 0 = rejected that these data fit this model
# 1 = failed to reject that these data fit this model

Adding Labels to Conditions

Currently, each condition is kind of like a hidden id that we don’t know what the actual factor is. So, first thing isto create meaningful labels for us to use. Remember, the 72 conditions for the this study were

  1. Level-1 sample size (ss_l1 or n1) (5, 10, 30)
  2. Level-2 sample size (ss_l2 or n2) (30, 50, 100, 200)
  3. Observed indicator ICC (.1, .3, .5)
  4. Latent variable ICC (.1, .5)
## level-1 Sample size
ss_l1 <- c(5, 10, 30) ## 6 conditions each
ss_l2 <- c(30, 50, 100, 200) ## 18 condition each
icc_ov <- c(.1, .3, .5) ## 2 conditions each
icc_lv <- c(.1, .5) ## every other condition
nCon <- 72 # number of conditions
nRep <- 500 # number of replications per condition
nMod <- 12 ## numberof estimated models per conditions
## Total number of rows: 432,000
ss_l2 <- c(rep(ss_l2[1], 18*nRep*nMod), rep(ss_l2[2], 18*nRep*nMod), 
           rep(ss_l2[3], 18*nRep*nMod), rep(ss_l2[4], 18*nRep*nMod))
ss_l1 <- rep(c(rep(ss_l1[1],6*nRep*nMod), rep(ss_l1[2],6*nRep*nMod), rep(ss_l1[3],6*nRep*nMod)), 4)
icc_ov <- rep(c(rep(icc_ov[1], 2*nRep*nMod), rep(icc_ov[2], 2*nRep*nMod), rep(icc_ov[3], 2*nRep*nMod)), 12)
icc_lv <- rep(c(rep(icc_lv[1], nRep*nMod), rep(icc_lv[2], nRep*nMod)), 36)
## Force these vectors to be column vectors
ss_l1 <- matrix(ss_l1, ncol=1)
ss_l2 <- matrix(ss_l2, ncol=1)
icc_ov <- matrix(icc_ov, ncol=1)
icc_lv <- matrix(icc_lv, ncol=1)
## Add the labels to the results data frame
sim_results <- sim_results[order(sim_results$Condition),]
sim_results <- cbind(sim_results, ss_l1, ss_l2, icc_ov, icc_lv)

## Force the conditions to be factors
sim_results$ss_l1 <- as.factor(sim_results$ss_l1)
sim_results$ss_l2 <- as.factor(sim_results$ss_l2)
sim_results$icc_ov <- as.factor(sim_results$icc_ov)
sim_results$icc_lv <- as.factor(sim_results$icc_lv)
sim_results$Model <- factor(sim_results$Model, levels = c('C','M1','M2','M12'), ordered = T)
## Set up iterators for remainder of script
mods <- c('C', 'M1', 'M2', 'M12')
ests <- c('MLR', 'ULSMV', 'WLSMV')

For the descriptive statistics, I will use dplyr. From here I can easily create matrices that store the results so that I can easily print out the results for summarizing the results. Each will be printed out as a html table and a xtable (latex ready) table.

Descriptive Statistics of Fit Indices

Now for the long process of making tables for the MANY conditions for the descriptive statistics. For this, we need to do this is steps so that all the information gets outputted in the correct manor for table. For each statistic under each condition, model, and estimator, the code below create a table that contains the average value and the standard deviation. Again, just like the descriptives above, a summary table was made to start.

These tables are made based only on the 1) converged models and 2) the admissible solutions.

The fit indices included are:

  1. Chi-square p-value summary, i.e. proportion of tims the p-value was greater than 0.05. No SD is reported here.
  2. CFI with mean and sd
  3. TLI with mean and sd
  4. RMSEA with mean and sd
  5. SRMRW with mean and sd
  6. SRMRB with mean and sd
mydata <- filter(sim_results, Converge == 1 & Admissible == 1)

## first table summary table
a <- mydata %>%
  group_by(Model, Estimator) %>%
  summarise(
    chi2=mean(Chi2_pvalue_decision, na.rm = T),
    CFI.m =mean(CFI, na.rm = T), CFI.sd =sd(CFI, na.rm = T),
    TLI.m =mean(TLI, na.rm = T), TLI.sd =sd(TLI, na.rm = T),
    RMSEA.m =mean(RMSEA, na.rm = T), RMSEA.sd =sd(RMSEA, na.rm = T),
    SRMRW.m =mean(SRMRW, na.rm = T), SRMRW.sd =sd(SRMRW, na.rm = T),
    SRMRB.m =mean(SRMRB, na.rm = T), SRMRB.sd =sd(SRMRB, na.rm = T)
  )
## Print results in a nice looking table in HTML
kable(a, format='html') %>%
    kable_styling(full_width = T)
Model Estimator chi2 CFI.m CFI.sd TLI.m TLI.sd RMSEA.m RMSEA.sd SRMRW.m SRMRW.sd SRMRB.m SRMRB.sd
C MLR 0.8202745 0.9812052 0.0371156 0.9774462 0.0445387 0.0116853 0.0137071 0.0267436 0.0149748 0.1127033 0.0560528
C ULSMV 0.9768364 0.9893737 0.0304160 0.9872484 0.0364992 0.0043197 0.0069715 0.0374443 0.0219530 0.0824565 0.0464499
C WLSMV 0.9745022 0.9939143 0.0151637 0.9926972 0.0181964 0.0049618 0.0074547 0.0308598 0.0173622 0.0879603 0.0477328
M1 MLR 0.0598615 0.9095858 0.0452227 0.8915221 0.0539201 0.0359143 0.0096761 0.0493582 0.0110398 0.1123173 0.0500658
M1 ULSMV 0.4775854 0.9399431 0.0501061 0.9279318 0.0601273 0.0182307 0.0129284 0.0640931 0.0165727 0.0869087 0.0509335
M1 WLSMV 0.2267400 0.9366788 0.0326178 0.9240146 0.0391414 0.0275762 0.0097161 0.0594152 0.0126836 0.0939776 0.0759974
M2 MLR 0.5229346 0.9695725 0.0409948 0.9634997 0.0489183 0.0182297 0.0146701 0.0271783 0.0155180 0.1367468 0.0505995
M2 ULSMV 0.7160134 0.9542678 0.0645749 0.9451213 0.0774899 0.0114736 0.0114129 0.0410089 0.0218186 0.0968839 0.0424409
M2 WLSMV 0.7513266 0.9846025 0.0222259 0.9815230 0.0266711 0.0103058 0.0098072 0.0316043 0.0174071 0.1043579 0.0412210
M12 MLR 0.0441231 0.8985820 0.0458621 0.8799245 0.0538692 0.0386203 0.0105879 0.0490658 0.0112168 0.1308869 0.0509402
M12 ULSMV 0.4236863 0.9288116 0.0572006 0.9156980 0.0677375 0.0199017 0.0129339 0.0632456 0.0166762 0.0948095 0.0451347
M12 WLSMV 0.2105645 0.9331558 0.0339604 0.9208424 0.0402163 0.0281158 0.0096108 0.0590211 0.0124923 0.0994165 0.0444520
## make a copy of a to print into
a1 <- as_tibble(as.data.frame(matrix(NA, ncol=8,nrow=nrow(a))))
colnames(a1) <- c('Model', 'Estimation', "chi2", "CFI",'TLI', 'RMSEA', 'SRMRW', 'SRMRB')
i <- 1
for(i in 1:nrow(a)){
  a1[i,3:8] <- unlist(c(
    round(a[i,3],3),
  paste0(round(a[i,4],3), ' (', round(a[i,5],2), ')'),
  paste0(round(a[i,6],3), ' (', round(a[i,7],2), ')'),
  paste0(round(a[i,8],3), ' (', round(a[i,9],2), ')'),
  paste0(round(a[i,10],3), ' (', round(a[i,11],2), ')'),
  paste0(round(a[i,12],3), ' (', round(a[i,12],2), ')')
  ))
}
a1[,1:2] <- a[,1:2]## add factors back
## Print out in tex
print(xtable(a1, digits = 3), booktabs = T, include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{llllllll}
  \toprule
Model & Estimation & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
C & MLR & 0.82 & 0.981 (0.04) & 0.977 (0.04) & 0.012 (0.01) & 0.027 (0.01) & 0.113 (0.11) \\ 
  C & ULSMV & 0.977 & 0.989 (0.03) & 0.987 (0.04) & 0.004 (0.01) & 0.037 (0.02) & 0.082 (0.08) \\ 
  C & WLSMV & 0.975 & 0.994 (0.02) & 0.993 (0.02) & 0.005 (0.01) & 0.031 (0.02) & 0.088 (0.09) \\ 
  M1 & MLR & 0.06 & 0.91 (0.05) & 0.892 (0.05) & 0.036 (0.01) & 0.049 (0.01) & 0.112 (0.11) \\ 
  M1 & ULSMV & 0.478 & 0.94 (0.05) & 0.928 (0.06) & 0.018 (0.01) & 0.064 (0.02) & 0.087 (0.09) \\ 
  M1 & WLSMV & 0.227 & 0.937 (0.03) & 0.924 (0.04) & 0.028 (0.01) & 0.059 (0.01) & 0.094 (0.09) \\ 
  M2 & MLR & 0.523 & 0.97 (0.04) & 0.963 (0.05) & 0.018 (0.01) & 0.027 (0.02) & 0.137 (0.14) \\ 
  M2 & ULSMV & 0.716 & 0.954 (0.06) & 0.945 (0.08) & 0.011 (0.01) & 0.041 (0.02) & 0.097 (0.1) \\ 
  M2 & WLSMV & 0.751 & 0.985 (0.02) & 0.982 (0.03) & 0.01 (0.01) & 0.032 (0.02) & 0.104 (0.1) \\ 
  M12 & MLR & 0.044 & 0.899 (0.05) & 0.88 (0.05) & 0.039 (0.01) & 0.049 (0.01) & 0.131 (0.13) \\ 
  M12 & ULSMV & 0.424 & 0.929 (0.06) & 0.916 (0.07) & 0.02 (0.01) & 0.063 (0.02) & 0.095 (0.09) \\ 
  M12 & WLSMV & 0.211 & 0.933 (0.03) & 0.921 (0.04) & 0.028 (0.01) & 0.059 (0.01) & 0.099 (0.1) \\ 
   \bottomrule
\end{tabular}
\end{table}

Fit statistics by Model, Estimation Method, and Sample Size Conditions

An interesting additonal column is added called Prop.Use, which is the total proportion of usable replications for each marginal cell of the design. Each row of the following table represents the marginal distribution of each fit statistic over the ICC conditions. The total number of possible replications is 3000 (500 rep. \(\times\) 72 conditions). This gives a rough account of the admissibility of the estimation method across sample sizes.

mydata <- filter(sim_results, Converge == 1 & Admissible == 1)

