Last updated: 2019-09-29
Checks: 7 0
Knit directory: mcfa-fit/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190507)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .RData
Ignored: .RDataTmp
Ignored: .Rhistory
Ignored: .Rproj.user/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 6457362 | noah-padgett | 2019-09-29 | general update after first SEM review |
html | 6457362 | noah-padgett | 2019-09-29 | general update after first SEM review |
Purpose of this file:
The output is mostly just a lot of latex ready tables. Not all of these tables are included in the final publication, but we wanted to be as precise as possible with respect to the summary of the fit statistics.
##Chunk iptions
knitr::opts_chunk$set(out.width = "225%")
#setwd('C:/Users/noahp/Dropbox/MCFA Thesis/Code Results')
## Packages
## General Packages
library(tidyverse)
-- Attaching packages ---------------------------------------- tidyverse 1.2.1 --
v ggplot2 3.2.0 v purrr 0.3.2
v tibble 2.1.1 v dplyr 0.8.1
v tidyr 0.8.3 v stringr 1.4.0
v readr 1.3.1 v forcats 0.4.0
-- Conflicts ------------------------------------------- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
# Formatting and Tables
library(kableExtra)
Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':
group_rows
library(xtable)
# For plotting
library(ggplot2)
theme_set(theme_bw())
# Data manipulating
library(dplyr)
sim_results <- as_tibble(read.table('data/compiled_fit_results.txt', header=T,sep='\t'))
## Next, turn condition into a factor for plotting
sim_results$Condition <- as.factor(sim_results$Condition)
## Next, since TLI is non-normed, any value greater than 1 needs to be rescaled to 1.
sim_results$TLI <- ifelse(sim_results$TLI > 1, 1, sim_results$TLI)
sim_results$TLI <- ifelse(sim_results$TLI < 0, 0, sim_results$TLI)
## Next, summarize the results of the chi-square test of model fit. This is done simply by comparing the p-value to alpha (0.05) and indicating whether the model was flagged as fitting or not.
# Note: if p < 0.05 then this variable is flagged as 0, and 1 otherwise
sim_results$Chi2_pvalue_decision <- ifelse(sim_results$chisqu_pvalue < 0.05, 0, 1)
# 0 = rejected that these data fit this model
# 1 = failed to reject that these data fit this model
Currently, each condition is kind of like a hidden id that we don’t know what the actual factor is. So, first thing isto create meaningful labels for us to use. Remember, the 72 conditions for the this study were
## level-1 Sample size
ss_l1 <- c(5, 10, 30) ## 6 conditions each
ss_l2 <- c(30, 50, 100, 200) ## 18 condition each
icc_ov <- c(.1, .3, .5) ## 2 conditions each
icc_lv <- c(.1, .5) ## every other condition
nCon <- 72 # number of conditions
nRep <- 500 # number of replications per condition
nMod <- 12 ## numberof estimated models per conditions
## Total number of rows: 432,000
ss_l2 <- c(rep(ss_l2[1], 18*nRep*nMod), rep(ss_l2[2], 18*nRep*nMod),
rep(ss_l2[3], 18*nRep*nMod), rep(ss_l2[4], 18*nRep*nMod))
ss_l1 <- rep(c(rep(ss_l1[1],6*nRep*nMod), rep(ss_l1[2],6*nRep*nMod), rep(ss_l1[3],6*nRep*nMod)), 4)
icc_ov <- rep(c(rep(icc_ov[1], 2*nRep*nMod), rep(icc_ov[2], 2*nRep*nMod), rep(icc_ov[3], 2*nRep*nMod)), 12)
icc_lv <- rep(c(rep(icc_lv[1], nRep*nMod), rep(icc_lv[2], nRep*nMod)), 36)
## Force these vectors to be column vectors
ss_l1 <- matrix(ss_l1, ncol=1)
ss_l2 <- matrix(ss_l2, ncol=1)
icc_ov <- matrix(icc_ov, ncol=1)
icc_lv <- matrix(icc_lv, ncol=1)
## Add the labels to the results data frame
sim_results <- sim_results[order(sim_results$Condition),]
sim_results <- cbind(sim_results, ss_l1, ss_l2, icc_ov, icc_lv)
## Force the conditions to be factors
sim_results$ss_l1 <- as.factor(sim_results$ss_l1)
sim_results$ss_l2 <- as.factor(sim_results$ss_l2)
sim_results$icc_ov <- as.factor(sim_results$icc_ov)
sim_results$icc_lv <- as.factor(sim_results$icc_lv)
sim_results$Model <- factor(sim_results$Model, levels = c('C','M1','M2','M12'), ordered = T)
## Set up iterators for remainder of script
mods <- c('C', 'M1', 'M2', 'M12')
ests <- c('MLR', 'ULSMV', 'WLSMV')
For the descriptive statistics, I will use dplyr. From here I can easily create matrices that store the results so that I can easily print out the results for summarizing the results. Each will be printed out as a html table and a xtable (latex ready) table.