## first table summary table
a <- mydata %>%
  group_by(Model, Estimator, ss_l2, ss_l1) %>%
  summarise(
    Prop.Use=n()/3000,
    chi2=mean(Chi2_pvalue_decision, na.rm = T),
    CFI.m =mean(CFI, na.rm = T), CFI.sd =sd(CFI, na.rm = T),
    TLI.m =mean(TLI, na.rm = T), TLI.sd =sd(TLI, na.rm = T),
    RMSEA.m =mean(RMSEA, na.rm = T), RMSEA.sd =sd(RMSEA, na.rm = T),
    SRMRW.m =mean(SRMRW, na.rm = T), SRMRW.sd =sd(SRMRW, na.rm = T),
    SRMRB.m =mean(SRMRB, na.rm = T), SRMRB.sd =sd(SRMRB, na.rm = T)
  )
## Print results in a nice looking table in HTML
kable(a, format='html') %>%
    kable_styling(full_width = T)
Model Estimator ss_l2 ss_l1 Prop.Use chi2 CFI.m CFI.sd TLI.m TLI.sd RMSEA.m RMSEA.sd SRMRW.m SRMRW.sd SRMRB.m SRMRB.sd
C MLR 30 5 0.5753333 0.5046350 0.8932985 0.0823341 0.8719582 0.0988009 0.0405051 0.0206701 0.0636427 0.0081998 0.2031333 0.0638188
C MLR 30 10 0.6846667 0.6183057 0.9516131 0.0392000 0.9419357 0.0470400 0.0249005 0.0142381 0.0418158 0.0055189 0.1709135 0.0473209
C MLR 30 30 0.8383333 0.6743539 0.9845929 0.0132663 0.9815114 0.0159196 0.0130712 0.0080568 0.0227393 0.0029658 0.1448123 0.0356252
C MLR 50 5 0.6773333 0.7337598 0.9571215 0.0418101 0.9485458 0.0501721 0.0221401 0.0159915 0.0493632 0.0065675 0.1597397 0.0549686
C MLR 50 10 0.7956667 0.7813155 0.9794866 0.0207334 0.9753839 0.0248801 0.0144655 0.0108222 0.0324331 0.0042679 0.1353715 0.0429718
C MLR 50 30 0.9016667 0.8473198 0.9939626 0.0065780 0.9927551 0.0078936 0.0072079 0.0059472 0.0175935 0.0022846 0.1106368 0.0269979
C MLR 100 5 0.8056667 0.8634671 0.9847650 0.0181757 0.9817180 0.0218109 0.0115672 0.0103175 0.0349806 0.0045561 0.1190202 0.0483755
C MLR 100 10 0.9200000 0.9094203 0.9932192 0.0082911 0.9918630 0.0099493 0.0074047 0.0068392 0.0230136 0.0029498 0.0956019 0.0326032
C MLR 100 30 0.9456667 0.9139937 0.9977692 0.0029064 0.9973231 0.0034877 0.0039914 0.0039469 0.0124694 0.0016427 0.0778343 0.0186974
C MLR 200 5 0.9233333 0.9173285 0.9939687 0.0080929 0.9927624 0.0097115 0.0067031 0.0067363 0.0248031 0.0032101 0.0876249 0.0391772
C MLR 200 10 0.9630000 0.9224645 0.9971589 0.0040648 0.9965907 0.0048778 0.0043523 0.0047177 0.0161595 0.0021331 0.0675193 0.0222516
C MLR 200 30 0.9753333 0.9371155 0.9990867 0.0013090 0.9989041 0.0015708 0.0023794 0.0026531 0.0087901 0.0011544 0.0547267 0.0130280
C ULSMV 30 5 0.4010000 0.9890756 0.9454461 0.0874627 0.9345353 0.1049552 0.0107766 0.0127331 0.0940581 0.0187408 0.1437741 0.0472604
C ULSMV 30 10 0.5730000 0.9941759 0.9832451 0.0397025 0.9798941 0.0476430 0.0049432 0.0079180 0.0630602 0.0151495 0.1308273 0.0529347
C ULSMV 30 30 0.7620000 0.9991251 0.9989324 0.0038866 0.9987189 0.0046639 0.0011944 0.0033515 0.0385429 0.0142576 0.1087197 0.0325369
C ULSMV 50 5 0.5316667 0.9774295 0.9647630 0.0524855 0.9577156 0.0629826 0.0102355 0.0112933 0.0698603 0.0132705 0.1186968 0.0593424
C ULSMV 50 10 0.7073333 0.9844486 0.9833106 0.0300769 0.9799727 0.0360923 0.0062335 0.0075432 0.0471195 0.0115804 0.1054053 0.0446192
C ULSMV 50 30 0.8796667 0.9954528 0.9987028 0.0044795 0.9984434 0.0053754 0.0013230 0.0030596 0.0290815 0.0103994 0.0814828 0.0242640
C ULSMV 100 5 0.6920000 0.9701349 0.9835891 0.0247387 0.9803069 0.0296864 0.0076592 0.0083623 0.0476319 0.0093270 0.0938483 0.0522473
C ULSMV 100 10 0.8730000 0.9648721 0.9907426 0.0168573 0.9888912 0.0202287 0.0050159 0.0058859 0.0322581 0.0072826 0.0733091 0.0293011
C ULSMV 100 30 0.9446667 0.9876500 0.9985521 0.0042864 0.9982626 0.0051437 0.0013400 0.0026252 0.0202040 0.0072211 0.0570341 0.0168804
C ULSMV 200 5 0.8753333 0.9508759 0.9925862 0.0123017 0.9911035 0.0147620 0.0052801 0.0061754 0.0329136 0.0062563 0.0697868 0.0378112
C ULSMV 200 10 0.9576667 0.9470936 0.9949812 0.0088710 0.9939774 0.0106452 0.0037695 0.0043763 0.0226012 0.0051646 0.0509646 0.0192118
C ULSMV 200 30 0.9743333 0.9791310 0.9983751 0.0038216 0.9980501 0.0045860 0.0014283 0.0021999 0.0141136 0.0049309 0.0400727 0.0117348
C WLSMV 30 5 0.3550000 0.9800190 0.9668167 0.0428512 0.9601800 0.0514214 0.0145736 0.0139307 0.0792162 0.0108543 0.1580229 0.0465658
C WLSMV 30 10 0.5080000 0.9895013 0.9898077 0.0176223 0.9877692 0.0211467 0.0068601 0.0088506 0.0518724 0.0070620 0.1432885 0.0762484
C WLSMV 30 30 0.6883333 0.9980630 0.9987074 0.0036447 0.9984488 0.0043736 0.0016198 0.0038659 0.0289064 0.0040449 0.1200868 0.0250014
C WLSMV 50 5 0.4700000 0.9695035 0.9786915 0.0271873 0.9744298 0.0326248 0.0120139 0.0115607 0.0611043 0.0083854 0.1249717 0.0473309
C WLSMV 50 10 0.6603333 0.9798082 0.9910403 0.0123614 0.9892484 0.0148337 0.0074499 0.0078938 0.0397920 0.0053735 0.1145602 0.0414510
C WLSMV 50 30 0.8196667 0.9955266 0.9989983 0.0024830 0.9987979 0.0029796 0.0016069 0.0033358 0.0220497 0.0029613 0.0896034 0.0194144
C WLSMV 100 5 0.6646667 0.9638917 0.9894180 0.0142140 0.9873016 0.0170568 0.0083205 0.0085951 0.0426039 0.0057673 0.1004546 0.0518476
C WLSMV 100 10 0.8243333 0.9656288 0.9955280 0.0062126 0.9946336 0.0074551 0.0055033 0.0058379 0.0280509 0.0036185 0.0784487 0.0263732
C WLSMV 100 30 0.9110000 0.9857300 0.9992901 0.0015954 0.9991481 0.0019144 0.0015406 0.0027663 0.0154768 0.0021092 0.0619890 0.0137278
C WLSMV 200 5 0.8486667 0.9481540 0.9949855 0.0071701 0.9939826 0.0086041 0.0056892 0.0062064 0.0299979 0.0040167 0.0729840 0.0358455
C WLSMV 200 10 0.9356667 0.9515497 0.9977034 0.0033198 0.9972441 0.0039838 0.0039304 0.0043703 0.0197049 0.0026053 0.0541746 0.0170661
C WLSMV 200 30 0.9733333 0.9784247 0.9995363 0.0009171 0.9994436 0.0011005 0.0014136 0.0021738 0.0108560 0.0014413 0.0432125 0.0096334
M1 MLR 30 5 0.4596667 0.2719362 0.8279448 0.1038494 0.7937454 0.1231198 0.0537087 0.0200521 0.0757545 0.0154374 0.1978938 0.0606371
M1 MLR 30 10 0.5826667 0.1401602 0.8795338 0.0619563 0.8555550 0.0728614 0.0427529 0.0126111 0.0578834 0.0088208 0.1677090 0.0431786
M1 MLR 30 30 0.7480000 0.0013369 0.9061395 0.0258827 0.8873674 0.0310592 0.0372108 0.0057018 0.0460096 0.0057624 0.1447929 0.0313018
M1 MLR 50 5 0.5576667 0.3287507 0.8981393 0.0602647 0.8777671 0.0723177 0.0381660 0.0146017 0.0636215 0.0089219 0.1565018 0.0527934
M1 MLR 50 10 0.6690000 0.0563029 0.9094790 0.0360598 0.8913748 0.0432718 0.0362868 0.0082390 0.0515803 0.0068527 0.1323486 0.0361130
M1 MLR 50 30 0.8420000 0.0000000 0.9154093 0.0231617 0.8984922 0.0277590 0.0346816 0.0042685 0.0437228 0.0043392 0.1133781 0.0223251
M1 MLR 100 5 0.5986667 0.1375278 0.9229975 0.0359734 0.9075970 0.0431681 0.0325719 0.0085964 0.0536799 0.0073109 0.1137741 0.0419142
M1 MLR 100 10 0.7820000 0.0012788 0.9215794 0.0241065 0.9058953 0.0289278 0.0335419 0.0052091 0.0468181 0.0055537 0.0964331 0.0282805
M1 MLR 100 30 0.9200000 0.0000000 0.9179311 0.0147859 0.9015174 0.0177431 0.0339103 0.0029876 0.0421127 0.0034376 0.0843857 0.0145124
M1 MLR 200 5 0.6490000 0.0056497 0.9285557 0.0239519 0.9142668 0.0287422 0.0311465 0.0050364 0.0478174 0.0055974 0.0839134 0.0320091
M1 MLR 200 10 0.8596667 0.0000000 0.9246596 0.0158180 0.9095916 0.0189816 0.0328584 0.0034157 0.0440500 0.0044707 0.0727541 0.0206507
M1 MLR 200 30 0.9460000 0.0000000 0.9189001 0.0085301 0.9026801 0.0102361 0.0336105 0.0021532 0.0412574 0.0027771 0.0645938 0.0101504
M1 ULSMV 30 5 0.3346667 0.9696970 0.9073943 0.1044099 0.8888731 0.1252919 0.0174782 0.0142945 0.1047616 0.0190994 0.1497136 0.1136820
M1 ULSMV 30 10 0.4750000 0.8903725 0.9462343 0.0647959 0.9354812 0.0777551 0.0132841 0.0127143 0.0800463 0.0149260 0.1344491 0.0646932
M1 ULSMV 30 30 0.5623333 0.7848251 0.9800241 0.0316037 0.9760289 0.0379244 0.0080622 0.0128189 0.0633565 0.0124231 0.1135873 0.0274332
M1 ULSMV 50 5 0.4470000 0.8575690 0.9172491 0.0737221 0.9006989 0.0884665 0.0200700 0.0129166 0.0855089 0.0142693 0.1182543 0.0579931
M1 ULSMV 50 10 0.5450000 0.6495413 0.9319071 0.0524389 0.9182885 0.0629266 0.0188332 0.0118942 0.0685087 0.0114979 0.1066408 0.0411526
M1 ULSMV 50 30 0.6556667 0.6578546 0.9716646 0.0332382 0.9659975 0.0398858 0.0107650 0.0136268 0.0577916 0.0087566 0.0875164 0.0195622
M1 ULSMV 100 5 0.5590000 0.5080501 0.9267744 0.0435493 0.9121292 0.0522592 0.0231327 0.0099313 0.0687324 0.0105225 0.0938491 0.0495554
M1 ULSMV 100 10 0.6566667 0.2994924 0.9289709 0.0355471 0.9147651 0.0426566 0.0225724 0.0102018 0.0590466 0.0079209 0.0772215 0.0266596
M1 ULSMV 100 30 0.7253333 0.4154412 0.9560404 0.0344288 0.9472485 0.0413145 0.0145168 0.0136608 0.0535876 0.0058511 0.0634259 0.0130710
M1 ULSMV 200 5 0.6723333 0.1333664 0.9296839 0.0274694 0.9156207 0.0329633 0.0253275 0.0078386 0.0593315 0.0076708 0.0715381 0.0359275
M1 ULSMV 200 10 0.7290000 0.0470965 0.9274715 0.0248166 0.9129658 0.0297799 0.0243513 0.0091773 0.0542042 0.0057894 0.0558310 0.0174003
M1 ULSMV 200 30 0.7666667 0.1873913 0.9371040 0.0287456 0.9245248 0.0344948 0.0181344 0.0122186 0.0514797 0.0041080 0.0465557 0.0088666
M1 WLSMV 30 5 0.2840000 0.8545888 0.9189596 0.0659712 0.9027516 0.0791655 0.0274477 0.0152448 0.0922661 0.0132521 0.1573806 0.0418333
M1 WLSMV 30 10 0.3893333 0.6915167 0.9393435 0.0423451 0.9272123 0.0508142 0.0246788 0.0111527 0.0711664 0.0096520 0.1506691 0.2482949
M1 WLSMV 30 30 0.4546667 0.5476540 0.9672782 0.0310901 0.9607339 0.0373081 0.0147945 0.0128011 0.0574748 0.0067499 0.1237206 0.0222551
M1 WLSMV 50 5 0.3663333 0.6323931 0.9240718 0.0514137 0.9088861 0.0616965 0.0284971 0.0123555 0.0778598 0.0108183 0.1265593 0.0471844
M1 WLSMV 50 10 0.4843333 0.2436339 0.9323828 0.0310196 0.9188594 0.0372236 0.0288184 0.0074252 0.0624854 0.0079416 0.1175497 0.0408589
M1 WLSMV 50 30 0.5536667 0.2829621 0.9532182 0.0248902 0.9438619 0.0298683 0.0209310 0.0100254 0.0537301 0.0053369 0.0954668 0.0157112
M1 WLSMV 100 5 0.4930000 0.2143340 0.9293181 0.0339205 0.9151817 0.0407046 0.0296656 0.0078239 0.0641684 0.0084442 0.1007401 0.0482194
M1 WLSMV 100 10 0.5560000 0.0053957 0.9314496 0.0218091 0.9177396 0.0261709 0.0311011 0.0049609 0.0555240 0.0060314 0.0833994 0.0248467
M1 WLSMV 100 30 0.6110000 0.0000000 0.9405006 0.0149149 0.9286007 0.0178979 0.0268681 0.0065361 0.0509208 0.0036706 0.0685730 0.0108172
M1 WLSMV 200 5 0.5983333 0.0027855 0.9304711 0.0220219 0.9165654 0.0264263 0.0308497 0.0050272 0.0565740 0.0064400 0.0770224 0.0356701
M1 WLSMV 200 10 0.6343333 0.0000000 0.9309639 0.0155415 0.9171567 0.0186498 0.0325573 0.0034691 0.0517302 0.0044779 0.0602821 0.0162349
M1 WLSMV 200 30 0.6380000 0.0000000 0.9352503 0.0109519 0.9223004 0.0131422 0.0307719 0.0043826 0.0494035 0.0025627 0.0502531 0.0078150
M2 MLR 30 5 0.5726667 0.4208382 0.8768868 0.0853363 0.8524864 0.1003233 0.0454019 0.0209482 0.0648371 0.0144530 0.2142905 0.0628831
M2 MLR 30 10 0.6846667 0.5141188 0.9394119 0.0418715 0.9272943 0.0502458 0.0291665 0.0146850 0.0418724 0.0056009 0.1845507 0.0423258
M2 MLR 30 30 0.8406667 0.4976209 0.9768239 0.0166290 0.9721887 0.0199548 0.0170544 0.0087010 0.0227204 0.0029506 0.1653603 0.0271548
M2 MLR 50 5 0.6833333 0.5975610 0.9424306 0.0455495 0.9309167 0.0546594 0.0279804 0.0169842 0.0500009 0.0068203 0.1759554 0.0528066
M2 MLR 50 10 0.7966667 0.5669456 0.9658055 0.0261056 0.9589666 0.0313268 0.0208794 0.0122474 0.0326685 0.0043425 0.1551570 0.0379620
M2 MLR 50 30 0.8966667 0.5613383 0.9868622 0.0113048 0.9842347 0.0135657 0.0119606 0.0075891 0.0176248 0.0022920 0.1348196 0.0212810
M2 MLR 100 5 0.8023333 0.5961778 0.9692922 0.0245319 0.9631507 0.0294383 0.0198589 0.0124892 0.0359699 0.0049588 0.1416916 0.0460302
M2 MLR 100 10 0.9093333 0.5546188 0.9800927 0.0172118 0.9761112 0.0206542 0.0152660 0.0103069 0.0232723 0.0030261 0.1217249 0.0302883
M2 MLR 100 30 0.9463333 0.5265939 0.9907999 0.0090406 0.9889599 0.0108487 0.0097267 0.0067564 0.0125287 0.0016545 0.1073089 0.0220481
M2 MLR 200 5 0.9153333 0.5149308 0.9783773 0.0182503 0.9740528 0.0219003 0.0163294 0.0112542 0.0261184 0.0039480 0.1155436 0.0394663
M2 MLR 200 10 0.9596667 0.4831539 0.9844525 0.0149561 0.9813430 0.0179473 0.0131158 0.0097141 0.0165422 0.0022726 0.0978743 0.0273643
M2 MLR 200 30 0.9700000 0.4402062 0.9921578 0.0084937 0.9905893 0.0101924 0.0088152 0.0064968 0.0088860 0.0011759 0.0886444 0.0262954
M2 ULSMV 30 5 0.3823333 0.9868074 0.9264214 0.0967748 0.9117057 0.1161297 0.0140636 0.0137196 0.0943324 0.0193981 0.1519312 0.0512032
M2 ULSMV 30 10 0.5730000 0.9784508 0.9668766 0.0581189 0.9602519 0.0697426 0.0081142 0.0099281 0.0643076 0.0165428 0.1384124 0.0502489
M2 ULSMV 30 30 0.7556667 0.9823555 0.9919844 0.0238393 0.9903813 0.0286072 0.0027527 0.0051926 0.0407429 0.0159208 0.1198659 0.0286560
M2 ULSMV 50 5 0.5250000 0.9180952 0.9427773 0.0663777 0.9313328 0.0796533 0.0151046 0.0127881 0.0711857 0.0144865 0.1260666 0.0516593
M2 ULSMV 50 10 0.7086667 0.8480715 0.9534984 0.0570345 0.9441981 0.0684414 0.0125772 0.0104281 0.0494179 0.0133196 0.1168586 0.0438318
M2 ULSMV 50 30 0.8646667 0.8430995 0.9749747 0.0531008 0.9699696 0.0637209 0.0053262 0.0075118 0.0329672 0.0135000 0.0961203 0.0203675
M2 ULSMV 100 5 0.7000000 0.7223810 0.9504737 0.0499822 0.9405685 0.0599786 0.0164645 0.0116254 0.0505291 0.0117531 0.1051609 0.0502177
M2 ULSMV 100 10 0.8826667 0.6076284 0.9470276 0.0591298 0.9364332 0.0709558 0.0146684 0.0113022 0.0361078 0.0105281 0.0888733 0.0273949
M2 ULSMV 100 30 0.9370000 0.6627535 0.9535552 0.0756336 0.9442662 0.0907603 0.0081699 0.0091489 0.0255416 0.0117089 0.0756964 0.0161622
M2 ULSMV 200 5 0.8963333 0.5135738 0.9537313 0.0467093 0.9444776 0.0560512 0.0165402 0.0123953 0.0368798 0.0097533 0.0855435 0.0362861
M2 ULSMV 200 10 0.9586667 0.4680111 0.9443404 0.0603178 0.9332085 0.0723814 0.0152573 0.0120317 0.0277382 0.0096519 0.0701240 0.0205928
M2 ULSMV 200 30 0.9706667 0.5065247 0.9369822 0.0862658 0.9243786 0.1035189 0.0102084 0.0095388 0.0208021 0.0107966 0.0619948 0.0168042
M2 WLSMV 30 5 0.3596667 0.9681051 0.9591080 0.0471423 0.9509296 0.0565707 0.0172070 0.0143739 0.0795665 0.0110994 0.1652995 0.0447009
M2 WLSMV 30 10 0.5296667 0.9836272 0.9857805 0.0205927 0.9829366 0.0247113 0.0089647 0.0096746 0.0519500 0.0071831 0.1501391 0.0438445
M2 WLSMV 30 30 0.7013333 0.9947719 0.9979767 0.0048825 0.9975720 0.0058590 0.0022790 0.0045687 0.0290990 0.0041329 0.1316784 0.0223058
M2 WLSMV 50 5 0.4976667 0.9296718 0.9689022 0.0329686 0.9626827 0.0395623 0.0158590 0.0123343 0.0615267 0.0085039 0.1346153 0.0486574
M2 WLSMV 50 10 0.6733333 0.9242574 0.9836566 0.0175404 0.9803879 0.0210485 0.0116228 0.0088297 0.0401239 0.0054389 0.1253863 0.0378966
M2 WLSMV 50 30 0.8186667 0.9429967 0.9964640 0.0065366 0.9957568 0.0078439 0.0037314 0.0051852 0.0222908 0.0030045 0.1055758 0.0168203
M2 WLSMV 100 5 0.6813333 0.7832681 0.9755103 0.0233066 0.9706123 0.0279680 0.0151498 0.0103333 0.0434504 0.0060392 0.1114324 0.0470169
M2 WLSMV 100 10 0.8400000 0.6801587 0.9834910 0.0176504 0.9801892 0.0211805 0.0123715 0.0085628 0.0286676 0.0037662 0.0949750 0.0249364
M2 WLSMV 100 30 0.9143333 0.7141816 0.9931811 0.0102629 0.9918173 0.0123155 0.0062363 0.0062334 0.0158115 0.0021682 0.0839499 0.0173962
M2 WLSMV 200 5 0.8676667 0.5532078 0.9771855 0.0227883 0.9726226 0.0273460 0.0148311 0.0102331 0.0312747 0.0046371 0.0896961 0.0343056
M2 WLSMV 200 10 0.9460000 0.4834390 0.9818385 0.0203680 0.9782062 0.0244416 0.0130322 0.0090693 0.0207342 0.0030618 0.0755724 0.0207490
M2 WLSMV 200 30 0.9696667 0.5084221 0.9909249 0.0123258 0.9891099 0.0147909 0.0080355 0.0064509 0.0113358 0.0015741 0.0697180 0.0210749
M12 MLR 30 5 0.5473333 0.2186358 0.8122564 0.1050549 0.7781211 0.1212436 0.0574015 0.0199415 0.0757239 0.0174724 0.2109369 0.0617553
M12 MLR 30 10 0.6766667 0.1108374 0.8698080 0.0551897 0.8458252 0.0653562 0.0451135 0.0126302 0.0574990 0.0079218 0.1825757 0.0435619
M12 MLR 30 30 0.8390000 0.0007946 0.9010196 0.0248010 0.8827864 0.0293697 0.0380411 0.0058893 0.0454899 0.0050897 0.1620194 0.0301549
M12 MLR 50 5 0.6670000 0.2353823 0.8780417 0.0621108 0.8555757 0.0735523 0.0433740 0.0152759 0.0632914 0.0087184 0.1715667 0.0518652
M12 MLR 50 10 0.7976667 0.0384455 0.8969962 0.0361292 0.8780218 0.0427846 0.0394144 0.0091658 0.0510261 0.0066060 0.1512124 0.0383161
M12 MLR 50 30 0.8956667 0.0000000 0.9113025 0.0177182 0.8949635 0.0209821 0.0353560 0.0044104 0.0431673 0.0041295 0.1296369 0.0221478
M12 MLR 100 5 0.8113333 0.0661463 0.9023798 0.0360181 0.8843972 0.0426530 0.0385858 0.0100967 0.0530380 0.0067296 0.1351073 0.0444233
M12 MLR 100 10 0.9163333 0.0007275 0.9096490 0.0227230 0.8930054 0.0269089 0.0363592 0.0065496 0.0458809 0.0051455 0.1159149 0.0294768
M12 MLR 100 30 0.9473333 0.0000000 0.9138584 0.0121888 0.8979902 0.0144341 0.0345671 0.0033846 0.0415303 0.0031746 0.1005420 0.0205126
M12 MLR 200 5 0.9263333 0.0021591 0.9104595 0.0226503 0.8939652 0.0268227 0.0366745 0.0076823 0.0467959 0.0053940 0.1081184 0.0371831
M12 MLR 200 10 0.9606667 0.0000000 0.9129963 0.0152327 0.8969693 0.0180388 0.0354119 0.0053128 0.0428842 0.0038452 0.0909054 0.0247797
M12 MLR 200 30 0.9716667 0.0000000 0.9147422 0.0085218 0.8990368 0.0100916 0.0342528 0.0028611 0.0406357 0.0024238 0.0808753 0.0234726
M12 ULSMV 30 5 0.3496667 0.9615014 0.8929173 0.1117543 0.8731916 0.1323406 0.0193149 0.0142984 0.1055940 0.0195633 0.1524434 0.0504126
M12 ULSMV 30 10 0.4960000 0.8633917 0.9349710 0.0729470 0.9229920 0.0863846 0.0150679 0.0129723 0.0797289 0.0153221 0.1413475 0.0526934
M12 ULSMV 30 30 0.6163333 0.7620335 0.9764866 0.0358736 0.9721552 0.0424819 0.0087562 0.0129682 0.0627361 0.0120926 0.1209981 0.0280917
M12 ULSMV 50 5 0.4676667 0.8068425 0.9056477 0.0780119 0.8882670 0.0923826 0.0220752 0.0129666 0.0849297 0.0143446 0.1270214 0.0549684
M12 ULSMV 50 10 0.5966667 0.5592179 0.9190078 0.0578230 0.9040882 0.0684746 0.0212568 0.0115508 0.0674124 0.0113188 0.1172690 0.0447423
M12 ULSMV 50 30 0.6913333 0.6142719 0.9644024 0.0393945 0.9578449 0.0466514 0.0122135 0.0136551 0.0570140 0.0083236 0.0942241 0.0197557
M12 ULSMV 100 5 0.5976667 0.3898494 0.9124454 0.0492565 0.8963169 0.0583301 0.0256472 0.0094146 0.0678399 0.0100662 0.1033590 0.0516531
M12 ULSMV 100 10 0.7076667 0.2190297 0.9156575 0.0441456 0.9001207 0.0522777 0.0245811 0.0097402 0.0580464 0.0073321 0.0852262 0.0272494
M12 ULSMV 100 30 0.7576667 0.3752750 0.9471744 0.0416849 0.9374434 0.0493636 0.0156615 0.0134813 0.0526453 0.0051173 0.0701375 0.0127914
M12 ULSMV 200 5 0.7306667 0.0903285 0.9168927 0.0353834 0.9015835 0.0419013 0.0273698 0.0077926 0.0581552 0.0072850 0.0809653 0.0372992
M12 ULSMV 200 10 0.7710000 0.0272374 0.9146034 0.0370768 0.8988724 0.0439067 0.0259418 0.0089017 0.0530784 0.0050690 0.0635525 0.0177569
M12 ULSMV 200 30 0.7956667 0.1051529 0.9249346 0.0379465 0.9111067 0.0449366 0.0190353 0.0116796 0.0502841 0.0031674 0.0537948 0.0098609
M12 WLSMV 30 5 0.3183333 0.8483563 0.9139667 0.0655161 0.8981185 0.0775849 0.0287698 0.0144873 0.0926543 0.0133104 0.1670900 0.0481952
M12 WLSMV 30 10 0.4580000 0.6924198 0.9377671 0.0430470 0.9263032 0.0509767 0.0249148 0.0110225 0.0707198 0.0095559 0.1509541 0.0467082
M12 WLSMV 30 30 0.5976667 0.5237033 0.9650444 0.0315736 0.9586052 0.0373898 0.0153373 0.0124542 0.0572708 0.0067354 0.1298915 0.0231663
M12 WLSMV 50 5 0.4196667 0.6084194 0.9200406 0.0514383 0.9053112 0.0609138 0.0295396 0.0118873 0.0778411 0.0110315 0.1343776 0.0497305
M12 WLSMV 50 10 0.5816667 0.2126074 0.9287980 0.0326966 0.9156819 0.0387197 0.0294168 0.0073772 0.0621519 0.0080141 0.1230980 0.0398964
M12 WLSMV 50 30 0.6866667 0.2509709 0.9500310 0.0265563 0.9408262 0.0314482 0.0214510 0.0097060 0.0535905 0.0052167 0.1005716 0.0167004
M12 WLSMV 100 5 0.5726667 0.1647264 0.9233434 0.0345696 0.9092224 0.0409377 0.0309663 0.0074938 0.0641541 0.0083080 0.1076600 0.0483367
M12 WLSMV 100 10 0.6970000 0.0043042 0.9268466 0.0249744 0.9133710 0.0295750 0.0317602 0.0051385 0.0554555 0.0060234 0.0892887 0.0255312
M12 WLSMV 100 30 0.7586667 0.0000000 0.9369300 0.0189741 0.9253118 0.0224693 0.0272624 0.0062509 0.0508182 0.0036739 0.0739779 0.0121518
M12 WLSMV 200 5 0.7156667 0.0023288 0.9254905 0.0245777 0.9117651 0.0291052 0.0317410 0.0053603 0.0563204 0.0065315 0.0839725 0.0361022
M12 WLSMV 200 10 0.7650000 0.0000000 0.9265558 0.0194881 0.9130267 0.0230780 0.0330855 0.0037924 0.0516664 0.0044090 0.0660142 0.0173355
M12 WLSMV 200 30 0.7790000 0.0000000 0.9318765 0.0147567 0.9193274 0.0174750 0.0309352 0.0041469 0.0493448 0.0025864 0.0557039 0.0103781
## make a copy of a to print into
a1 <- as_tibble(as.data.frame(matrix(NA, ncol=11,nrow=nrow(a))))
colnames(a1) <- c('Model', 'Estimation', "N2", "N1", "Prop.Use", "chi2", "CFI",'TLI', 'RMSEA', 'SRMRW', 'SRMRB')
i <- 1
for(i in 1:nrow(a)){
  a1[i,5:11] <- unlist(c(
  round(a[i,5],3), round(a[i,6],3),
  paste0(round(a[i,7],3), ' (', round(a[i,8],2), ')'),
  paste0(round(a[i,9],3), ' (', round(a[i,10],2), ')'),
  paste0(round(a[i,11],3), ' (', round(a[i,12],2), ')'),
  paste0(round(a[i,13],3), ' (', round(a[i,14],2), ')'),
  paste0(round(a[i,15],3), ' (', round(a[i,16],2), ')')
  ))
}
a1[,1:4] <- a[,1:4]## add factors back
## Print out in tex
print(xtable(a1, digits = 3), booktabs = T, include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllllll}
  \toprule
Model & Estimation & N2 & N1 & Prop.Use & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
C & MLR & 30 & 5 & 0.575 & 0.505 & 0.893 (0.08) & 0.872 (0.1) & 0.041 (0.02) & 0.064 (0.01) & 0.203 (0.06) \\ 
  C & MLR & 30 & 10 & 0.685 & 0.618 & 0.952 (0.04) & 0.942 (0.05) & 0.025 (0.01) & 0.042 (0.01) & 0.171 (0.05) \\ 
  C & MLR & 30 & 30 & 0.838 & 0.674 & 0.985 (0.01) & 0.982 (0.02) & 0.013 (0.01) & 0.023 (0) & 0.145 (0.04) \\ 
  C & MLR & 50 & 5 & 0.677 & 0.734 & 0.957 (0.04) & 0.949 (0.05) & 0.022 (0.02) & 0.049 (0.01) & 0.16 (0.05) \\ 
  C & MLR & 50 & 10 & 0.796 & 0.781 & 0.979 (0.02) & 0.975 (0.02) & 0.014 (0.01) & 0.032 (0) & 0.135 (0.04) \\ 
  C & MLR & 50 & 30 & 0.902 & 0.847 & 0.994 (0.01) & 0.993 (0.01) & 0.007 (0.01) & 0.018 (0) & 0.111 (0.03) \\ 
  C & MLR & 100 & 5 & 0.806 & 0.863 & 0.985 (0.02) & 0.982 (0.02) & 0.012 (0.01) & 0.035 (0) & 0.119 (0.05) \\ 
  C & MLR & 100 & 10 & 0.92 & 0.909 & 0.993 (0.01) & 0.992 (0.01) & 0.007 (0.01) & 0.023 (0) & 0.096 (0.03) \\ 
  C & MLR & 100 & 30 & 0.946 & 0.914 & 0.998 (0) & 0.997 (0) & 0.004 (0) & 0.012 (0) & 0.078 (0.02) \\ 
  C & MLR & 200 & 5 & 0.923 & 0.917 & 0.994 (0.01) & 0.993 (0.01) & 0.007 (0.01) & 0.025 (0) & 0.088 (0.04) \\ 
  C & MLR & 200 & 10 & 0.963 & 0.922 & 0.997 (0) & 0.997 (0) & 0.004 (0) & 0.016 (0) & 0.068 (0.02) \\ 
  C & MLR & 200 & 30 & 0.975 & 0.937 & 0.999 (0) & 0.999 (0) & 0.002 (0) & 0.009 (0) & 0.055 (0.01) \\ 
  C & ULSMV & 30 & 5 & 0.401 & 0.989 & 0.945 (0.09) & 0.935 (0.1) & 0.011 (0.01) & 0.094 (0.02) & 0.144 (0.05) \\ 
  C & ULSMV & 30 & 10 & 0.573 & 0.994 & 0.983 (0.04) & 0.98 (0.05) & 0.005 (0.01) & 0.063 (0.02) & 0.131 (0.05) \\ 
  C & ULSMV & 30 & 30 & 0.762 & 0.999 & 0.999 (0) & 0.999 (0) & 0.001 (0) & 0.039 (0.01) & 0.109 (0.03) \\ 
  C & ULSMV & 50 & 5 & 0.532 & 0.977 & 0.965 (0.05) & 0.958 (0.06) & 0.01 (0.01) & 0.07 (0.01) & 0.119 (0.06) \\ 
  C & ULSMV & 50 & 10 & 0.707 & 0.984 & 0.983 (0.03) & 0.98 (0.04) & 0.006 (0.01) & 0.047 (0.01) & 0.105 (0.04) \\ 
  C & ULSMV & 50 & 30 & 0.88 & 0.995 & 0.999 (0) & 0.998 (0.01) & 0.001 (0) & 0.029 (0.01) & 0.081 (0.02) \\ 
  C & ULSMV & 100 & 5 & 0.692 & 0.97 & 0.984 (0.02) & 0.98 (0.03) & 0.008 (0.01) & 0.048 (0.01) & 0.094 (0.05) \\ 
  C & ULSMV & 100 & 10 & 0.873 & 0.965 & 0.991 (0.02) & 0.989 (0.02) & 0.005 (0.01) & 0.032 (0.01) & 0.073 (0.03) \\ 
  C & ULSMV & 100 & 30 & 0.945 & 0.988 & 0.999 (0) & 0.998 (0.01) & 0.001 (0) & 0.02 (0.01) & 0.057 (0.02) \\ 
  C & ULSMV & 200 & 5 & 0.875 & 0.951 & 0.993 (0.01) & 0.991 (0.01) & 0.005 (0.01) & 0.033 (0.01) & 0.07 (0.04) \\ 
  C & ULSMV & 200 & 10 & 0.958 & 0.947 & 0.995 (0.01) & 0.994 (0.01) & 0.004 (0) & 0.023 (0.01) & 0.051 (0.02) \\ 
  C & ULSMV & 200 & 30 & 0.974 & 0.979 & 0.998 (0) & 0.998 (0) & 0.001 (0) & 0.014 (0) & 0.04 (0.01) \\ 
  C & WLSMV & 30 & 5 & 0.355 & 0.98 & 0.967 (0.04) & 0.96 (0.05) & 0.015 (0.01) & 0.079 (0.01) & 0.158 (0.05) \\ 
  C & WLSMV & 30 & 10 & 0.508 & 0.99 & 0.99 (0.02) & 0.988 (0.02) & 0.007 (0.01) & 0.052 (0.01) & 0.143 (0.08) \\ 
  C & WLSMV & 30 & 30 & 0.688 & 0.998 & 0.999 (0) & 0.998 (0) & 0.002 (0) & 0.029 (0) & 0.12 (0.03) \\ 
  C & WLSMV & 50 & 5 & 0.47 & 0.97 & 0.979 (0.03) & 0.974 (0.03) & 0.012 (0.01) & 0.061 (0.01) & 0.125 (0.05) \\ 
  C & WLSMV & 50 & 10 & 0.66 & 0.98 & 0.991 (0.01) & 0.989 (0.01) & 0.007 (0.01) & 0.04 (0.01) & 0.115 (0.04) \\ 
  C & WLSMV & 50 & 30 & 0.82 & 0.996 & 0.999 (0) & 0.999 (0) & 0.002 (0) & 0.022 (0) & 0.09 (0.02) \\ 
  C & WLSMV & 100 & 5 & 0.665 & 0.964 & 0.989 (0.01) & 0.987 (0.02) & 0.008 (0.01) & 0.043 (0.01) & 0.1 (0.05) \\ 
  C & WLSMV & 100 & 10 & 0.824 & 0.966 & 0.996 (0.01) & 0.995 (0.01) & 0.006 (0.01) & 0.028 (0) & 0.078 (0.03) \\ 
  C & WLSMV & 100 & 30 & 0.911 & 0.986 & 0.999 (0) & 0.999 (0) & 0.002 (0) & 0.015 (0) & 0.062 (0.01) \\ 
  C & WLSMV & 200 & 5 & 0.849 & 0.948 & 0.995 (0.01) & 0.994 (0.01) & 0.006 (0.01) & 0.03 (0) & 0.073 (0.04) \\ 
  C & WLSMV & 200 & 10 & 0.936 & 0.952 & 0.998 (0) & 0.997 (0) & 0.004 (0) & 0.02 (0) & 0.054 (0.02) \\ 
  C & WLSMV & 200 & 30 & 0.973 & 0.978 & 1 (0) & 0.999 (0) & 0.001 (0) & 0.011 (0) & 0.043 (0.01) \\ 
  M1 & MLR & 30 & 5 & 0.46 & 0.272 & 0.828 (0.1) & 0.794 (0.12) & 0.054 (0.02) & 0.076 (0.02) & 0.198 (0.06) \\ 
  M1 & MLR & 30 & 10 & 0.583 & 0.14 & 0.88 (0.06) & 0.856 (0.07) & 0.043 (0.01) & 0.058 (0.01) & 0.168 (0.04) \\ 
  M1 & MLR & 30 & 30 & 0.748 & 0.001 & 0.906 (0.03) & 0.887 (0.03) & 0.037 (0.01) & 0.046 (0.01) & 0.145 (0.03) \\ 
  M1 & MLR & 50 & 5 & 0.558 & 0.329 & 0.898 (0.06) & 0.878 (0.07) & 0.038 (0.01) & 0.064 (0.01) & 0.157 (0.05) \\ 
  M1 & MLR & 50 & 10 & 0.669 & 0.056 & 0.909 (0.04) & 0.891 (0.04) & 0.036 (0.01) & 0.052 (0.01) & 0.132 (0.04) \\ 
  M1 & MLR & 50 & 30 & 0.842 & 0 & 0.915 (0.02) & 0.898 (0.03) & 0.035 (0) & 0.044 (0) & 0.113 (0.02) \\ 
  M1 & MLR & 100 & 5 & 0.599 & 0.138 & 0.923 (0.04) & 0.908 (0.04) & 0.033 (0.01) & 0.054 (0.01) & 0.114 (0.04) \\ 
  M1 & MLR & 100 & 10 & 0.782 & 0.001 & 0.922 (0.02) & 0.906 (0.03) & 0.034 (0.01) & 0.047 (0.01) & 0.096 (0.03) \\ 
  M1 & MLR & 100 & 30 & 0.92 & 0 & 0.918 (0.01) & 0.902 (0.02) & 0.034 (0) & 0.042 (0) & 0.084 (0.01) \\ 
  M1 & MLR & 200 & 5 & 0.649 & 0.006 & 0.929 (0.02) & 0.914 (0.03) & 0.031 (0.01) & 0.048 (0.01) & 0.084 (0.03) \\ 
  M1 & MLR & 200 & 10 & 0.86 & 0 & 0.925 (0.02) & 0.91 (0.02) & 0.033 (0) & 0.044 (0) & 0.073 (0.02) \\ 
  M1 & MLR & 200 & 30 & 0.946 & 0 & 0.919 (0.01) & 0.903 (0.01) & 0.034 (0) & 0.041 (0) & 0.065 (0.01) \\ 
  M1 & ULSMV & 30 & 5 & 0.335 & 0.97 & 0.907 (0.1) & 0.889 (0.13) & 0.017 (0.01) & 0.105 (0.02) & 0.15 (0.11) \\ 
  M1 & ULSMV & 30 & 10 & 0.475 & 0.89 & 0.946 (0.06) & 0.935 (0.08) & 0.013 (0.01) & 0.08 (0.01) & 0.134 (0.06) \\ 
  M1 & ULSMV & 30 & 30 & 0.562 & 0.785 & 0.98 (0.03) & 0.976 (0.04) & 0.008 (0.01) & 0.063 (0.01) & 0.114 (0.03) \\ 
  M1 & ULSMV & 50 & 5 & 0.447 & 0.858 & 0.917 (0.07) & 0.901 (0.09) & 0.02 (0.01) & 0.086 (0.01) & 0.118 (0.06) \\ 
  M1 & ULSMV & 50 & 10 & 0.545 & 0.65 & 0.932 (0.05) & 0.918 (0.06) & 0.019 (0.01) & 0.069 (0.01) & 0.107 (0.04) \\ 
  M1 & ULSMV & 50 & 30 & 0.656 & 0.658 & 0.972 (0.03) & 0.966 (0.04) & 0.011 (0.01) & 0.058 (0.01) & 0.088 (0.02) \\ 
  M1 & ULSMV & 100 & 5 & 0.559 & 0.508 & 0.927 (0.04) & 0.912 (0.05) & 0.023 (0.01) & 0.069 (0.01) & 0.094 (0.05) \\ 
  M1 & ULSMV & 100 & 10 & 0.657 & 0.299 & 0.929 (0.04) & 0.915 (0.04) & 0.023 (0.01) & 0.059 (0.01) & 0.077 (0.03) \\ 
  M1 & ULSMV & 100 & 30 & 0.725 & 0.415 & 0.956 (0.03) & 0.947 (0.04) & 0.015 (0.01) & 0.054 (0.01) & 0.063 (0.01) \\ 
  M1 & ULSMV & 200 & 5 & 0.672 & 0.133 & 0.93 (0.03) & 0.916 (0.03) & 0.025 (0.01) & 0.059 (0.01) & 0.072 (0.04) \\ 
  M1 & ULSMV & 200 & 10 & 0.729 & 0.047 & 0.927 (0.02) & 0.913 (0.03) & 0.024 (0.01) & 0.054 (0.01) & 0.056 (0.02) \\ 
  M1 & ULSMV & 200 & 30 & 0.767 & 0.187 & 0.937 (0.03) & 0.925 (0.03) & 0.018 (0.01) & 0.051 (0) & 0.047 (0.01) \\ 
  M1 & WLSMV & 30 & 5 & 0.284 & 0.855 & 0.919 (0.07) & 0.903 (0.08) & 0.027 (0.02) & 0.092 (0.01) & 0.157 (0.04) \\ 
  M1 & WLSMV & 30 & 10 & 0.389 & 0.692 & 0.939 (0.04) & 0.927 (0.05) & 0.025 (0.01) & 0.071 (0.01) & 0.151 (0.25) \\ 
  M1 & WLSMV & 30 & 30 & 0.455 & 0.548 & 0.967 (0.03) & 0.961 (0.04) & 0.015 (0.01) & 0.057 (0.01) & 0.124 (0.02) \\ 
  M1 & WLSMV & 50 & 5 & 0.366 & 0.632 & 0.924 (0.05) & 0.909 (0.06) & 0.028 (0.01) & 0.078 (0.01) & 0.127 (0.05) \\ 
  M1 & WLSMV & 50 & 10 & 0.484 & 0.244 & 0.932 (0.03) & 0.919 (0.04) & 0.029 (0.01) & 0.062 (0.01) & 0.118 (0.04) \\ 
  M1 & WLSMV & 50 & 30 & 0.554 & 0.283 & 0.953 (0.02) & 0.944 (0.03) & 0.021 (0.01) & 0.054 (0.01) & 0.095 (0.02) \\ 
  M1 & WLSMV & 100 & 5 & 0.493 & 0.214 & 0.929 (0.03) & 0.915 (0.04) & 0.03 (0.01) & 0.064 (0.01) & 0.101 (0.05) \\ 
  M1 & WLSMV & 100 & 10 & 0.556 & 0.005 & 0.931 (0.02) & 0.918 (0.03) & 0.031 (0) & 0.056 (0.01) & 0.083 (0.02) \\ 
  M1 & WLSMV & 100 & 30 & 0.611 & 0 & 0.941 (0.01) & 0.929 (0.02) & 0.027 (0.01) & 0.051 (0) & 0.069 (0.01) \\ 
  M1 & WLSMV & 200 & 5 & 0.598 & 0.003 & 0.93 (0.02) & 0.917 (0.03) & 0.031 (0.01) & 0.057 (0.01) & 0.077 (0.04) \\ 
  M1 & WLSMV & 200 & 10 & 0.634 & 0 & 0.931 (0.02) & 0.917 (0.02) & 0.033 (0) & 0.052 (0) & 0.06 (0.02) \\ 
  M1 & WLSMV & 200 & 30 & 0.638 & 0 & 0.935 (0.01) & 0.922 (0.01) & 0.031 (0) & 0.049 (0) & 0.05 (0.01) \\ 
  M2 & MLR & 30 & 5 & 0.573 & 0.421 & 0.877 (0.09) & 0.852 (0.1) & 0.045 (0.02) & 0.065 (0.01) & 0.214 (0.06) \\ 
  M2 & MLR & 30 & 10 & 0.685 & 0.514 & 0.939 (0.04) & 0.927 (0.05) & 0.029 (0.01) & 0.042 (0.01) & 0.185 (0.04) \\ 
  M2 & MLR & 30 & 30 & 0.841 & 0.498 & 0.977 (0.02) & 0.972 (0.02) & 0.017 (0.01) & 0.023 (0) & 0.165 (0.03) \\ 
  M2 & MLR & 50 & 5 & 0.683 & 0.598 & 0.942 (0.05) & 0.931 (0.05) & 0.028 (0.02) & 0.05 (0.01) & 0.176 (0.05) \\ 
  M2 & MLR & 50 & 10 & 0.797 & 0.567 & 0.966 (0.03) & 0.959 (0.03) & 0.021 (0.01) & 0.033 (0) & 0.155 (0.04) \\ 
  M2 & MLR & 50 & 30 & 0.897 & 0.561 & 0.987 (0.01) & 0.984 (0.01) & 0.012 (0.01) & 0.018 (0) & 0.135 (0.02) \\ 
  M2 & MLR & 100 & 5 & 0.802 & 0.596 & 0.969 (0.02) & 0.963 (0.03) & 0.02 (0.01) & 0.036 (0) & 0.142 (0.05) \\ 
  M2 & MLR & 100 & 10 & 0.909 & 0.555 & 0.98 (0.02) & 0.976 (0.02) & 0.015 (0.01) & 0.023 (0) & 0.122 (0.03) \\ 
  M2 & MLR & 100 & 30 & 0.946 & 0.527 & 0.991 (0.01) & 0.989 (0.01) & 0.01 (0.01) & 0.013 (0) & 0.107 (0.02) \\ 
  M2 & MLR & 200 & 5 & 0.915 & 0.515 & 0.978 (0.02) & 0.974 (0.02) & 0.016 (0.01) & 0.026 (0) & 0.116 (0.04) \\ 
  M2 & MLR & 200 & 10 & 0.96 & 0.483 & 0.984 (0.01) & 0.981 (0.02) & 0.013 (0.01) & 0.017 (0) & 0.098 (0.03) \\ 
  M2 & MLR & 200 & 30 & 0.97 & 0.44 & 0.992 (0.01) & 0.991 (0.01) & 0.009 (0.01) & 0.009 (0) & 0.089 (0.03) \\ 
  M2 & ULSMV & 30 & 5 & 0.382 & 0.987 & 0.926 (0.1) & 0.912 (0.12) & 0.014 (0.01) & 0.094 (0.02) & 0.152 (0.05) \\ 
  M2 & ULSMV & 30 & 10 & 0.573 & 0.978 & 0.967 (0.06) & 0.96 (0.07) & 0.008 (0.01) & 0.064 (0.02) & 0.138 (0.05) \\ 
  M2 & ULSMV & 30 & 30 & 0.756 & 0.982 & 0.992 (0.02) & 0.99 (0.03) & 0.003 (0.01) & 0.041 (0.02) & 0.12 (0.03) \\ 
  M2 & ULSMV & 50 & 5 & 0.525 & 0.918 & 0.943 (0.07) & 0.931 (0.08) & 0.015 (0.01) & 0.071 (0.01) & 0.126 (0.05) \\ 
  M2 & ULSMV & 50 & 10 & 0.709 & 0.848 & 0.953 (0.06) & 0.944 (0.07) & 0.013 (0.01) & 0.049 (0.01) & 0.117 (0.04) \\ 
  M2 & ULSMV & 50 & 30 & 0.865 & 0.843 & 0.975 (0.05) & 0.97 (0.06) & 0.005 (0.01) & 0.033 (0.01) & 0.096 (0.02) \\ 
  M2 & ULSMV & 100 & 5 & 0.7 & 0.722 & 0.95 (0.05) & 0.941 (0.06) & 0.016 (0.01) & 0.051 (0.01) & 0.105 (0.05) \\ 
  M2 & ULSMV & 100 & 10 & 0.883 & 0.608 & 0.947 (0.06) & 0.936 (0.07) & 0.015 (0.01) & 0.036 (0.01) & 0.089 (0.03) \\ 
  M2 & ULSMV & 100 & 30 & 0.937 & 0.663 & 0.954 (0.08) & 0.944 (0.09) & 0.008 (0.01) & 0.026 (0.01) & 0.076 (0.02) \\ 
  M2 & ULSMV & 200 & 5 & 0.896 & 0.514 & 0.954 (0.05) & 0.944 (0.06) & 0.017 (0.01) & 0.037 (0.01) & 0.086 (0.04) \\ 
  M2 & ULSMV & 200 & 10 & 0.959 & 0.468 & 0.944 (0.06) & 0.933 (0.07) & 0.015 (0.01) & 0.028 (0.01) & 0.07 (0.02) \\ 
  M2 & ULSMV & 200 & 30 & 0.971 & 0.507 & 0.937 (0.09) & 0.924 (0.1) & 0.01 (0.01) & 0.021 (0.01) & 0.062 (0.02) \\ 
  M2 & WLSMV & 30 & 5 & 0.36 & 0.968 & 0.959 (0.05) & 0.951 (0.06) & 0.017 (0.01) & 0.08 (0.01) & 0.165 (0.04) \\ 
  M2 & WLSMV & 30 & 10 & 0.53 & 0.984 & 0.986 (0.02) & 0.983 (0.02) & 0.009 (0.01) & 0.052 (0.01) & 0.15 (0.04) \\ 
  M2 & WLSMV & 30 & 30 & 0.701 & 0.995 & 0.998 (0) & 0.998 (0.01) & 0.002 (0) & 0.029 (0) & 0.132 (0.02) \\ 
  M2 & WLSMV & 50 & 5 & 0.498 & 0.93 & 0.969 (0.03) & 0.963 (0.04) & 0.016 (0.01) & 0.062 (0.01) & 0.135 (0.05) \\ 
  M2 & WLSMV & 50 & 10 & 0.673 & 0.924 & 0.984 (0.02) & 0.98 (0.02) & 0.012 (0.01) & 0.04 (0.01) & 0.125 (0.04) \\ 
  M2 & WLSMV & 50 & 30 & 0.819 & 0.943 & 0.996 (0.01) & 0.996 (0.01) & 0.004 (0.01) & 0.022 (0) & 0.106 (0.02) \\ 
  M2 & WLSMV & 100 & 5 & 0.681 & 0.783 & 0.976 (0.02) & 0.971 (0.03) & 0.015 (0.01) & 0.043 (0.01) & 0.111 (0.05) \\ 
  M2 & WLSMV & 100 & 10 & 0.84 & 0.68 & 0.983 (0.02) & 0.98 (0.02) & 0.012 (0.01) & 0.029 (0) & 0.095 (0.02) \\ 
  M2 & WLSMV & 100 & 30 & 0.914 & 0.714 & 0.993 (0.01) & 0.992 (0.01) & 0.006 (0.01) & 0.016 (0) & 0.084 (0.02) \\ 
  M2 & WLSMV & 200 & 5 & 0.868 & 0.553 & 0.977 (0.02) & 0.973 (0.03) & 0.015 (0.01) & 0.031 (0) & 0.09 (0.03) \\ 
  M2 & WLSMV & 200 & 10 & 0.946 & 0.483 & 0.982 (0.02) & 0.978 (0.02) & 0.013 (0.01) & 0.021 (0) & 0.076 (0.02) \\ 
  M2 & WLSMV & 200 & 30 & 0.97 & 0.508 & 0.991 (0.01) & 0.989 (0.01) & 0.008 (0.01) & 0.011 (0) & 0.07 (0.02) \\ 
  M12 & MLR & 30 & 5 & 0.547 & 0.219 & 0.812 (0.11) & 0.778 (0.12) & 0.057 (0.02) & 0.076 (0.02) & 0.211 (0.06) \\ 
  M12 & MLR & 30 & 10 & 0.677 & 0.111 & 0.87 (0.06) & 0.846 (0.07) & 0.045 (0.01) & 0.057 (0.01) & 0.183 (0.04) \\ 
  M12 & MLR & 30 & 30 & 0.839 & 0.001 & 0.901 (0.02) & 0.883 (0.03) & 0.038 (0.01) & 0.045 (0.01) & 0.162 (0.03) \\ 
  M12 & MLR & 50 & 5 & 0.667 & 0.235 & 0.878 (0.06) & 0.856 (0.07) & 0.043 (0.02) & 0.063 (0.01) & 0.172 (0.05) \\ 
  M12 & MLR & 50 & 10 & 0.798 & 0.038 & 0.897 (0.04) & 0.878 (0.04) & 0.039 (0.01) & 0.051 (0.01) & 0.151 (0.04) \\ 
  M12 & MLR & 50 & 30 & 0.896 & 0 & 0.911 (0.02) & 0.895 (0.02) & 0.035 (0) & 0.043 (0) & 0.13 (0.02) \\ 
  M12 & MLR & 100 & 5 & 0.811 & 0.066 & 0.902 (0.04) & 0.884 (0.04) & 0.039 (0.01) & 0.053 (0.01) & 0.135 (0.04) \\ 
  M12 & MLR & 100 & 10 & 0.916 & 0.001 & 0.91 (0.02) & 0.893 (0.03) & 0.036 (0.01) & 0.046 (0.01) & 0.116 (0.03) \\ 
  M12 & MLR & 100 & 30 & 0.947 & 0 & 0.914 (0.01) & 0.898 (0.01) & 0.035 (0) & 0.042 (0) & 0.101 (0.02) \\ 
  M12 & MLR & 200 & 5 & 0.926 & 0.002 & 0.91 (0.02) & 0.894 (0.03) & 0.037 (0.01) & 0.047 (0.01) & 0.108 (0.04) \\ 
  M12 & MLR & 200 & 10 & 0.961 & 0 & 0.913 (0.02) & 0.897 (0.02) & 0.035 (0.01) & 0.043 (0) & 0.091 (0.02) \\ 
  M12 & MLR & 200 & 30 & 0.972 & 0 & 0.915 (0.01) & 0.899 (0.01) & 0.034 (0) & 0.041 (0) & 0.081 (0.02) \\ 
  M12 & ULSMV & 30 & 5 & 0.35 & 0.962 & 0.893 (0.11) & 0.873 (0.13) & 0.019 (0.01) & 0.106 (0.02) & 0.152 (0.05) \\ 
  M12 & ULSMV & 30 & 10 & 0.496 & 0.863 & 0.935 (0.07) & 0.923 (0.09) & 0.015 (0.01) & 0.08 (0.02) & 0.141 (0.05) \\ 
  M12 & ULSMV & 30 & 30 & 0.616 & 0.762 & 0.976 (0.04) & 0.972 (0.04) & 0.009 (0.01) & 0.063 (0.01) & 0.121 (0.03) \\ 
  M12 & ULSMV & 50 & 5 & 0.468 & 0.807 & 0.906 (0.08) & 0.888 (0.09) & 0.022 (0.01) & 0.085 (0.01) & 0.127 (0.05) \\ 
  M12 & ULSMV & 50 & 10 & 0.597 & 0.559 & 0.919 (0.06) & 0.904 (0.07) & 0.021 (0.01) & 0.067 (0.01) & 0.117 (0.04) \\ 
  M12 & ULSMV & 50 & 30 & 0.691 & 0.614 & 0.964 (0.04) & 0.958 (0.05) & 0.012 (0.01) & 0.057 (0.01) & 0.094 (0.02) \\ 
  M12 & ULSMV & 100 & 5 & 0.598 & 0.39 & 0.912 (0.05) & 0.896 (0.06) & 0.026 (0.01) & 0.068 (0.01) & 0.103 (0.05) \\ 
  M12 & ULSMV & 100 & 10 & 0.708 & 0.219 & 0.916 (0.04) & 0.9 (0.05) & 0.025 (0.01) & 0.058 (0.01) & 0.085 (0.03) \\ 
  M12 & ULSMV & 100 & 30 & 0.758 & 0.375 & 0.947 (0.04) & 0.937 (0.05) & 0.016 (0.01) & 0.053 (0.01) & 0.07 (0.01) \\ 
  M12 & ULSMV & 200 & 5 & 0.731 & 0.09 & 0.917 (0.04) & 0.902 (0.04) & 0.027 (0.01) & 0.058 (0.01) & 0.081 (0.04) \\ 
  M12 & ULSMV & 200 & 10 & 0.771 & 0.027 & 0.915 (0.04) & 0.899 (0.04) & 0.026 (0.01) & 0.053 (0.01) & 0.064 (0.02) \\ 
  M12 & ULSMV & 200 & 30 & 0.796 & 0.105 & 0.925 (0.04) & 0.911 (0.04) & 0.019 (0.01) & 0.05 (0) & 0.054 (0.01) \\ 
  M12 & WLSMV & 30 & 5 & 0.318 & 0.848 & 0.914 (0.07) & 0.898 (0.08) & 0.029 (0.01) & 0.093 (0.01) & 0.167 (0.05) \\ 
  M12 & WLSMV & 30 & 10 & 0.458 & 0.692 & 0.938 (0.04) & 0.926 (0.05) & 0.025 (0.01) & 0.071 (0.01) & 0.151 (0.05) \\ 
  M12 & WLSMV & 30 & 30 & 0.598 & 0.524 & 0.965 (0.03) & 0.959 (0.04) & 0.015 (0.01) & 0.057 (0.01) & 0.13 (0.02) \\ 
  M12 & WLSMV & 50 & 5 & 0.42 & 0.608 & 0.92 (0.05) & 0.905 (0.06) & 0.03 (0.01) & 0.078 (0.01) & 0.134 (0.05) \\ 
  M12 & WLSMV & 50 & 10 & 0.582 & 0.213 & 0.929 (0.03) & 0.916 (0.04) & 0.029 (0.01) & 0.062 (0.01) & 0.123 (0.04) \\ 
  M12 & WLSMV & 50 & 30 & 0.687 & 0.251 & 0.95 (0.03) & 0.941 (0.03) & 0.021 (0.01) & 0.054 (0.01) & 0.101 (0.02) \\ 
  M12 & WLSMV & 100 & 5 & 0.573 & 0.165 & 0.923 (0.03) & 0.909 (0.04) & 0.031 (0.01) & 0.064 (0.01) & 0.108 (0.05) \\ 
  M12 & WLSMV & 100 & 10 & 0.697 & 0.004 & 0.927 (0.02) & 0.913 (0.03) & 0.032 (0.01) & 0.055 (0.01) & 0.089 (0.03) \\ 
  M12 & WLSMV & 100 & 30 & 0.759 & 0 & 0.937 (0.02) & 0.925 (0.02) & 0.027 (0.01) & 0.051 (0) & 0.074 (0.01) \\ 
  M12 & WLSMV & 200 & 5 & 0.716 & 0.002 & 0.925 (0.02) & 0.912 (0.03) & 0.032 (0.01) & 0.056 (0.01) & 0.084 (0.04) \\ 
  M12 & WLSMV & 200 & 10 & 0.765 & 0 & 0.927 (0.02) & 0.913 (0.02) & 0.033 (0) & 0.052 (0) & 0.066 (0.02) \\ 
  M12 & WLSMV & 200 & 30 & 0.779 & 0 & 0.932 (0.01) & 0.919 (0.02) & 0.031 (0) & 0.049 (0) & 0.056 (0.01) \\ 
   \bottomrule
\end{tabular}
\end{table}

TONS of additional tables of the fit statistics across conditions

## Now, create MANY subset tables to breakdown these relationships
## loop around these iterators
for(M in mods){
  for(E in ests){
    ### subset tothe model (M) and estimator (E)
    #M <- 'C'
    #E <- 'MLR'
    cat('\n\n ===============================\n')
    cat('\nModel:\t', M)
    cat('\nEstimator:\t', E, '\n')
    sub_dat <- mydata[ mydata$Model == M & mydata$Estimator == E,]

    a <- sub_dat %>%
        group_by(ss_l1, ss_l2, icc_ov, icc_lv) %>%
        summarise(
          N = n(),
          chi2=mean(Chi2_pvalue_decision, na.rm = T),
          CFI.m =mean(CFI, na.rm = T), CFI.sd =sd(CFI, na.rm = T),
          TLI.m =mean(TLI, na.rm = T), TLI.sd =sd(TLI, na.rm = T),
          RMSEA.m =mean(RMSEA, na.rm = T), RMSEA.sd =sd(RMSEA, na.rm = T),
          SRMRW.m =mean(SRMRW, na.rm = T), SRMRW.sd =sd(SRMRW, na.rm = T),
          SRMRB.m =mean(SRMRB, na.rm = T), SRMRB.sd =sd(SRMRB, na.rm = T)
        )
    #print(xtable(a, digits = 3), booktabs = T, include.rownames = F)
    ## Now, create subsets of this results matrix for outputting into small(ish) tables
    ## Subset by ICC conditions
    ICCO <- unique(a$icc_ov)
    ICCL <- unique(a$icc_lv)
    icco <- ICCO[1]
    iccl <- ICCL[1]
    for(icco in ICCO){
      for(iccl in ICCL){
        ### subset tothe model (M) and estimator (E)
        #M <- 'C'
        #E <- 'MLR'
        cat('\n===============================\n')
        cat('\nModel:\t', M)
        cat('\nEstimator:\t', E)
        cat('\nICC Obs. Var.:\t', icco)
        cat('\nICC Lat. Var.:\t', iccl,'\n')
        a_s <- filter(a, icc_ov == icco, icc_lv == iccl)
        ## make a copy of a to print into
        a1 <- as_tibble(as.data.frame(matrix(NA, ncol=9,nrow=nrow(a_s))))
        colnames(a1) <- c('N2', 'N1', 'Num_Rep', "chi2", "CFI",'TLI', 'RMSEA', 'SRMRW', 'SRMRB')
        i <- 1
        for(i in 1:nrow(a_s)){
          a1[i,3:9] <- unlist(c(
            round(a_s[i,5],2),
            round(a_s[i,6],2),
            paste0(round(a_s[i,7],2), '(', round(a_s[i,8],2), ')'),
            paste0(round(a_s[i,9],2), '(', round(a_s[i,10],2), ')'),
            paste0(round(a_s[i,11],2), '(', round(a_s[i,12],2), ')'),
            paste0(round(a_s[i,13],2), '(', round(a_s[i,14],2), ')'),
            paste0(round(a_s[i,15],2), '(', round(a_s[i,16],2), ')')
          ))
        }
        a1[,1:2] <- a_s[,c(2,1)]## add factors back with diff. order
        ## Print out in tex
        print(xtable(a1,
                     caption = paste0('Summary of Fit Statistics Across Conditions: Model ',
                                      M,', Estimator ',E,', ICC_O ',icco,' and ICC_L ', iccl)), 
              booktabs = T, include.rownames = F)
      }
    }## End subset table printing
  }
} ## End loops..


 ===============================

Model:   C
Estimator:   MLR 

===============================

Model:   C
Estimator:   MLR
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 261 & 0.35 & 0.88(0.09) & 0.85(0.11) & 0.05(0.02) & 0.06(0.01) & 0.32(0.05) \\ 
  50 & 5 & 280 & 0.53 & 0.94(0.04) & 0.93(0.05) & 0.03(0.02) & 0.05(0.01) & 0.27(0.04) \\ 
  100 & 5 & 376 & 0.7 & 0.98(0.02) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.22(0.03) \\ 
  200 & 5 & 476 & 0.9 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.17(0.02) \\ 
  30 & 10 & 304 & 0.44 & 0.94(0.04) & 0.93(0.04) & 0.03(0.01) & 0.04(0.01) & 0.25(0.04) \\ 
  50 & 10 & 416 & 0.68 & 0.97(0.02) & 0.97(0.03) & 0.02(0.01) & 0.03(0) & 0.21(0.03) \\ 
  100 & 10 & 485 & 0.88 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.15(0.02) \\ 
  200 & 10 & 500 & 0.91 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.11(0.02) \\ 
  30 & 30 & 475 & 0.61 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.19(0.03) \\ 
  50 & 30 & 498 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.14(0.02) \\ 
  100 & 30 & 500 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.1(0.01) \\ 
  200 & 30 & 500 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.07(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   C
Estimator:   MLR
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 186 & 0.44 & 0.93(0.04) & 0.92(0.05) & 0.04(0.02) & 0.07(0.01) & 0.16(0.04) \\ 
  50 & 5 & 250 & 0.69 & 0.97(0.03) & 0.97(0.03) & 0.03(0.02) & 0.05(0.01) & 0.12(0.02) \\ 
  100 & 5 & 363 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.09(0.02) \\ 
  200 & 5 & 478 & 0.9 & 1(0) & 1(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\ 
  30 & 10 & 247 & 0.49 & 0.96(0.03) & 0.95(0.03) & 0.03(0.01) & 0.04(0.01) & 0.12(0.03) \\ 
  50 & 10 & 381 & 0.71 & 0.98(0.02) & 0.98(0.02) & 0.02(0.01) & 0.03(0) & 0.1(0.02) \\ 
  100 & 10 & 494 & 0.89 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\ 
  200 & 10 & 500 & 0.92 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\ 
  30 & 30 & 469 & 0.62 & 0.99(0.01) & 0.98(0.01) & 0.01(0.01) & 0.02(0) & 0.1(0.02) \\ 
  50 & 30 & 497 & 0.85 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\ 
  100 & 30 & 500 & 0.9 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
  200 & 30 & 500 & 0.93 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.04(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   C
Estimator:   MLR
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 234 & 0.5 & 0.88(0.09) & 0.85(0.11) & 0.04(0.02) & 0.06(0.01) & 0.23(0.03) \\ 
  50 & 5 & 274 & 0.75 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.05(0.01) & 0.19(0.02) \\ 
  100 & 5 & 380 & 0.91 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.03(0) & 0.14(0.02) \\ 
  200 & 5 & 445 & 0.9 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.09(0.01) \\ 
  30 & 10 & 292 & 0.63 & 0.95(0.04) & 0.93(0.05) & 0.02(0.01) & 0.04(0.01) & 0.2(0.02) \\ 
  50 & 10 & 349 & 0.8 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.03(0) & 0.15(0.02) \\ 
  100 & 10 & 445 & 0.88 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.11(0.01) \\ 
  200 & 10 & 491 & 0.93 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\ 
  30 & 30 & 344 & 0.7 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\ 
  50 & 30 & 415 & 0.82 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.13(0.01) \\ 
  100 & 30 & 481 & 0.92 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.09(0.01) \\ 
  200 & 30 & 499 & 0.92 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   C
Estimator:   MLR
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 396 & 0.49 & 0.91(0.06) & 0.89(0.08) & 0.04(0.02) & 0.07(0.01) & 0.17(0.03) \\ 
  50 & 5 & 486 & 0.73 & 0.96(0.04) & 0.95(0.04) & 0.02(0.02) & 0.05(0.01) & 0.13(0.02) \\ 
  100 & 5 & 498 & 0.91 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.09(0.01) \\ 
  200 & 5 & 500 & 0.93 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\ 
  30 & 10 & 494 & 0.65 & 0.96(0.04) & 0.95(0.04) & 0.02(0.01) & 0.04(0.01) & 0.15(0.02) \\ 
  50 & 10 & 500 & 0.82 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.03(0) & 0.11(0.02) \\ 
  100 & 10 & 500 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.08(0.01) \\ 
  200 & 10 & 500 & 0.93 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\ 
  30 & 30 & 500 & 0.71 & 0.99(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.13(0.02) \\ 
  50 & 30 & 499 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.1(0.01) \\ 
  100 & 30 & 498 & 0.92 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.07(0.01) \\ 
  200 & 30 & 498 & 0.95 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   C
Estimator:   MLR
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 180 & 0.59 & 0.87(0.1) & 0.84(0.12) & 0.04(0.02) & 0.06(0.01) & 0.19(0.02) \\ 
  50 & 5 & 244 & 0.83 & 0.95(0.05) & 0.94(0.05) & 0.02(0.01) & 0.05(0.01) & 0.15(0.02) \\ 
  100 & 5 & 300 & 0.92 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.1(0.01) \\ 
  200 & 5 & 372 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\ 
  30 & 10 & 223 & 0.71 & 0.95(0.05) & 0.94(0.06) & 0.02(0.01) & 0.04(0.01) & 0.17(0.02) \\ 
  50 & 10 & 241 & 0.85 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.13(0.01) \\ 
  100 & 10 & 336 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.09(0.01) \\ 
  200 & 10 & 398 & 0.93 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.06(0.01) \\ 
  30 & 30 & 230 & 0.7 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\ 
  50 & 30 & 296 & 0.89 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.01) \\ 
  100 & 30 & 358 & 0.93 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\ 
  200 & 30 & 429 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   C
Estimator:   MLR
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 469 & 0.6 & 0.89(0.08) & 0.87(0.1) & 0.04(0.02) & 0.06(0.01) & 0.17(0.03) \\ 
  50 & 5 & 498 & 0.82 & 0.96(0.04) & 0.95(0.05) & 0.02(0.02) & 0.05(0.01) & 0.13(0.02) \\ 
  100 & 5 & 500 & 0.88 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0) & 0.09(0.01) \\ 
  200 & 5 & 499 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.06(0.01) \\ 
  30 & 10 & 494 & 0.71 & 0.95(0.04) & 0.95(0.05) & 0.02(0.01) & 0.04(0.01) & 0.15(0.02) \\ 
  50 & 10 & 500 & 0.83 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.12(0.02) \\ 
  100 & 10 & 500 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.08(0.01) \\ 
  200 & 10 & 500 & 0.92 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.06(0.01) \\ 
  30 & 30 & 497 & 0.73 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.14(0.02) \\ 
  50 & 30 & 500 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.11(0.01) \\ 
  100 & 30 & 500 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\ 
  200 & 30 & 500 & 0.93 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.5 and ICC_L 0.5} 
\end{table}


 ===============================

Model:   C
Estimator:   ULSMV 

===============================

Model:   C
Estimator:   ULSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 15 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.07(0.01) & 0.35(0.06) \\ 
  50 & 5 & 69 & 0.99 & 0.99(0.02) & 0.99(0.03) & 0.01(0.01) & 0.06(0.01) & 0.32(0.13) \\ 
  100 & 5 & 247 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.22(0.05) \\ 
  200 & 5 & 445 & 0.95 & 1(0.01) & 1(0.01) & 0(0.01) & 0.03(0) & 0.15(0.03) \\ 
  30 & 10 & 176 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.25(0.06) \\ 
  50 & 10 & 334 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.19(0.04) \\ 
  100 & 10 & 466 & 0.97 & 1(0) & 1(0.01) & 0.01(0.01) & 0.03(0) & 0.13(0.02) \\ 
  200 & 10 & 499 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.09(0.01) \\ 
  30 & 30 & 451 & 1 & 1(0) & 1(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.02) \\ 
  50 & 30 & 494 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.11(0.01) \\ 
  100 & 30 & 500 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\ 
  200 & 30 & 500 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   C
Estimator:   ULSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 18 & 1 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.09(0.01) & 0.13(0.03) \\ 
  50 & 5 & 46 & 1 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.07(0.01) & 0.1(0.02) \\ 
  100 & 5 & 157 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.07(0.02) \\ 
  200 & 5 & 364 & 0.96 & 0.99(0.01) & 0.99(0.01) & 0(0.01) & 0.03(0) & 0.05(0.01) \\ 
  30 & 10 & 67 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.06(0.01) & 0.09(0.02) \\ 
  50 & 10 & 193 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.04(0.01) & 0.07(0.02) \\ 
  100 & 10 & 377 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0(0.01) & 0.03(0) & 0.05(0.01) \\ 
  200 & 10 & 489 & 0.96 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.03(0.01) \\ 
  30 & 30 & 259 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.07(0.02) \\ 
  50 & 30 & 422 & 1 & 1(0) & 1(0.01) & 0(0) & 0.03(0) & 0.05(0.01) \\ 
  100 & 30 & 485 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.04(0.01) \\ 
  200 & 30 & 500 & 0.98 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.02(0) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   C
Estimator:   ULSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 178 & 0.99 & 0.96(0.05) & 0.96(0.06) & 0.01(0.01) & 0.08(0.01) & 0.21(0.04) \\ 
  50 & 5 & 271 & 0.97 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.16(0.03) \\ 
  100 & 5 & 379 & 0.98 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\ 
  200 & 5 & 440 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\ 
  30 & 10 & 287 & 0.99 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.05(0.01) & 0.16(0.02) \\ 
  50 & 10 & 349 & 0.98 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\ 
  100 & 10 & 442 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\ 
  200 & 10 & 490 & 0.95 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.06(0.01) \\ 
  30 & 30 & 345 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.03(0) & 0.13(0.01) \\ 
  50 & 30 & 424 & 0.99 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.1(0.01) \\ 
  100 & 30 & 480 & 0.97 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\ 
  200 & 30 & 500 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   C
Estimator:   ULSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 365 & 0.99 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.09(0.01) & 0.13(0.03) \\ 
  50 & 5 & 469 & 0.97 & 0.97(0.04) & 0.97(0.05) & 0.01(0.01) & 0.07(0.01) & 0.1(0.02) \\ 
  100 & 5 & 495 & 0.97 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.05(0.01) & 0.07(0.01) \\ 
  200 & 5 & 500 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.05(0.01) \\ 
  30 & 10 & 476 & 0.99 & 0.98(0.04) & 0.98(0.05) & 0(0.01) & 0.06(0.01) & 0.1(0.02) \\ 
  50 & 10 & 497 & 0.97 & 0.98(0.03) & 0.98(0.03) & 0.01(0.01) & 0.05(0.01) & 0.08(0.01) \\ 
  100 & 10 & 500 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0(0.01) & 0.04(0) & 0.05(0.01) \\ 
  200 & 10 & 500 & 0.95 & 1(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.04(0.01) \\ 
  30 & 30 & 495 & 1 & 1(0) & 1(0) & 0(0) & 0.04(0.01) & 0.09(0.02) \\ 
  50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.07(0.01) \\ 
  100 & 30 & 500 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.05(0.01) \\ 
  200 & 30 & 500 & 0.99 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.03(0) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   C
Estimator:   ULSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 162 & 0.97 & 0.91(0.13) & 0.89(0.15) & 0.01(0.01) & 0.09(0.02) & 0.15(0.02) \\ 
  50 & 5 & 241 & 0.96 & 0.95(0.07) & 0.94(0.08) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\ 
  100 & 5 & 298 & 0.98 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\ 
  200 & 5 & 377 & 0.95 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\ 
  30 & 10 & 224 & 1 & 0.97(0.06) & 0.97(0.07) & 0(0.01) & 0.06(0.01) & 0.13(0.02) \\ 
  50 & 10 & 249 & 0.99 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\ 
  100 & 10 & 334 & 0.95 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\ 
  200 & 10 & 395 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.05(0.01) \\ 
  30 & 30 & 241 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.12(0.01) \\ 
  50 & 30 & 299 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.09(0.01) \\ 
  100 & 30 & 369 & 1 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\ 
  200 & 30 & 423 & 0.99 & 1(0.01) & 1(0.01) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   C
Estimator:   ULSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 465 & 1 & 0.94(0.1) & 0.92(0.11) & 0.01(0.01) & 0.11(0.02) & 0.12(0.02) \\ 
  50 & 5 & 499 & 0.99 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.08(0.01) & 0.09(0.01) \\ 
  100 & 5 & 500 & 0.97 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.06(0.01) \\ 
  200 & 5 & 500 & 0.95 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.04(0.01) \\ 
  30 & 10 & 489 & 1 & 0.99(0.04) & 0.99(0.05) & 0(0) & 0.08(0.01) & 0.1(0.02) \\ 
  50 & 10 & 500 & 0.99 & 0.98(0.04) & 0.98(0.05) & 0(0.01) & 0.06(0.01) & 0.08(0.01) \\ 
  100 & 10 & 500 & 0.97 & 0.98(0.03) & 0.98(0.03) & 0(0.01) & 0.04(0.01) & 0.06(0.01) \\ 
  200 & 10 & 500 & 0.94 & 0.99(0.01) & 0.99(0.02) & 0(0) & 0.03(0) & 0.04(0) \\ 
  30 & 30 & 495 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.01) & 0.09(0.01) \\ 
  50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.05(0.01) & 0.07(0.01) \\ 
  100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.05(0.01) \\ 
  200 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5} 
\end{table}


 ===============================

Model:   C
Estimator:   WLSMV 

===============================

Model:   C
Estimator:   WLSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 24 & 1 & 0.99(0.02) & 0.99(0.03) & 0.01(0.01) & 0.07(0.01) & 0.34(0.05) \\ 
  50 & 5 & 73 & 1 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.29(0.05) \\ 
  100 & 5 & 278 & 0.95 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.22(0.05) \\ 
  200 & 5 & 450 & 0.95 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.14(0.03) \\ 
  30 & 10 & 182 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.26(0.18) \\ 
  50 & 10 & 363 & 0.96 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.19(0.04) \\ 
  100 & 10 & 473 & 0.97 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.12(0.02) \\ 
  200 & 10 & 500 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\ 
  30 & 30 & 445 & 0.99 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.02) \\ 
  50 & 30 & 495 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.11(0.01) \\ 
  100 & 30 & 500 & 0.96 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\ 
  200 & 30 & 500 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   C
Estimator:   WLSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 12 & 1 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.07(0.01) & 0.16(0.04) \\ 
  50 & 5 & 26 & 1 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.06(0.01) & 0.12(0.02) \\ 
  100 & 5 & 119 & 0.96 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.02) \\ 
  200 & 5 & 307 & 0.96 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\ 
  30 & 10 & 40 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.12(0.03) \\ 
  50 & 10 & 109 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.08(0.02) \\ 
  100 & 10 & 259 & 0.97 & 1(0.01) & 1(0.01) & 0(0.01) & 0.03(0) & 0.06(0.01) \\ 
  200 & 10 & 428 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0.01) \\ 
  30 & 30 & 117 & 1 & 1(0) & 1(0.01) & 0(0) & 0.03(0) & 0.08(0.01) \\ 
  50 & 30 & 276 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.06(0.01) \\ 
  100 & 30 & 406 & 0.98 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0.01) \\ 
  200 & 30 & 491 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.03(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   C
Estimator:   WLSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 125 & 0.98 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.07(0.01) & 0.21(0.06) \\ 
  50 & 5 & 202 & 0.96 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.15(0.02) \\ 
  100 & 5 & 341 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\ 
  200 & 5 & 431 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\ 
  30 & 10 & 209 & 0.97 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.05(0.01) & 0.15(0.02) \\ 
  50 & 10 & 309 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\ 
  100 & 10 & 423 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\ 
  200 & 10 & 490 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.06(0.01) \\ 
  30 & 30 & 318 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.13(0.01) \\ 
  50 & 30 & 408 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\ 
  100 & 30 & 481 & 0.98 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\ 
  200 & 30 & 499 & 0.96 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   C
Estimator:   WLSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 337 & 0.97 & 0.97(0.05) & 0.96(0.05) & 0.02(0.01) & 0.08(0.01) & 0.15(0.02) \\ 
  50 & 5 & 434 & 0.96 & 0.98(0.03) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.11(0.02) \\ 
  100 & 5 & 491 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\ 
  200 & 5 & 500 & 0.95 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.05(0.01) \\ 
  30 & 10 & 427 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.12(0.02) \\ 
  50 & 10 & 488 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.09(0.01) \\ 
  100 & 10 & 499 & 0.97 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\ 
  200 & 10 & 500 & 0.96 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0.01) \\ 
  30 & 30 & 475 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.1(0.01) \\ 
  50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\ 
  100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\ 
  200 & 30 & 500 & 0.99 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.04(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   C
Estimator:   WLSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 112 & 0.96 & 0.95(0.05) & 0.94(0.06) & 0.02(0.01) & 0.08(0.01) & 0.16(0.02) \\ 
  50 & 5 & 179 & 0.97 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\ 
  100 & 5 & 266 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\ 
  200 & 5 & 358 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\ 
  30 & 10 & 179 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.13(0.02) \\ 
  50 & 10 & 212 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\ 
  100 & 10 & 319 & 0.97 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\ 
  200 & 10 & 389 & 0.96 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\ 
  30 & 30 & 216 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.01) \\ 
  50 & 30 & 280 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.09(0.01) \\ 
  100 & 30 & 346 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\ 
  200 & 30 & 430 & 1 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   C
Estimator:   WLSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 455 & 0.99 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.08(0.01) & 0.14(0.02) \\ 
  50 & 5 & 496 & 0.98 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\ 
  100 & 5 & 499 & 0.95 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.07(0.01) \\ 
  200 & 5 & 500 & 0.95 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.05(0.01) \\ 
  30 & 10 & 487 & 1 & 0.99(0.01) & 0.99(0.02) & 0(0.01) & 0.05(0.01) & 0.12(0.02) \\ 
  50 & 10 & 500 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0.01) & 0.09(0.01) \\ 
  100 & 10 & 500 & 0.96 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\ 
  200 & 10 & 500 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\ 
  30 & 30 & 494 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.11(0.01) \\ 
  50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\ 
  100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.06(0.01) \\ 
  200 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.04(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5} 
\end{table}


 ===============================

Model:   M1
Estimator:   MLR 

===============================

Model:   M1
Estimator:   MLR
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 160 & 0.11 & 0.78(0.14) & 0.74(0.16) & 0.07(0.02) & 0.08(0.03) & 0.32(0.06) \\ 
  50 & 5 & 150 & 0.15 & 0.88(0.07) & 0.85(0.08) & 0.05(0.01) & 0.06(0.01) & 0.29(0.05) \\ 
  100 & 5 & 133 & 0.05 & 0.91(0.03) & 0.89(0.04) & 0.04(0.01) & 0.05(0.01) & 0.24(0.04) \\ 
  200 & 5 & 121 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.19(0.03) \\ 
  30 & 10 & 191 & 0.04 & 0.86(0.08) & 0.83(0.09) & 0.05(0.02) & 0.06(0.01) & 0.25(0.04) \\ 
  50 & 10 & 224 & 0.01 & 0.9(0.03) & 0.88(0.04) & 0.04(0.01) & 0.05(0.01) & 0.21(0.03) \\ 
  100 & 10 & 276 & 0 & 0.92(0.02) & 0.9(0.03) & 0.03(0.01) & 0.05(0) & 0.16(0.02) \\ 
  200 & 10 & 317 & 0 & 0.92(0.01) & 0.91(0.02) & 0.03(0) & 0.04(0) & 0.12(0.02) \\ 
  30 & 30 & 376 & 0 & 0.9(0.03) & 0.88(0.04) & 0.04(0.01) & 0.05(0.01) & 0.18(0.03) \\ 
  50 & 30 & 423 & 0 & 0.91(0.04) & 0.89(0.05) & 0.04(0.01) & 0.04(0) & 0.14(0.02) \\ 
  100 & 30 & 476 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.1(0.01) \\ 
  200 & 30 & 495 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   M1
Estimator:   MLR
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 133 & 0.12 & 0.88(0.06) & 0.85(0.07) & 0.06(0.02) & 0.08(0.01) & 0.16(0.03) \\ 
  50 & 5 & 160 & 0.15 & 0.92(0.04) & 0.91(0.04) & 0.05(0.01) & 0.07(0.01) & 0.13(0.03) \\ 
  100 & 5 & 137 & 0.02 & 0.95(0.02) & 0.93(0.02) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\ 
  200 & 5 & 125 & 0 & 0.95(0.01) & 0.94(0.02) & 0.03(0.01) & 0.05(0.01) & 0.08(0.01) \\ 
  30 & 10 & 182 & 0.05 & 0.9(0.04) & 0.88(0.05) & 0.05(0.01) & 0.06(0.01) & 0.13(0.03) \\ 
  50 & 10 & 257 & 0.01 & 0.92(0.02) & 0.91(0.03) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\ 
  100 & 10 & 381 & 0 & 0.94(0.01) & 0.92(0.02) & 0.04(0) & 0.05(0) & 0.08(0.01) \\ 
  200 & 10 & 448 & 0 & 0.94(0.01) & 0.93(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\ 
  30 & 30 & 426 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0.01) & 0.05(0.01) & 0.11(0.02) \\ 
  50 & 30 & 488 & 0 & 0.92(0.01) & 0.91(0.02) & 0.04(0) & 0.05(0) & 0.09(0.02) \\ 
  100 & 30 & 499 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.07(0.01) \\ 
  200 & 30 & 500 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.04(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   M1
Estimator:   MLR
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 195 & 0.27 & 0.8(0.12) & 0.76(0.14) & 0.05(0.02) & 0.07(0.02) & 0.23(0.03) \\ 
  50 & 5 & 247 & 0.36 & 0.89(0.06) & 0.87(0.08) & 0.04(0.01) & 0.06(0.01) & 0.19(0.02) \\ 
  100 & 5 & 297 & 0.19 & 0.92(0.04) & 0.9(0.05) & 0.03(0.01) & 0.05(0.01) & 0.14(0.02) \\ 
  200 & 5 & 349 & 0.01 & 0.92(0.02) & 0.9(0.03) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\ 
  30 & 10 & 271 & 0.14 & 0.87(0.06) & 0.84(0.08) & 0.04(0.01) & 0.06(0.01) & 0.19(0.03) \\ 
  50 & 10 & 317 & 0.07 & 0.9(0.04) & 0.88(0.05) & 0.04(0.01) & 0.05(0.01) & 0.15(0.02) \\ 
  100 & 10 & 381 & 0.01 & 0.91(0.03) & 0.89(0.03) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\ 
  200 & 10 & 444 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.07(0.01) \\ 
  30 & 30 & 309 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0.01) & 0.05(0.01) & 0.16(0.02) \\ 
  50 & 30 & 369 & 0 & 0.91(0.02) & 0.89(0.02) & 0.03(0) & 0.04(0) & 0.12(0.01) \\ 
  100 & 30 & 445 & 0 & 0.91(0.01) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.09(0.01) \\ 
  200 & 30 & 471 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   M1
Estimator:   MLR
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 313 & 0.26 & 0.85(0.08) & 0.83(0.09) & 0.05(0.02) & 0.08(0.01) & 0.17(0.03) \\ 
  50 & 5 & 409 & 0.31 & 0.91(0.05) & 0.89(0.06) & 0.04(0.01) & 0.07(0.01) & 0.14(0.02) \\ 
  100 & 5 & 453 & 0.1 & 0.93(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\ 
  200 & 5 & 495 & 0.01 & 0.94(0.02) & 0.93(0.02) & 0.03(0) & 0.05(0.01) & 0.07(0.01) \\ 
  30 & 10 & 439 & 0.12 & 0.89(0.04) & 0.87(0.05) & 0.04(0.01) & 0.06(0.01) & 0.15(0.02) \\ 
  50 & 10 & 470 & 0.04 & 0.92(0.03) & 0.9(0.04) & 0.04(0.01) & 0.05(0.01) & 0.12(0.02) \\ 
  100 & 10 & 495 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0.01) & 0.09(0.01) \\ 
  200 & 10 & 500 & 0 & 0.93(0.01) & 0.91(0.01) & 0.03(0) & 0.04(0) & 0.07(0.01) \\ 
  30 & 30 & 467 & 0 & 0.91(0.02) & 0.89(0.03) & 0.04(0.01) & 0.05(0) & 0.13(0.02) \\ 
  50 & 30 & 492 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.11(0.02) \\ 
  100 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\ 
  200 & 30 & 499 & 0 & 0.92(0.01) & 0.91(0.01) & 0.03(0) & 0.04(0) & 0.07(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   M1
Estimator:   MLR
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 191 & 0.34 & 0.8(0.1) & 0.76(0.13) & 0.05(0.02) & 0.07(0.01) & 0.19(0.02) \\ 
  50 & 5 & 251 & 0.42 & 0.89(0.07) & 0.87(0.08) & 0.03(0.01) & 0.06(0.01) & 0.15(0.02) \\ 
  100 & 5 & 282 & 0.23 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\ 
  200 & 5 & 357 & 0.01 & 0.91(0.03) & 0.9(0.03) & 0.03(0.01) & 0.05(0.01) & 0.07(0.01) \\ 
  30 & 10 & 221 & 0.22 & 0.88(0.06) & 0.85(0.08) & 0.04(0.01) & 0.06(0.01) & 0.17(0.02) \\ 
  50 & 10 & 255 & 0.09 & 0.9(0.04) & 0.88(0.05) & 0.03(0.01) & 0.05(0.01) & 0.13(0.01) \\ 
  100 & 10 & 314 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0.01) & 0.04(0) & 0.09(0.01) \\ 
  200 & 10 & 370 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.06(0.01) \\ 
  30 & 30 & 216 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0) & 0.05(0.01) & 0.15(0.02) \\ 
  50 & 30 & 266 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.01) \\ 
  100 & 30 & 340 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.08(0.01) \\ 
  200 & 30 & 373 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   M1
Estimator:   MLR
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 387 & 0.37 & 0.84(0.09) & 0.8(0.11) & 0.05(0.02) & 0.07(0.01) & 0.17(0.02) \\ 
  50 & 5 & 456 & 0.4 & 0.9(0.06) & 0.88(0.07) & 0.04(0.01) & 0.06(0.01) & 0.13(0.02) \\ 
  100 & 5 & 494 & 0.15 & 0.92(0.03) & 0.9(0.04) & 0.03(0.01) & 0.05(0.01) & 0.09(0.01) \\ 
  200 & 5 & 500 & 0 & 0.93(0.02) & 0.91(0.03) & 0.03(0) & 0.05(0.01) & 0.07(0.01) \\ 
  30 & 10 & 444 & 0.2 & 0.88(0.07) & 0.86(0.08) & 0.04(0.01) & 0.06(0.01) & 0.15(0.02) \\ 
  50 & 10 & 484 & 0.09 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.12(0.02) \\ 
  100 & 10 & 499 & 0 & 0.92(0.02) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.08(0.01) \\ 
  200 & 10 & 500 & 0 & 0.92(0.02) & 0.91(0.02) & 0.03(0) & 0.04(0) & 0.06(0.01) \\ 
  30 & 30 & 450 & 0 & 0.91(0.03) & 0.89(0.03) & 0.03(0.01) & 0.04(0) & 0.14(0.02) \\ 
  50 & 30 & 488 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.11(0.01) \\ 
  100 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.08(0.01) \\ 
  200 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.5 and ICC_L 0.5} 
\end{table}


 ===============================

Model:   M1
Estimator:   ULSMV 

===============================

Model:   M1
Estimator:   ULSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 19 & 1 & 0.96(0.05) & 0.95(0.06) & 0.02(0.02) & 0.09(0.01) & 0.52(0.68) \\ 
  50 & 5 & 54 & 0.65 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.32(0.14) \\ 
  100 & 5 & 190 & 0.09 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.22(0.05) \\ 
  200 & 5 & 337 & 0 & 0.92(0.02) & 0.91(0.03) & 0.04(0.01) & 0.05(0.01) & 0.14(0.03) \\ 
  30 & 10 & 154 & 0.44 & 0.93(0.04) & 0.92(0.04) & 0.03(0.01) & 0.07(0.01) & 0.26(0.12) \\ 
  50 & 10 & 236 & 0.05 & 0.92(0.03) & 0.91(0.04) & 0.04(0.01) & 0.06(0.01) & 0.19(0.04) \\ 
  100 & 10 & 361 & 0 & 0.92(0.02) & 0.91(0.03) & 0.04(0.01) & 0.05(0.01) & 0.13(0.02) \\ 
  200 & 10 & 417 & 0 & 0.92(0.01) & 0.91(0.02) & 0.04(0) & 0.05(0) & 0.09(0.01) \\ 
  30 & 30 & 342 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0.01) & 0.05(0.01) & 0.15(0.02) \\ 
  50 & 30 & 393 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.11(0.01) \\ 
  100 & 30 & 439 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.08(0.01) \\ 
  200 & 30 & 472 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   M1
Estimator:   ULSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 6 & 1 & 0.97(0.05) & 0.96(0.06) & 0.01(0.01) & 0.09(0.02) & 0.13(0.04) \\ 
  50 & 5 & 11 & 0.55 & 0.91(0.06) & 0.89(0.07) & 0.03(0.01) & 0.09(0.01) & 0.1(0.03) \\ 
  100 & 5 & 13 & 0.31 & 0.92(0.04) & 0.9(0.05) & 0.03(0.01) & 0.07(0.01) & 0.07(0.01) \\ 
  200 & 5 & 1 & 0 & 0.95(NA) & 0.94(NA) & 0.02(NA) & 0.06(NA) & 0.04(NA) \\ 
  30 & 10 & 9 & 0.78 & 0.91(0.08) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.09(0.02) \\ 
  50 & 10 & 10 & 0.2 & 0.88(0.05) & 0.85(0.06) & 0.03(0.01) & 0.07(0.01) & 0.07(0.02) \\ 
  100 & 10 & 1 & 0 & 0.9(NA) & 0.88(NA) & 0.03(NA) & 0.05(NA) & 0.06(NA) \\ 
  30 & 30 & 4 & 0.5 & 0.92(0.05) & 0.91(0.05) & 0.02(0.01) & 0.06(0) & 0.08(0.03) \\ 
  50 & 30 & 1 & 0 & 0.82(NA) & 0.78(NA) & 0.02(NA) & 0.06(NA) & 0.06(NA) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   M1
Estimator:   ULSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 168 & 0.93 & 0.91(0.08) & 0.9(0.09) & 0.02(0.01) & 0.09(0.01) & 0.21(0.04) \\ 
  50 & 5 & 244 & 0.76 & 0.93(0.05) & 0.91(0.06) & 0.02(0.01) & 0.07(0.01) & 0.15(0.03) \\ 
  100 & 5 & 334 & 0.3 & 0.93(0.04) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\ 
  200 & 5 & 418 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\ 
  30 & 10 & 256 & 0.82 & 0.92(0.05) & 0.91(0.06) & 0.02(0.01) & 0.07(0.01) & 0.15(0.02) \\ 
  50 & 10 & 326 & 0.38 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.12(0.01) \\ 
  100 & 10 & 401 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\ 
  200 & 10 & 462 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\ 
  30 & 30 & 316 & 0.93 & 0.97(0.03) & 0.96(0.03) & 0.01(0.01) & 0.06(0.01) & 0.13(0.01) \\ 
  50 & 30 & 388 & 0.3 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0) & 0.1(0.01) \\ 
  100 & 30 & 459 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\ 
  200 & 30 & 481 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   M1
Estimator:   ULSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 263 & 0.97 & 0.91(0.09) & 0.9(0.11) & 0.02(0.01) & 0.1(0.01) & 0.13(0.03) \\ 
  50 & 5 & 329 & 0.79 & 0.91(0.07) & 0.89(0.08) & 0.02(0.01) & 0.09(0.01) & 0.1(0.02) \\ 
  100 & 5 & 354 & 0.4 & 0.92(0.04) & 0.9(0.05) & 0.03(0.01) & 0.07(0.01) & 0.07(0.01) \\ 
  200 & 5 & 411 & 0.01 & 0.92(0.03) & 0.9(0.03) & 0.03(0) & 0.06(0.01) & 0.05(0.01) \\ 
  30 & 10 & 323 & 0.95 & 0.93(0.07) & 0.91(0.09) & 0.02(0.01) & 0.08(0.01) & 0.11(0.02) \\ 
  50 & 10 & 329 & 0.67 & 0.91(0.06) & 0.89(0.07) & 0.02(0.01) & 0.07(0.01) & 0.08(0.01) \\ 
  100 & 10 & 385 & 0.08 & 0.91(0.04) & 0.89(0.04) & 0.02(0) & 0.06(0.01) & 0.06(0.01) \\ 
  200 & 10 & 429 & 0 & 0.9(0.02) & 0.88(0.03) & 0.02(0) & 0.06(0) & 0.05(0.01) \\ 
  30 & 30 & 333 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.07(0.01) & 0.09(0.01) \\ 
  50 & 30 & 397 & 0.98 & 0.98(0.03) & 0.98(0.03) & 0(0) & 0.06(0.01) & 0.07(0.01) \\ 
  100 & 30 & 417 & 0.11 & 0.93(0.03) & 0.92(0.03) & 0.01(0) & 0.06(0) & 0.05(0.01) \\ 
  200 & 30 & 458 & 0 & 0.9(0.02) & 0.88(0.02) & 0.02(0) & 0.05(0) & 0.04(0) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   M1
Estimator:   ULSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 162 & 0.97 & 0.88(0.13) & 0.85(0.16) & 0.02(0.01) & 0.1(0.02) & 0.15(0.02) \\ 
  50 & 5 & 246 & 0.94 & 0.91(0.08) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.11(0.01) \\ 
  100 & 5 & 292 & 0.77 & 0.93(0.05) & 0.92(0.06) & 0.02(0.01) & 0.06(0.01) & 0.08(0.01) \\ 
  200 & 5 & 350 & 0.34 & 0.94(0.03) & 0.93(0.03) & 0.02(0) & 0.06(0.01) & 0.06(0.01) \\ 
  30 & 10 & 238 & 0.99 & 0.95(0.07) & 0.94(0.09) & 0.01(0.01) & 0.07(0.01) & 0.13(0.01) \\ 
  50 & 10 & 257 & 0.93 & 0.94(0.06) & 0.92(0.07) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\ 
  100 & 10 & 325 & 0.66 & 0.94(0.04) & 0.93(0.04) & 0.01(0.01) & 0.06(0.01) & 0.07(0.01) \\ 
  200 & 10 & 379 & 0.12 & 0.94(0.02) & 0.93(0.02) & 0.02(0) & 0.05(0) & 0.05(0.01) \\ 
  30 & 30 & 239 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.01) & 0.12(0.01) \\ 
  50 & 30 & 300 & 1 & 1(0) & 1(0.01) & 0(0) & 0.05(0) & 0.09(0.01) \\ 
  100 & 30 & 361 & 0.99 & 0.98(0.02) & 0.98(0.02) & 0(0) & 0.05(0) & 0.06(0.01) \\ 
  200 & 30 & 389 & 0.23 & 0.96(0.01) & 0.95(0.02) & 0.01(0) & 0.05(0) & 0.05(0) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   M1
Estimator:   ULSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 386 & 0.99 & 0.91(0.11) & 0.89(0.13) & 0.01(0.01) & 0.12(0.02) & 0.12(0.02) \\ 
  50 & 5 & 457 & 0.95 & 0.92(0.08) & 0.9(0.1) & 0.02(0.01) & 0.09(0.01) & 0.09(0.01) \\ 
  100 & 5 & 494 & 0.73 & 0.93(0.05) & 0.91(0.06) & 0.02(0.01) & 0.08(0.01) & 0.06(0.01) \\ 
  200 & 5 & 500 & 0.27 & 0.93(0.03) & 0.92(0.03) & 0.02(0) & 0.07(0.01) & 0.05(0.01) \\ 
  30 & 10 & 445 & 1 & 0.98(0.06) & 0.97(0.07) & 0(0.01) & 0.09(0.01) & 0.1(0.02) \\ 
  50 & 10 & 477 & 0.97 & 0.95(0.06) & 0.94(0.07) & 0.01(0.01) & 0.08(0.01) & 0.08(0.01) \\ 
  100 & 10 & 497 & 0.68 & 0.94(0.04) & 0.92(0.05) & 0.01(0.01) & 0.07(0.01) & 0.06(0.01) \\ 
  200 & 10 & 500 & 0.12 & 0.93(0.03) & 0.92(0.03) & 0.02(0) & 0.06(0.01) & 0.04(0) \\ 
  30 & 30 & 453 & 1 & 1(0) & 1(0) & 0(0) & 0.08(0.01) & 0.09(0.01) \\ 
  50 & 30 & 488 & 1 & 1(0) & 1(0) & 0(0) & 0.07(0.01) & 0.07(0.01) \\ 
  100 & 30 & 500 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.06(0.01) & 0.05(0.01) \\ 
  200 & 30 & 500 & 0.68 & 0.97(0.02) & 0.96(0.02) & 0.01(0) & 0.06(0) & 0.04(0) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5} 
\end{table}


 ===============================

Model:   M1
Estimator:   WLSMV 

===============================

Model:   M1
Estimator:   WLSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 20 & 0.9 & 0.94(0.06) & 0.93(0.07) & 0.02(0.02) & 0.09(0.01) & 0.33(0.04) \\ 
  50 & 5 & 63 & 0.68 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.28(0.05) \\ 
  100 & 5 & 201 & 0.2 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.21(0.04) \\ 
  200 & 5 & 354 & 0 & 0.93(0.02) & 0.91(0.03) & 0.03(0.01) & 0.05(0.01) & 0.14(0.02) \\ 
  30 & 10 & 144 & 0.51 & 0.93(0.04) & 0.92(0.05) & 0.03(0.01) & 0.07(0.01) & 0.3(0.69) \\ 
  50 & 10 & 280 & 0.15 & 0.93(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.19(0.04) \\ 
  100 & 10 & 370 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0.01) & 0.12(0.02) \\ 
  200 & 10 & 437 & 0 & 0.93(0.01) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.09(0.01) \\ 
  30 & 30 & 339 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0.01) & 0.15(0.02) \\ 
  50 & 30 & 414 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.11(0.01) \\ 
  100 & 30 & 449 & 0 & 0.93(0.01) & 0.91(0.01) & 0.03(0) & 0.05(0) & 0.08(0.01) \\ 
  200 & 30 & 481 & 0 & 0.93(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   M1
Estimator:   WLSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 4 & 1 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.08(0.01) & 0.14(0.05) \\ 
  50 & 5 & 3 & 0 & 0.86(0.01) & 0.83(0.01) & 0.04(0) & 0.09(0.01) & 0.14(0.07) \\ 
  100 & 5 & 5 & 0.4 & 0.93(0.04) & 0.91(0.05) & 0.03(0.01) & 0.06(0.01) & 0.08(0.02) \\ 
  30 & 10 & 5 & 0.4 & 0.91(0.06) & 0.9(0.07) & 0.03(0.01) & 0.07(0.01) & 0.14(0.03) \\ 
  50 & 10 & 3 & 0 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.07(0.02) & 0.1(0.03) \\ 
  30 & 30 & 2 & 0.5 & 0.96(0.03) & 0.95(0.04) & 0.02(0.01) & 0.05(0.01) & 0.08(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   M1
Estimator:   WLSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 114 & 0.87 & 0.92(0.07) & 0.9(0.08) & 0.03(0.02) & 0.09(0.01) & 0.2(0.03) \\ 
  50 & 5 & 191 & 0.59 & 0.92(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.15(0.02) \\ 
  100 & 5 & 311 & 0.21 & 0.93(0.03) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\ 
  200 & 5 & 408 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.07(0.01) \\ 
  30 & 10 & 196 & 0.51 & 0.92(0.05) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.15(0.02) \\ 
  50 & 10 & 290 & 0.13 & 0.93(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.12(0.01) \\ 
  100 & 10 & 379 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\ 
  200 & 10 & 460 & 0 & 0.94(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\ 
  30 & 30 & 271 & 0.12 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.06(0.01) & 0.13(0.01) \\ 
  50 & 30 & 371 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.1(0.01) \\ 
  100 & 30 & 446 & 0 & 0.94(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.07(0.01) \\ 
  200 & 30 & 483 & 0 & 0.94(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   M1
Estimator:   WLSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 226 & 0.81 & 0.91(0.07) & 0.9(0.08) & 0.03(0.02) & 0.09(0.01) & 0.15(0.03) \\ 
  50 & 5 & 245 & 0.56 & 0.92(0.06) & 0.9(0.07) & 0.03(0.01) & 0.08(0.01) & 0.11(0.02) \\ 
  100 & 5 & 231 & 0.18 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\ 
  200 & 5 & 222 & 0 & 0.93(0.02) & 0.91(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\ 
  30 & 10 & 246 & 0.56 & 0.93(0.04) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.13(0.02) \\ 
  50 & 10 & 219 & 0.15 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.09(0.01) \\ 
  100 & 10 & 174 & 0 & 0.92(0.03) & 0.9(0.03) & 0.03(0.01) & 0.06(0.01) & 0.07(0.01) \\ 
  200 & 10 & 140 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\ 
  30 & 30 & 199 & 0.8 & 0.97(0.02) & 0.97(0.02) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\ 
  50 & 30 & 185 & 0.04 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0.01) & 0.08(0.01) \\ 
  100 & 30 & 129 & 0 & 0.93(0.01) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\ 
  200 & 30 & 83 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   M1
Estimator:   WLSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 127 & 0.82 & 0.91(0.07) & 0.89(0.08) & 0.03(0.02) & 0.09(0.01) & 0.15(0.02) \\ 
  50 & 5 & 197 & 0.71 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.11(0.01) \\ 
  100 & 5 & 268 & 0.28 & 0.94(0.03) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\ 
  200 & 5 & 330 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\ 
  30 & 10 & 178 & 0.8 & 0.95(0.04) & 0.93(0.05) & 0.02(0.01) & 0.07(0.01) & 0.13(0.02) \\ 
  50 & 10 & 216 & 0.3 & 0.94(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\ 
  100 & 10 & 288 & 0 & 0.94(0.02) & 0.92(0.02) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\ 
  200 & 10 & 370 & 0 & 0.94(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\ 
  30 & 30 & 201 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0(0.01) & 0.06(0.01) & 0.12(0.01) \\ 
  50 & 30 & 271 & 0.37 & 0.97(0.01) & 0.96(0.02) & 0.01(0) & 0.05(0.01) & 0.09(0.01) \\ 
  100 & 30 & 336 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.06(0.01) \\ 
  200 & 30 & 371 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   M1
Estimator:   WLSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 361 & 0.89 & 0.93(0.06) & 0.91(0.07) & 0.03(0.01) & 0.09(0.01) & 0.14(0.02) \\ 
  50 & 5 & 400 & 0.66 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.1(0.01) \\ 
  100 & 5 & 463 & 0.2 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.07(0.01) & 0.07(0.01) \\ 
  200 & 5 & 481 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.05(0.01) \\ 
  30 & 10 & 399 & 0.88 & 0.96(0.04) & 0.95(0.05) & 0.02(0.01) & 0.07(0.01) & 0.12(0.02) \\ 
  50 & 10 & 445 & 0.4 & 0.94(0.03) & 0.93(0.04) & 0.03(0.01) & 0.06(0.01) & 0.09(0.01) \\ 
  100 & 10 & 457 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\ 
  200 & 10 & 496 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\ 
  30 & 30 & 352 & 1 & 1(0) & 1(0.01) & 0(0) & 0.06(0.01) & 0.11(0.01) \\ 
  50 & 30 & 420 & 0.86 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.06(0.01) & 0.09(0.01) \\ 
  100 & 30 & 473 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.06(0.01) \\ 
  200 & 30 & 496 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5} 
\end{table}


 ===============================

Model:   M2
Estimator:   MLR 

===============================

Model:   M2
Estimator:   MLR
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 248 & 0.35 & 0.87(0.11) & 0.84(0.12) & 0.05(0.02) & 0.06(0.03) & 0.33(0.06) \\ 
  50 & 5 & 281 & 0.52 & 0.94(0.04) & 0.93(0.05) & 0.03(0.02) & 0.05(0.01) & 0.28(0.04) \\ 
  100 & 5 & 382 & 0.69 & 0.98(0.02) & 0.97(0.03) & 0.02(0.01) & 0.03(0) & 0.23(0.03) \\ 
  200 & 5 & 463 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.18(0.03) \\ 
  30 & 10 & 290 & 0.42 & 0.94(0.04) & 0.92(0.05) & 0.03(0.01) & 0.04(0.01) & 0.26(0.04) \\ 
  50 & 10 & 401 & 0.6 & 0.97(0.02) & 0.96(0.03) & 0.02(0.01) & 0.03(0) & 0.22(0.03) \\ 
  100 & 10 & 483 & 0.81 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.17(0.02) \\ 
  200 & 10 & 500 & 0.79 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.02) \\ 
  30 & 30 & 468 & 0.56 & 0.98(0.01) & 0.98(0.02) & 0.02(0.01) & 0.02(0) & 0.2(0.03) \\ 
  50 & 30 & 498 & 0.72 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.15(0.02) \\ 
  100 & 30 & 500 & 0.74 & 1(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.12(0.01) \\ 
  200 & 30 & 500 & 0.59 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.09(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   M2
Estimator:   MLR
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 191 & 0.2 & 0.89(0.06) & 0.87(0.07) & 0.06(0.02) & 0.07(0.01) & 0.21(0.05) \\ 
  50 & 5 & 275 & 0.2 & 0.93(0.03) & 0.91(0.04) & 0.04(0.01) & 0.05(0.01) & 0.18(0.03) \\ 
  100 & 5 & 386 & 0.09 & 0.95(0.02) & 0.94(0.03) & 0.03(0.01) & 0.04(0) & 0.16(0.03) \\ 
  200 & 5 & 487 & 0 & 0.96(0.01) & 0.95(0.02) & 0.03(0.01) & 0.03(0) & 0.14(0.02) \\ 
  30 & 10 & 265 & 0.15 & 0.92(0.04) & 0.91(0.04) & 0.04(0.01) & 0.04(0.01) & 0.17(0.04) \\ 
  50 & 10 & 403 & 0.09 & 0.94(0.02) & 0.93(0.03) & 0.03(0.01) & 0.04(0) & 0.16(0.03) \\ 
  100 & 10 & 495 & 0 & 0.96(0.01) & 0.95(0.01) & 0.03(0) & 0.03(0) & 0.14(0.02) \\ 
  200 & 10 & 500 & 0 & 0.96(0.01) & 0.95(0.01) & 0.03(0) & 0.02(0) & 0.13(0.01) \\ 
  30 & 30 & 476 & 0.08 & 0.96(0.02) & 0.95(0.02) & 0.03(0.01) & 0.02(0) & 0.16(0.03) \\ 
  50 & 30 & 500 & 0.03 & 0.97(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.15(0.02) \\ 
  100 & 30 & 500 & 0 & 0.98(0.01) & 0.97(0.01) & 0.02(0) & 0.01(0) & 0.14(0.02) \\ 
  200 & 30 & 500 & 0 & 0.98(0) & 0.97(0) & 0.02(0) & 0.01(0) & 0.13(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   M2
Estimator:   MLR
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 219 & 0.47 & 0.87(0.09) & 0.85(0.11) & 0.04(0.02) & 0.06(0.01) & 0.23(0.03) \\ 
  50 & 5 & 269 & 0.78 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.05(0.01) & 0.19(0.02) \\ 
  100 & 5 & 351 & 0.88 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.03(0) & 0.14(0.02) \\ 
  200 & 5 & 430 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.1(0.01) \\ 
  30 & 10 & 287 & 0.63 & 0.94(0.04) & 0.93(0.05) & 0.02(0.01) & 0.04(0.01) & 0.2(0.02) \\ 
  50 & 10 & 347 & 0.77 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.03(0) & 0.16(0.02) \\ 
  100 & 10 & 429 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.11(0.01) \\ 
  200 & 10 & 486 & 0.88 & 1(0) & 1(0.01) & 0.01(0) & 0.02(0) & 0.08(0.01) \\ 
  30 & 30 & 337 & 0.71 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\ 
  50 & 30 & 413 & 0.8 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.13(0.01) \\ 
  100 & 30 & 481 & 0.88 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.09(0.01) \\ 
  200 & 30 & 496 & 0.88 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.07(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   M2
Estimator:   MLR
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 411 & 0.37 & 0.88(0.07) & 0.86(0.08) & 0.05(0.02) & 0.07(0.01) & 0.19(0.03) \\ 
  50 & 5 & 489 & 0.52 & 0.94(0.04) & 0.93(0.05) & 0.03(0.02) & 0.05(0.01) & 0.16(0.02) \\ 
  100 & 5 & 500 & 0.46 & 0.96(0.02) & 0.96(0.03) & 0.02(0.01) & 0.04(0) & 0.12(0.02) \\ 
  200 & 5 & 500 & 0.14 & 0.97(0.01) & 0.96(0.02) & 0.02(0.01) & 0.03(0) & 0.11(0.01) \\ 
  30 & 10 & 493 & 0.47 & 0.94(0.04) & 0.92(0.05) & 0.03(0.01) & 0.04(0.01) & 0.17(0.03) \\ 
  50 & 10 & 500 & 0.5 & 0.96(0.02) & 0.96(0.03) & 0.02(0.01) & 0.03(0) & 0.14(0.02) \\ 
  100 & 10 & 500 & 0.26 & 0.97(0.01) & 0.97(0.02) & 0.02(0.01) & 0.02(0) & 0.11(0.01) \\ 
  200 & 10 & 500 & 0.02 & 0.98(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.1(0.01) \\ 
  30 & 30 & 500 & 0.49 & 0.98(0.02) & 0.97(0.02) & 0.02(0.01) & 0.02(0) & 0.16(0.02) \\ 
  50 & 30 & 498 & 0.43 & 0.98(0.01) & 0.98(0.01) & 0.01(0.01) & 0.02(0) & 0.13(0.02) \\ 
  100 & 30 & 499 & 0.19 & 0.99(0.01) & 0.99(0.01) & 0.01(0) & 0.01(0) & 0.11(0.01) \\ 
  200 & 30 & 498 & 0 & 0.99(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.1(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   M2
Estimator:   MLR
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 177 & 0.57 & 0.87(0.1) & 0.84(0.12) & 0.04(0.02) & 0.06(0.01) & 0.19(0.02) \\ 
  50 & 5 & 238 & 0.83 & 0.95(0.05) & 0.94(0.05) & 0.02(0.01) & 0.05(0.01) & 0.15(0.02) \\ 
  100 & 5 & 288 & 0.92 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.11(0.01) \\ 
  200 & 5 & 366 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\ 
  30 & 10 & 228 & 0.75 & 0.95(0.04) & 0.94(0.05) & 0.02(0.01) & 0.04(0.01) & 0.17(0.02) \\ 
  50 & 10 & 240 & 0.85 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.03(0) & 0.13(0.01) \\ 
  100 & 10 & 321 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.09(0.01) \\ 
  200 & 10 & 393 & 0.92 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\ 
  30 & 30 & 242 & 0.69 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\ 
  50 & 30 & 281 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.01) \\ 
  100 & 30 & 359 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\ 
  200 & 30 & 416 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   M2
Estimator:   MLR
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 472 & 0.51 & 0.88(0.09) & 0.85(0.1) & 0.04(0.02) & 0.06(0.01) & 0.18(0.03) \\ 
  50 & 5 & 498 & 0.73 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.05(0.01) & 0.14(0.02) \\ 
  100 & 5 & 500 & 0.67 & 0.97(0.03) & 0.96(0.03) & 0.02(0.01) & 0.04(0) & 0.11(0.01) \\ 
  200 & 5 & 500 & 0.48 & 0.98(0.01) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.08(0.01) \\ 
  30 & 10 & 491 & 0.64 & 0.94(0.04) & 0.93(0.05) & 0.02(0.01) & 0.04(0.01) & 0.16(0.02) \\ 
  50 & 10 & 499 & 0.71 & 0.97(0.03) & 0.96(0.03) & 0.02(0.01) & 0.03(0) & 0.13(0.02) \\ 
  100 & 10 & 500 & 0.64 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.1(0.01) \\ 
  200 & 10 & 500 & 0.39 & 0.99(0.01) & 0.98(0.01) & 0.01(0) & 0.02(0) & 0.08(0.01) \\ 
  30 & 30 & 499 & 0.62 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.15(0.02) \\ 
  50 & 30 & 500 & 0.7 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.02) \\ 
  100 & 30 & 500 & 0.56 & 0.99(0) & 0.99(0.01) & 0.01(0) & 0.01(0) & 0.1(0.01) \\ 
  200 & 30 & 500 & 0.32 & 0.99(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.08(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.5 and ICC_L 0.5} 
\end{table}


 ===============================

Model:   M2
Estimator:   ULSMV 

===============================

Model:   M2
Estimator:   ULSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 23 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.07(0.01) & 0.36(0.06) \\ 
  50 & 5 & 77 & 0.99 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.31(0.06) \\ 
  100 & 5 & 257 & 0.94 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.22(0.05) \\ 
  200 & 5 & 460 & 0.93 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.03) \\ 
  30 & 10 & 186 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.26(0.04) \\ 
  50 & 10 & 348 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.2(0.04) \\ 
  100 & 10 & 477 & 0.94 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.14(0.02) \\ 
  200 & 10 & 499 & 0.87 & 1(0) & 1(0) & 0.01(0) & 0.02(0) & 0.1(0.01) \\ 
  30 & 30 & 461 & 0.99 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.16(0.02) \\ 
  50 & 30 & 497 & 0.96 & 1(0) & 1(0) & 0.01(0) & 0.02(0) & 0.12(0.02) \\ 
  100 & 30 & 500 & 0.84 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.09(0.01) \\ 
  200 & 30 & 500 & 0.62 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.07(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   M2
Estimator:   ULSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 24 & 1 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.08(0.01) & 0.15(0.04) \\ 
  50 & 5 & 71 & 0.79 & 0.93(0.06) & 0.91(0.07) & 0.02(0.01) & 0.07(0.01) & 0.13(0.03) \\ 
  100 & 5 & 213 & 0.25 & 0.92(0.05) & 0.9(0.06) & 0.03(0.01) & 0.05(0.01) & 0.11(0.02) \\ 
  200 & 5 & 410 & 0 & 0.9(0.04) & 0.88(0.04) & 0.03(0.01) & 0.04(0.01) & 0.1(0.01) \\ 
  30 & 10 & 101 & 0.87 & 0.93(0.08) & 0.91(0.1) & 0.02(0.01) & 0.06(0.01) & 0.13(0.03) \\ 
  50 & 10 & 234 & 0.34 & 0.89(0.06) & 0.87(0.07) & 0.03(0.01) & 0.05(0.01) & 0.11(0.02) \\ 
  100 & 10 & 416 & 0 & 0.87(0.05) & 0.84(0.06) & 0.03(0.01) & 0.04(0.01) & 0.1(0.02) \\ 
  200 & 10 & 491 & 0 & 0.85(0.04) & 0.82(0.05) & 0.03(0) & 0.03(0) & 0.09(0.01) \\ 
  30 & 30 & 299 & 0.88 & 0.95(0.05) & 0.94(0.06) & 0.01(0.01) & 0.04(0.01) & 0.11(0.02) \\ 
  50 & 30 & 425 & 0.12 & 0.87(0.06) & 0.85(0.07) & 0.02(0) & 0.03(0.01) & 0.1(0.02) \\ 
  100 & 30 & 482 & 0 & 0.81(0.06) & 0.77(0.07) & 0.03(0) & 0.03(0.01) & 0.09(0.01) \\ 
  200 & 30 & 500 & 0 & 0.77(0.05) & 0.73(0.06) & 0.03(0) & 0.03(0) & 0.09(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   M2
Estimator:   ULSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 183 & 0.99 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.08(0.01) & 0.21(0.04) \\ 
  50 & 5 & 275 & 0.97 & 0.97(0.04) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.16(0.02) \\ 
  100 & 5 & 368 & 0.97 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\ 
  200 & 5 & 444 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\ 
  30 & 10 & 292 & 0.99 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.05(0.01) & 0.16(0.02) \\ 
  50 & 10 & 344 & 0.98 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\ 
  100 & 10 & 443 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\ 
  200 & 10 & 488 & 0.92 & 1(0) & 1(0.01) & 0.01(0) & 0.02(0) & 0.06(0.01) \\ 
  30 & 30 & 338 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.03(0) & 0.13(0.01) \\ 
  50 & 30 & 414 & 0.99 & 1(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.1(0.01) \\ 
  100 & 30 & 483 & 0.96 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\ 
  200 & 30 & 496 & 0.87 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   M2
Estimator:   ULSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 331 & 0.98 & 0.93(0.08) & 0.92(0.09) & 0.02(0.01) & 0.09(0.01) & 0.14(0.03) \\ 
  50 & 5 & 444 & 0.84 & 0.93(0.06) & 0.92(0.08) & 0.02(0.01) & 0.07(0.01) & 0.11(0.02) \\ 
  100 & 5 & 488 & 0.46 & 0.93(0.05) & 0.91(0.06) & 0.02(0.01) & 0.06(0.01) & 0.09(0.01) \\ 
  200 & 5 & 499 & 0.05 & 0.92(0.03) & 0.9(0.04) & 0.03(0.01) & 0.04(0.01) & 0.07(0.01) \\ 
  30 & 10 & 448 & 0.96 & 0.95(0.07) & 0.93(0.08) & 0.01(0.01) & 0.07(0.01) & 0.12(0.02) \\ 
  50 & 10 & 480 & 0.72 & 0.93(0.06) & 0.91(0.07) & 0.02(0.01) & 0.05(0.01) & 0.09(0.02) \\ 
  100 & 10 & 497 & 0.17 & 0.91(0.05) & 0.89(0.06) & 0.02(0.01) & 0.04(0.01) & 0.08(0.01) \\ 
  200 & 10 & 500 & 0 & 0.9(0.03) & 0.89(0.04) & 0.02(0) & 0.04(0.01) & 0.07(0.01) \\ 
  30 & 30 & 465 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.05(0.01) & 0.1(0.02) \\ 
  50 & 30 & 490 & 0.99 & 0.99(0.03) & 0.98(0.03) & 0(0) & 0.04(0.01) & 0.08(0.01) \\ 
  100 & 30 & 496 & 0.26 & 0.93(0.04) & 0.92(0.04) & 0.01(0) & 0.03(0.01) & 0.07(0.01) \\ 
  200 & 30 & 500 & 0 & 0.9(0.03) & 0.88(0.03) & 0.02(0) & 0.03(0.01) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   M2
Estimator:   ULSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 165 & 0.96 & 0.9(0.13) & 0.88(0.16) & 0.01(0.01) & 0.09(0.02) & 0.15(0.02) \\ 
  50 & 5 & 243 & 0.97 & 0.95(0.07) & 0.94(0.08) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\ 
  100 & 5 & 291 & 0.97 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\ 
  200 & 5 & 378 & 0.94 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\ 
  30 & 10 & 235 & 1 & 0.97(0.06) & 0.97(0.07) & 0(0.01) & 0.06(0.01) & 0.13(0.02) \\ 
  50 & 10 & 247 & 0.99 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\ 
  100 & 10 & 327 & 0.95 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\ 
  200 & 10 & 399 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.05(0.01) \\ 
  30 & 30 & 242 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.12(0.01) \\ 
  50 & 30 & 283 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.09(0.01) \\ 
  100 & 30 & 359 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\ 
  200 & 30 & 416 & 0.99 & 1(0.01) & 1(0.01) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   M2
Estimator:   ULSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 421 & 0.99 & 0.91(0.11) & 0.89(0.13) & 0.01(0.01) & 0.11(0.02) & 0.12(0.02) \\ 
  50 & 5 & 465 & 0.95 & 0.93(0.08) & 0.92(0.1) & 0.01(0.01) & 0.08(0.01) & 0.09(0.01) \\ 
  100 & 5 & 483 & 0.74 & 0.93(0.05) & 0.92(0.06) & 0.02(0.01) & 0.06(0.01) & 0.07(0.01) \\ 
  200 & 5 & 498 & 0.33 & 0.93(0.04) & 0.92(0.05) & 0.02(0.01) & 0.05(0.01) & 0.06(0.01) \\ 
  30 & 10 & 457 & 1 & 0.98(0.05) & 0.98(0.06) & 0(0.01) & 0.08(0.02) & 0.11(0.02) \\ 
  50 & 10 & 473 & 0.96 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.06(0.01) & 0.09(0.01) \\ 
  100 & 10 & 488 & 0.71 & 0.94(0.05) & 0.93(0.06) & 0.01(0.01) & 0.05(0.01) & 0.06(0.01) \\ 
  200 & 10 & 499 & 0.19 & 0.93(0.03) & 0.92(0.04) & 0.02(0) & 0.04(0.01) & 0.05(0.01) \\ 
  30 & 30 & 462 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.02) & 0.1(0.01) \\ 
  50 & 30 & 485 & 1 & 1(0) & 1(0) & 0(0) & 0.05(0.01) & 0.08(0.01) \\ 
  100 & 30 & 491 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.04(0.01) & 0.06(0.01) \\ 
  200 & 30 & 500 & 0.65 & 0.97(0.03) & 0.96(0.03) & 0.01(0) & 0.03(0.01) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5} 
\end{table}


 ===============================

Model:   M2
Estimator:   WLSMV 

===============================

Model:   M2
Estimator:   WLSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 29 & 1 & 0.98(0.03) & 0.98(0.04) & 0.01(0.01) & 0.07(0.01) & 0.35(0.06) \\ 
  50 & 5 & 85 & 1 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.3(0.06) \\ 
  100 & 5 & 275 & 0.93 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0.01) & 0.22(0.04) \\ 
  200 & 5 & 460 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.03) \\ 
  30 & 10 & 189 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.25(0.04) \\ 
  50 & 10 & 363 & 0.96 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.19(0.03) \\ 
  100 & 10 & 483 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.13(0.02) \\ 
  200 & 10 & 500 & 0.83 & 1(0) & 0.99(0.01) & 0.01(0) & 0.02(0) & 0.1(0.01) \\ 
  30 & 30 & 457 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.16(0.02) \\ 
  50 & 30 & 497 & 0.95 & 1(0) & 0.99(0.01) & 0.01(0) & 0.02(0) & 0.12(0.02) \\ 
  100 & 30 & 500 & 0.79 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.09(0.01) \\ 
  200 & 30 & 500 & 0.49 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.07(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   M2
Estimator:   WLSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 22 & 1 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.07(0.01) & 0.19(0.05) \\ 
  50 & 5 & 47 & 0.74 & 0.95(0.04) & 0.94(0.05) & 0.02(0.01) & 0.06(0.01) & 0.15(0.02) \\ 
  100 & 5 & 164 & 0.43 & 0.95(0.03) & 0.94(0.03) & 0.02(0.01) & 0.05(0.01) & 0.12(0.02) \\ 
  200 & 5 & 358 & 0.01 & 0.94(0.02) & 0.93(0.02) & 0.03(0.01) & 0.03(0) & 0.11(0.01) \\ 
  30 & 10 & 59 & 0.97 & 0.97(0.02) & 0.97(0.03) & 0.02(0.01) & 0.05(0.01) & 0.15(0.03) \\ 
  50 & 10 & 136 & 0.7 & 0.97(0.02) & 0.96(0.03) & 0.02(0.01) & 0.04(0.01) & 0.13(0.02) \\ 
  100 & 10 & 307 & 0.05 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.03(0) & 0.11(0.01) \\ 
  200 & 10 & 461 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.02(0) & 0.1(0.01) \\ 
  30 & 30 & 131 & 0.97 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.13(0.02) \\ 
  50 & 30 & 274 & 0.6 & 0.98(0.01) & 0.98(0.01) & 0.01(0) & 0.02(0) & 0.12(0.01) \\ 
  100 & 30 & 419 & 0 & 0.97(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.11(0.01) \\ 
  200 & 30 & 498 & 0 & 0.97(0.01) & 0.96(0.01) & 0.02(0) & 0.01(0) & 0.11(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   M2
Estimator:   WLSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 118 & 0.97 & 0.96(0.04) & 0.96(0.05) & 0.02(0.01) & 0.08(0.01) & 0.21(0.04) \\ 
  50 & 5 & 212 & 0.95 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.15(0.02) \\ 
  100 & 5 & 341 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\ 
  200 & 5 & 425 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\ 
  30 & 10 & 205 & 0.97 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.05(0.01) & 0.16(0.02) \\ 
  50 & 10 & 307 & 0.98 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\ 
  100 & 10 & 423 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\ 
  200 & 10 & 487 & 0.92 & 1(0) & 1(0) & 0.01(0) & 0.02(0) & 0.06(0.01) \\ 
  30 & 30 & 319 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.13(0.01) \\ 
  50 & 30 & 410 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\ 
  100 & 30 & 478 & 0.96 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\ 
  200 & 30 & 497 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   M2
Estimator:   WLSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 347 & 0.94 & 0.95(0.05) & 0.94(0.06) & 0.02(0.01) & 0.08(0.01) & 0.16(0.03) \\ 
  50 & 5 & 455 & 0.89 & 0.96(0.03) & 0.95(0.04) & 0.02(0.01) & 0.06(0.01) & 0.13(0.02) \\ 
  100 & 5 & 498 & 0.61 & 0.96(0.02) & 0.96(0.03) & 0.02(0.01) & 0.04(0.01) & 0.1(0.01) \\ 
  200 & 5 & 500 & 0.14 & 0.96(0.02) & 0.96(0.02) & 0.02(0.01) & 0.03(0) & 0.08(0.01) \\ 
  30 & 10 & 454 & 0.97 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.05(0.01) & 0.14(0.02) \\ 
  50 & 10 & 495 & 0.85 & 0.98(0.02) & 0.97(0.02) & 0.02(0.01) & 0.04(0.01) & 0.11(0.02) \\ 
  100 & 10 & 500 & 0.34 & 0.97(0.01) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.09(0.01) \\ 
  200 & 10 & 500 & 0.01 & 0.97(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.08(0.01) \\ 
  30 & 30 & 485 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.02) \\ 
  50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\ 
  100 & 30 & 500 & 0.52 & 0.99(0) & 0.99(0.01) & 0.01(0) & 0.02(0) & 0.09(0.01) \\ 
  200 & 30 & 500 & 0 & 0.99(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.08(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   M2
Estimator:   WLSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 105 & 0.95 & 0.96(0.05) & 0.95(0.06) & 0.02(0.01) & 0.08(0.01) & 0.16(0.02) \\ 
  50 & 5 & 196 & 0.97 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\ 
  100 & 5 & 266 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\ 
  200 & 5 & 360 & 0.96 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\ 
  30 & 10 & 195 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.13(0.01) \\ 
  50 & 10 & 219 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\ 
  100 & 10 & 307 & 0.96 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\ 
  200 & 10 & 390 & 0.94 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\ 
  30 & 30 & 217 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.01) \\ 
  50 & 30 & 275 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.09(0.01) \\ 
  100 & 30 & 346 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\ 
  200 & 30 & 414 & 1 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   M2
Estimator:   WLSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 458 & 0.98 & 0.96(0.04) & 0.95(0.05) & 0.02(0.01) & 0.08(0.01) & 0.15(0.02) \\ 
  50 & 5 & 498 & 0.95 & 0.97(0.03) & 0.96(0.04) & 0.02(0.01) & 0.06(0.01) & 0.11(0.01) \\ 
  100 & 5 & 500 & 0.77 & 0.97(0.02) & 0.97(0.03) & 0.02(0.01) & 0.05(0.01) & 0.08(0.01) \\ 
  200 & 5 & 500 & 0.42 & 0.98(0.01) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.06(0.01) \\ 
  30 & 10 & 487 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.05(0.01) & 0.13(0.02) \\ 
  50 & 10 & 500 & 0.97 & 0.99(0.01) & 0.98(0.02) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\ 
  100 & 10 & 500 & 0.77 & 0.99(0.01) & 0.98(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\ 
  200 & 10 & 500 & 0.27 & 0.99(0.01) & 0.98(0.01) & 0.01(0) & 0.02(0) & 0.06(0.01) \\ 
  30 & 30 & 495 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.02) \\ 
  50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\ 
  100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\ 
  200 & 30 & 500 & 0.73 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5} 
\end{table}


 ===============================

Model:   M12
Estimator:   MLR 

===============================

Model:   M12
Estimator:   MLR
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 255 & 0.1 & 0.77(0.14) & 0.73(0.16) & 0.07(0.02) & 0.08(0.04) & 0.32(0.06) \\ 
  50 & 5 & 276 & 0.1 & 0.86(0.06) & 0.83(0.07) & 0.05(0.01) & 0.06(0.01) & 0.28(0.04) \\ 
  100 & 5 & 376 & 0.01 & 0.89(0.04) & 0.87(0.04) & 0.04(0.01) & 0.05(0.01) & 0.22(0.03) \\ 
  200 & 5 & 468 & 0 & 0.91(0.02) & 0.9(0.03) & 0.04(0) & 0.05(0.01) & 0.17(0.02) \\ 
  30 & 10 & 301 & 0.03 & 0.86(0.05) & 0.83(0.06) & 0.05(0.01) & 0.06(0.01) & 0.26(0.04) \\ 
  50 & 10 & 414 & 0.01 & 0.89(0.04) & 0.87(0.04) & 0.04(0.01) & 0.05(0.01) & 0.22(0.03) \\ 
  100 & 10 & 486 & 0 & 0.91(0.02) & 0.9(0.03) & 0.04(0) & 0.05(0) & 0.16(0.02) \\ 
  200 & 10 & 499 & 0 & 0.92(0.01) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.02) \\ 
  30 & 30 & 472 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0.01) & 0.05(0) & 0.19(0.03) \\ 
  50 & 30 & 496 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.04(0) & 0.15(0.02) \\ 
  100 & 30 & 500 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.11(0.01) \\ 
  200 & 30 & 500 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   M12
Estimator:   MLR
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 169 & 0.03 & 0.83(0.06) & 0.8(0.07) & 0.07(0.02) & 0.08(0.01) & 0.2(0.04) \\ 
  50 & 5 & 247 & 0.01 & 0.87(0.04) & 0.85(0.05) & 0.06(0.01) & 0.07(0.01) & 0.17(0.03) \\ 
  100 & 5 & 388 & 0 & 0.89(0.03) & 0.88(0.03) & 0.05(0.01) & 0.06(0.01) & 0.14(0.02) \\ 
  200 & 5 & 491 & 0 & 0.9(0.02) & 0.88(0.02) & 0.05(0) & 0.05(0.01) & 0.13(0.02) \\ 
  30 & 10 & 264 & 0.02 & 0.86(0.05) & 0.84(0.05) & 0.06(0.01) & 0.06(0.01) & 0.17(0.04) \\ 
  50 & 10 & 393 & 0 & 0.89(0.03) & 0.87(0.03) & 0.05(0.01) & 0.05(0.01) & 0.15(0.03) \\ 
  100 & 10 & 496 & 0 & 0.9(0.02) & 0.88(0.02) & 0.05(0) & 0.05(0.01) & 0.13(0.02) \\ 
  200 & 10 & 500 & 0 & 0.9(0.01) & 0.89(0.01) & 0.04(0) & 0.05(0) & 0.12(0.01) \\ 
  30 & 30 & 469 & 0 & 0.9(0.02) & 0.88(0.03) & 0.04(0.01) & 0.05(0) & 0.16(0.04) \\ 
  50 & 30 & 500 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.04(0) & 0.14(0.02) \\ 
  100 & 30 & 500 & 0 & 0.91(0.01) & 0.89(0.01) & 0.04(0) & 0.04(0) & 0.13(0.02) \\ 
  200 & 30 & 500 & 0 & 0.91(0.01) & 0.89(0.01) & 0.04(0) & 0.04(0) & 0.12(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   M12
Estimator:   MLR
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 205 & 0.28 & 0.8(0.13) & 0.76(0.15) & 0.05(0.02) & 0.07(0.01) & 0.23(0.03) \\ 
  50 & 5 & 274 & 0.35 & 0.88(0.07) & 0.86(0.08) & 0.04(0.01) & 0.06(0.01) & 0.19(0.02) \\ 
  100 & 5 & 373 & 0.14 & 0.91(0.05) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.14(0.02) \\ 
  200 & 5 & 443 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\ 
  30 & 10 & 295 & 0.13 & 0.87(0.06) & 0.84(0.07) & 0.04(0.01) & 0.06(0.01) & 0.2(0.02) \\ 
  50 & 10 & 350 & 0.06 & 0.9(0.04) & 0.88(0.05) & 0.04(0.01) & 0.05(0.01) & 0.15(0.02) \\ 
  100 & 10 & 440 & 0 & 0.91(0.02) & 0.89(0.03) & 0.03(0.01) & 0.05(0.01) & 0.11(0.01) \\ 
  200 & 10 & 490 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.08(0.01) \\ 
  30 & 30 & 347 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0.01) & 0.05(0.01) & 0.16(0.02) \\ 
  50 & 30 & 418 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.13(0.01) \\ 
  100 & 30 & 485 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.09(0.01) \\ 
  200 & 30 & 497 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   M12
Estimator:   MLR
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 382 & 0.17 & 0.83(0.09) & 0.8(0.1) & 0.06(0.02) & 0.08(0.01) & 0.18(0.03) \\ 
  50 & 5 & 465 & 0.15 & 0.88(0.05) & 0.86(0.06) & 0.05(0.01) & 0.07(0.01) & 0.15(0.02) \\ 
  100 & 5 & 494 & 0.01 & 0.9(0.03) & 0.89(0.04) & 0.04(0.01) & 0.05(0.01) & 0.12(0.02) \\ 
  200 & 5 & 500 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.05(0) & 0.1(0.01) \\ 
  30 & 10 & 473 & 0.06 & 0.87(0.05) & 0.85(0.06) & 0.05(0.01) & 0.06(0.01) & 0.17(0.03) \\ 
  50 & 10 & 494 & 0.01 & 0.9(0.03) & 0.88(0.04) & 0.04(0.01) & 0.05(0.01) & 0.13(0.02) \\ 
  100 & 10 & 500 & 0 & 0.91(0.02) & 0.89(0.03) & 0.04(0) & 0.05(0) & 0.1(0.01) \\ 
  200 & 10 & 500 & 0 & 0.91(0.01) & 0.9(0.02) & 0.04(0) & 0.04(0) & 0.09(0.01) \\ 
  30 & 30 & 489 & 0 & 0.9(0.02) & 0.89(0.03) & 0.04(0.01) & 0.05(0) & 0.15(0.02) \\ 
  50 & 30 & 496 & 0 & 0.91(0.02) & 0.9(0.02) & 0.04(0) & 0.04(0) & 0.12(0.02) \\ 
  100 & 30 & 500 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.1(0.01) \\ 
  200 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.09(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   M12
Estimator:   MLR
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 172 & 0.38 & 0.81(0.1) & 0.78(0.12) & 0.05(0.02) & 0.07(0.01) & 0.19(0.02) \\ 
  50 & 5 & 246 & 0.39 & 0.88(0.07) & 0.86(0.08) & 0.03(0.01) & 0.06(0.01) & 0.15(0.02) \\ 
  100 & 5 & 304 & 0.21 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.11(0.01) \\ 
  200 & 5 & 377 & 0.01 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.05(0.01) & 0.07(0.01) \\ 
  30 & 10 & 216 & 0.26 & 0.88(0.06) & 0.86(0.07) & 0.04(0.01) & 0.06(0.01) & 0.17(0.02) \\ 
  50 & 10 & 243 & 0.09 & 0.9(0.04) & 0.88(0.04) & 0.03(0.01) & 0.05(0.01) & 0.13(0.01) \\ 
  100 & 10 & 327 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.09(0.01) \\ 
  200 & 10 & 393 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.06(0.01) \\ 
  30 & 30 & 249 & 0 & 0.9(0.02) & 0.88(0.03) & 0.04(0) & 0.05(0) & 0.16(0.02) \\ 
  50 & 30 & 277 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.01) \\ 
  100 & 30 & 357 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\ 
  200 & 30 & 418 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   M12
Estimator:   MLR
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 459 & 0.3 & 0.82(0.09) & 0.79(0.11) & 0.05(0.02) & 0.07(0.01) & 0.18(0.03) \\ 
  50 & 5 & 493 & 0.36 & 0.89(0.07) & 0.87(0.08) & 0.04(0.01) & 0.06(0.01) & 0.13(0.02) \\ 
  100 & 5 & 499 & 0.07 & 0.9(0.04) & 0.89(0.04) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\ 
  200 & 5 & 500 & 0 & 0.91(0.02) & 0.9(0.03) & 0.03(0) & 0.05(0.01) & 0.08(0.01) \\ 
  30 & 10 & 481 & 0.18 & 0.88(0.06) & 0.85(0.07) & 0.04(0.01) & 0.06(0.01) & 0.16(0.02) \\ 
  50 & 10 & 499 & 0.07 & 0.9(0.04) & 0.89(0.04) & 0.03(0.01) & 0.05(0.01) & 0.12(0.02) \\ 
  100 & 10 & 500 & 0 & 0.91(0.02) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.09(0.01) \\ 
  200 & 10 & 500 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.07(0.01) \\ 
  30 & 30 & 491 & 0 & 0.9(0.03) & 0.89(0.03) & 0.03(0.01) & 0.04(0) & 0.15(0.02) \\ 
  50 & 30 & 500 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.02) \\ 
  100 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.09(0.01) \\ 
  200 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.07(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.5 and ICC_L 0.5} 
\end{table}


 ===============================

Model:   M12
Estimator:   ULSMV 

===============================

Model:   M12
Estimator:   ULSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 20 & 1 & 0.95(0.05) & 0.94(0.05) & 0.02(0.01) & 0.09(0.01) & 0.35(0.06) \\ 
  50 & 5 & 74 & 0.61 & 0.93(0.05) & 0.92(0.06) & 0.03(0.01) & 0.07(0.01) & 0.32(0.06) \\ 
  100 & 5 & 226 & 0.09 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.22(0.05) \\ 
  200 & 5 & 410 & 0 & 0.93(0.02) & 0.91(0.03) & 0.04(0.01) & 0.05(0.01) & 0.15(0.03) \\ 
  30 & 10 & 174 & 0.43 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.07(0.01) & 0.26(0.05) \\ 
  50 & 10 & 313 & 0.05 & 0.93(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.2(0.04) \\ 
  100 & 10 & 422 & 0 & 0.92(0.02) & 0.91(0.02) & 0.04(0.01) & 0.05(0.01) & 0.13(0.02) \\ 
  200 & 10 & 469 & 0 & 0.92(0.01) & 0.91(0.02) & 0.04(0) & 0.05(0) & 0.09(0.01) \\ 
  30 & 30 & 390 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0.01) & 0.05(0.01) & 0.16(0.02) \\ 
  50 & 30 & 453 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.12(0.02) \\ 
  100 & 30 & 485 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.09(0.01) \\ 
  200 & 30 & 499 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   M12
Estimator:   ULSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 11 & 0.82 & 0.9(0.12) & 0.88(0.14) & 0.02(0.02) & 0.09(0.01) & 0.16(0.04) \\ 
  50 & 5 & 32 & 0.44 & 0.87(0.07) & 0.85(0.08) & 0.03(0.01) & 0.08(0.01) & 0.14(0.03) \\ 
  100 & 5 & 33 & 0.06 & 0.87(0.04) & 0.85(0.05) & 0.04(0.01) & 0.07(0.01) & 0.12(0.02) \\ 
  200 & 5 & 34 & 0 & 0.86(0.04) & 0.83(0.05) & 0.04(0.01) & 0.06(0.01) & 0.11(0.02) \\ 
  30 & 10 & 30 & 0.47 & 0.86(0.08) & 0.83(0.1) & 0.03(0.01) & 0.07(0.01) & 0.15(0.04) \\ 
  50 & 10 & 42 & 0.14 & 0.85(0.07) & 0.82(0.08) & 0.03(0.01) & 0.06(0.01) & 0.12(0.03) \\ 
  100 & 10 & 26 & 0 & 0.82(0.05) & 0.79(0.06) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\ 
  200 & 10 & 8 & 0 & 0.77(0.05) & 0.73(0.05) & 0.04(0) & 0.05(0.01) & 0.11(0.02) \\ 
  30 & 30 & 42 & 0.36 & 0.88(0.05) & 0.86(0.06) & 0.02(0.01) & 0.06(0.01) & 0.12(0.03) \\ 
  50 & 30 & 28 & 0 & 0.81(0.05) & 0.78(0.06) & 0.03(0) & 0.06(0) & 0.11(0.02) \\ 
  100 & 30 & 5 & 0 & 0.75(0.03) & 0.7(0.04) & 0.03(0) & 0.05(0) & 0.09(0.02) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   M12
Estimator:   ULSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 173 & 0.95 & 0.92(0.08) & 0.9(0.09) & 0.02(0.01) & 0.09(0.01) & 0.21(0.04) \\ 
  50 & 5 & 246 & 0.76 & 0.92(0.06) & 0.91(0.07) & 0.02(0.01) & 0.07(0.01) & 0.16(0.02) \\ 
  100 & 5 & 365 & 0.3 & 0.93(0.04) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.11(0.01) \\ 
  200 & 5 & 440 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\ 
  30 & 10 & 277 & 0.84 & 0.92(0.05) & 0.91(0.06) & 0.02(0.01) & 0.07(0.01) & 0.16(0.02) \\ 
  50 & 10 & 351 & 0.38 & 0.93(0.03) & 0.91(0.04) & 0.02(0.01) & 0.06(0.01) & 0.12(0.01) \\ 
  100 & 10 & 444 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\ 
  200 & 10 & 488 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\ 
  30 & 30 & 343 & 0.93 & 0.97(0.03) & 0.96(0.03) & 0.01(0.01) & 0.06(0.01) & 0.13(0.01) \\ 
  50 & 30 & 419 & 0.31 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0) & 0.1(0.01) \\ 
  100 & 30 & 485 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\ 
  200 & 30 & 496 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   M12
Estimator:   ULSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 292 & 0.93 & 0.9(0.1) & 0.88(0.12) & 0.02(0.01) & 0.11(0.01) & 0.14(0.03) \\ 
  50 & 5 & 362 & 0.66 & 0.89(0.08) & 0.87(0.09) & 0.03(0.01) & 0.09(0.01) & 0.11(0.02) \\ 
  100 & 5 & 393 & 0.17 & 0.89(0.05) & 0.87(0.06) & 0.03(0.01) & 0.07(0.01) & 0.09(0.01) \\ 
  200 & 5 & 432 & 0 & 0.89(0.03) & 0.87(0.04) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\ 
  30 & 10 & 353 & 0.89 & 0.91(0.08) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.12(0.02) \\ 
  50 & 10 & 379 & 0.48 & 0.89(0.06) & 0.87(0.07) & 0.02(0.01) & 0.07(0.01) & 0.1(0.02) \\ 
  100 & 10 & 419 & 0.02 & 0.88(0.04) & 0.85(0.05) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\ 
  200 & 10 & 452 & 0 & 0.87(0.03) & 0.84(0.04) & 0.03(0) & 0.05(0) & 0.06(0.01) \\ 
  30 & 30 & 381 & 1 & 1(0.02) & 1(0.02) & 0(0) & 0.06(0.01) & 0.1(0.02) \\ 
  50 & 30 & 413 & 0.93 & 0.97(0.04) & 0.96(0.04) & 0.01(0) & 0.06(0.01) & 0.08(0.01) \\ 
  100 & 30 & 447 & 0.01 & 0.9(0.03) & 0.88(0.04) & 0.02(0) & 0.05(0) & 0.07(0.01) \\ 
  200 & 30 & 477 & 0 & 0.86(0.03) & 0.84(0.03) & 0.02(0) & 0.05(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   M12
Estimator:   ULSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 153 & 0.95 & 0.87(0.14) & 0.84(0.17) & 0.02(0.01) & 0.1(0.02) & 0.15(0.02) \\ 
  50 & 5 & 243 & 0.94 & 0.9(0.09) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.12(0.01) \\ 
  100 & 5 & 299 & 0.77 & 0.93(0.05) & 0.92(0.06) & 0.02(0.01) & 0.06(0.01) & 0.08(0.01) \\ 
  200 & 5 & 378 & 0.36 & 0.94(0.03) & 0.93(0.03) & 0.02(0) & 0.06(0.01) & 0.06(0.01) \\ 
  30 & 10 & 213 & 0.99 & 0.95(0.07) & 0.94(0.09) & 0.01(0.01) & 0.07(0.01) & 0.13(0.01) \\ 
  50 & 10 & 241 & 0.94 & 0.93(0.06) & 0.92(0.07) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\ 
  100 & 10 & 329 & 0.66 & 0.94(0.04) & 0.93(0.04) & 0.01(0.01) & 0.06(0.01) & 0.07(0.01) \\ 
  200 & 10 & 397 & 0.13 & 0.94(0.02) & 0.93(0.02) & 0.02(0) & 0.05(0) & 0.05(0.01) \\ 
  30 & 30 & 249 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.01) & 0.12(0.01) \\ 
  50 & 30 & 283 & 1 & 1(0) & 1(0) & 0(0) & 0.05(0) & 0.09(0.01) \\ 
  100 & 30 & 358 & 0.99 & 0.98(0.02) & 0.98(0.02) & 0(0) & 0.05(0) & 0.07(0.01) \\ 
  200 & 30 & 416 & 0.22 & 0.96(0.01) & 0.95(0.02) & 0.01(0) & 0.05(0) & 0.05(0) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   M12
Estimator:   ULSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 400 & 0.99 & 0.89(0.12) & 0.87(0.14) & 0.02(0.01) & 0.12(0.02) & 0.12(0.02) \\ 
  50 & 5 & 446 & 0.93 & 0.91(0.09) & 0.89(0.1) & 0.02(0.01) & 0.09(0.01) & 0.09(0.01) \\ 
  100 & 5 & 477 & 0.57 & 0.9(0.06) & 0.89(0.07) & 0.02(0.01) & 0.08(0.01) & 0.07(0.01) \\ 
  200 & 5 & 498 & 0.11 & 0.91(0.04) & 0.89(0.04) & 0.02(0) & 0.06(0.01) & 0.05(0.01) \\ 
  30 & 10 & 441 & 0.99 & 0.97(0.07) & 0.96(0.08) & 0(0.01) & 0.09(0.01) & 0.11(0.02) \\ 
  50 & 10 & 464 & 0.94 & 0.93(0.07) & 0.92(0.08) & 0.01(0.01) & 0.08(0.01) & 0.08(0.01) \\ 
  100 & 10 & 483 & 0.48 & 0.91(0.05) & 0.9(0.06) & 0.02(0.01) & 0.06(0.01) & 0.06(0.01) \\ 
  200 & 10 & 499 & 0.02 & 0.91(0.03) & 0.89(0.04) & 0.02(0) & 0.06(0.01) & 0.05(0.01) \\ 
  30 & 30 & 444 & 1 & 1(0) & 1(0) & 0(0) & 0.08(0.01) & 0.1(0.01) \\ 
  50 & 30 & 478 & 1 & 1(0) & 1(0) & 0(0) & 0.07(0.01) & 0.08(0.01) \\ 
  100 & 30 & 493 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0) & 0.06(0.01) & 0.06(0.01) \\ 
  200 & 30 & 499 & 0.32 & 0.94(0.03) & 0.93(0.03) & 0.01(0) & 0.05(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5} 
\end{table}


 ===============================

Model:   M12
Estimator:   WLSMV 

===============================

Model:   M12
Estimator:   WLSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 31 & 0.94 & 0.94(0.05) & 0.93(0.06) & 0.02(0.01) & 0.09(0.01) & 0.35(0.06) \\ 
  50 & 5 & 78 & 0.68 & 0.93(0.05) & 0.92(0.06) & 0.03(0.01) & 0.07(0.01) & 0.3(0.05) \\ 
  100 & 5 & 230 & 0.2 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.22(0.04) \\ 
  200 & 5 & 418 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.05(0.01) & 0.15(0.03) \\ 
  30 & 10 & 182 & 0.62 & 0.93(0.04) & 0.92(0.05) & 0.03(0.01) & 0.07(0.01) & 0.25(0.05) \\ 
  50 & 10 & 325 & 0.15 & 0.93(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.19(0.03) \\ 
  100 & 10 & 444 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0.01) & 0.13(0.02) \\ 
  200 & 10 & 481 & 0 & 0.93(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.09(0.01) \\ 
  30 & 30 & 421 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0.01) & 0.16(0.02) \\ 
  50 & 30 & 475 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.12(0.01) \\ 
  100 & 30 & 495 & 0 & 0.93(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.09(0.01) \\ 
  200 & 30 & 499 & 0 & 0.93(0.01) & 0.91(0.01) & 0.03(0) & 0.05(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1} 
\end{table}

===============================

Model:   M12
Estimator:   WLSMV
ICC Obs. Var.:   0.1
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 19 & 0.79 & 0.91(0.09) & 0.89(0.1) & 0.03(0.02) & 0.09(0.01) & 0.2(0.06) \\ 
  50 & 5 & 36 & 0.22 & 0.89(0.04) & 0.87(0.05) & 0.04(0.01) & 0.08(0.01) & 0.16(0.03) \\ 
  100 & 5 & 54 & 0.02 & 0.9(0.04) & 0.88(0.04) & 0.04(0.01) & 0.06(0.01) & 0.12(0.02) \\ 
  200 & 5 & 69 & 0 & 0.88(0.03) & 0.86(0.03) & 0.04(0) & 0.06(0.01) & 0.11(0.02) \\ 
  30 & 10 & 32 & 0.34 & 0.91(0.06) & 0.89(0.07) & 0.03(0.01) & 0.07(0.01) & 0.16(0.04) \\ 
  50 & 10 & 60 & 0.03 & 0.89(0.04) & 0.87(0.05) & 0.04(0.01) & 0.06(0.01) & 0.12(0.02) \\ 
  100 & 10 & 67 & 0 & 0.87(0.04) & 0.85(0.04) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\ 
  200 & 10 & 41 & 0 & 0.87(0.02) & 0.84(0.03) & 0.04(0) & 0.05(0) & 0.1(0.02) \\ 
  30 & 30 & 69 & 0.03 & 0.92(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.13(0.02) \\ 
  50 & 30 & 81 & 0 & 0.9(0.02) & 0.88(0.03) & 0.03(0) & 0.05(0) & 0.11(0.02) \\ 
  100 & 30 & 55 & 0 & 0.87(0.02) & 0.84(0.03) & 0.04(0) & 0.05(0) & 0.1(0.01) \\ 
  200 & 30 & 18 & 0 & 0.86(0.02) & 0.83(0.02) & 0.04(0) & 0.05(0) & 0.09(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5} 
\end{table}

===============================

Model:   M12
Estimator:   WLSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 117 & 0.9 & 0.91(0.07) & 0.9(0.08) & 0.03(0.01) & 0.09(0.01) & 0.21(0.04) \\ 
  50 & 5 & 200 & 0.63 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.16(0.02) \\ 
  100 & 5 & 333 & 0.21 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.11(0.01) \\ 
  200 & 5 & 420 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\ 
  30 & 10 & 193 & 0.57 & 0.93(0.04) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.15(0.02) \\ 
  50 & 10 & 311 & 0.16 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.12(0.01) \\ 
  100 & 10 & 418 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\ 
  200 & 10 & 485 & 0 & 0.94(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\ 
  30 & 30 & 319 & 0.14 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.06(0.01) & 0.13(0.01) \\ 
  50 & 30 & 403 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.1(0.01) \\ 
  100 & 30 & 482 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.07(0.01) \\ 
  200 & 30 & 498 & 0 & 0.94(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1} 
\end{table}

===============================

Model:   M12
Estimator:   WLSMV
ICC Obs. Var.:   0.3
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 286 & 0.81 & 0.91(0.07) & 0.89(0.08) & 0.03(0.01) & 0.09(0.01) & 0.16(0.03) \\ 
  50 & 5 & 318 & 0.51 & 0.91(0.05) & 0.89(0.06) & 0.03(0.01) & 0.08(0.01) & 0.13(0.02) \\ 
  100 & 5 & 354 & 0.06 & 0.91(0.03) & 0.9(0.04) & 0.03(0.01) & 0.06(0.01) & 0.09(0.01) \\ 
  200 & 5 & 389 & 0 & 0.91(0.02) & 0.9(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\ 
  30 & 10 & 342 & 0.53 & 0.92(0.04) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.14(0.02) \\ 
  50 & 10 & 356 & 0.11 & 0.92(0.03) & 0.9(0.04) & 0.03(0.01) & 0.06(0.01) & 0.11(0.02) \\ 
  100 & 10 & 371 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\ 
  200 & 10 & 401 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.05(0) & 0.07(0.01) \\ 
  30 & 30 & 341 & 0.74 & 0.97(0.02) & 0.96(0.02) & 0.01(0.01) & 0.06(0.01) & 0.12(0.02) \\ 
  50 & 30 & 370 & 0.04 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0.01) & 0.09(0.01) \\ 
  100 & 30 & 406 & 0 & 0.93(0.01) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.08(0.01) \\ 
  200 & 30 & 413 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.05(0) & 0.06(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5} 
\end{table}

===============================

Model:   M12
Estimator:   WLSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.1 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 95 & 0.8 & 0.91(0.07) & 0.89(0.08) & 0.03(0.02) & 0.09(0.01) & 0.15(0.02) \\ 
  50 & 5 & 179 & 0.7 & 0.92(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.12(0.01) \\ 
  100 & 5 & 266 & 0.27 & 0.93(0.03) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\ 
  200 & 5 & 353 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\ 
  30 & 10 & 185 & 0.83 & 0.95(0.04) & 0.94(0.04) & 0.02(0.01) & 0.07(0.01) & 0.13(0.01) \\ 
  50 & 10 & 217 & 0.29 & 0.94(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\ 
  100 & 10 & 305 & 0 & 0.94(0.02) & 0.93(0.02) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\ 
  200 & 10 & 387 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\ 
  30 & 30 & 211 & 0.98 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.06(0.01) & 0.12(0.01) \\ 
  50 & 30 & 265 & 0.41 & 0.97(0.01) & 0.96(0.02) & 0.01(0) & 0.05(0.01) & 0.09(0.01) \\ 
  100 & 30 & 343 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\ 
  200 & 30 & 409 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1} 
\end{table}

===============================

Model:   M12
Estimator:   WLSMV
ICC Obs. Var.:   0.5
ICC Lat. Var.:   0.5 
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:16 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
  \toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\ 
  \midrule
30 & 5 & 407 & 0.87 & 0.92(0.06) & 0.9(0.07) & 0.03(0.01) & 0.09(0.01) & 0.14(0.02) \\ 
  50 & 5 & 448 & 0.65 & 0.92(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.11(0.01) \\ 
  100 & 5 & 481 & 0.15 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.07(0.01) & 0.08(0.01) \\ 
  200 & 5 & 498 & 0 & 0.92(0.02) & 0.91(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\ 
  30 & 10 & 440 & 0.87 & 0.95(0.04) & 0.95(0.05) & 0.02(0.01) & 0.07(0.01) & 0.13(0.02) \\ 
  50 & 10 & 476 & 0.35 & 0.94(0.03) & 0.93(0.04) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\ 
  100 & 10 & 486 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\ 
  200 & 10 & 500 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\ 
  30 & 30 & 432 & 1 & 1(0) & 1(0.01) & 0(0) & 0.06(0.01) & 0.12(0.01) \\ 
  50 & 30 & 466 & 0.85 & 0.98(0.02) & 0.98(0.02) & 0.01(0) & 0.06(0.01) & 0.09(0.01) \\ 
  100 & 30 & 495 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\ 
  200 & 30 & 500 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\ 
   \bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5} 
\end{table}

sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] xtable_1.8-4     kableExtra_1.1.0 forcats_0.4.0    stringr_1.4.0   
 [5] dplyr_0.8.1      purrr_0.3.2      readr_1.3.1      tidyr_0.8.3     
 [9] tibble_2.1.1     ggplot2_3.2.0    tidyverse_1.2.1 

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5  xfun_0.7          haven_2.1.0      
 [4] lattice_0.20-38   colorspace_1.4-1  generics_0.0.2   
 [7] htmltools_0.3.6   viridisLite_0.3.0 yaml_2.2.0       
[10] rlang_0.3.4       pillar_1.4.1      glue_1.3.1       
[13] withr_2.1.2       modelr_0.1.4      readxl_1.3.1     
[16] munsell_0.5.0     gtable_0.3.0      workflowr_1.4.0  
[19] cellranger_1.1.0  rvest_0.3.4       evaluate_0.14    
[22] knitr_1.23        highr_0.8         broom_0.5.2      
[25] Rcpp_1.0.1        scales_1.0.0      backports_1.1.4  
[28] webshot_0.5.1     jsonlite_1.6      fs_1.3.1         
[31] hms_0.4.2         digest_0.6.19     stringi_1.4.3    
[34] grid_3.6.0        rprojroot_1.3-2   cli_1.1.0        
[37] tools_3.6.0       magrittr_1.5      lazyeval_0.2.2   
[40] crayon_1.3.4      whisker_0.3-2     pkgconfig_2.0.2  
[43] xml2_1.2.0        lubridate_1.7.4   assertthat_0.2.1 
[46] rmarkdown_1.13    httr_1.4.0        rstudioapi_0.10  
[49] R6_2.4.0          nlme_3.1-139      git2r_0.26.1     
[52] compiler_3.6.0