Now for the long process of making tables for the MANY conditions for the descriptive statistics. For this, we need to do this is steps so that all the information gets outputted in the correct manor for table. For each statistic under each condition, model, and estimator, the code below create a table that contains the average value and the standard deviation. Again, just like the descriptives above, a summary table was made to start.
These tables are made based only on the 1) converged models and 2) the admissible solutions.
The fit indices included are:
mydata <- filter(sim_results, Converge == 1 & Admissible == 1)
## first table summary table
a <- mydata %>%
group_by(Model, Estimator) %>%
summarise(
chi2=mean(Chi2_pvalue_decision, na.rm = T),
CFI.m =mean(CFI, na.rm = T), CFI.sd =sd(CFI, na.rm = T),
TLI.m =mean(TLI, na.rm = T), TLI.sd =sd(TLI, na.rm = T),
RMSEA.m =mean(RMSEA, na.rm = T), RMSEA.sd =sd(RMSEA, na.rm = T),
SRMRW.m =mean(SRMRW, na.rm = T), SRMRW.sd =sd(SRMRW, na.rm = T),
SRMRB.m =mean(SRMRB, na.rm = T), SRMRB.sd =sd(SRMRB, na.rm = T)
)
## Print results in a nice looking table in HTML
kable(a, format='html') %>%
kable_styling(full_width = T)
Model | Estimator | chi2 | CFI.m | CFI.sd | TLI.m | TLI.sd | RMSEA.m | RMSEA.sd | SRMRW.m | SRMRW.sd | SRMRB.m | SRMRB.sd |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | MLR | 0.8202745 | 0.9812052 | 0.0371156 | 0.9774462 | 0.0445387 | 0.0116853 | 0.0137071 | 0.0267436 | 0.0149748 | 0.1127033 | 0.0560528 |
C | ULSMV | 0.9768364 | 0.9893737 | 0.0304160 | 0.9872484 | 0.0364992 | 0.0043197 | 0.0069715 | 0.0374443 | 0.0219530 | 0.0824565 | 0.0464499 |
C | WLSMV | 0.9745022 | 0.9939143 | 0.0151637 | 0.9926972 | 0.0181964 | 0.0049618 | 0.0074547 | 0.0308598 | 0.0173622 | 0.0879603 | 0.0477328 |
M1 | MLR | 0.0598615 | 0.9095858 | 0.0452227 | 0.8915221 | 0.0539201 | 0.0359143 | 0.0096761 | 0.0493582 | 0.0110398 | 0.1123173 | 0.0500658 |
M1 | ULSMV | 0.4775854 | 0.9399431 | 0.0501061 | 0.9279318 | 0.0601273 | 0.0182307 | 0.0129284 | 0.0640931 | 0.0165727 | 0.0869087 | 0.0509335 |
M1 | WLSMV | 0.2267400 | 0.9366788 | 0.0326178 | 0.9240146 | 0.0391414 | 0.0275762 | 0.0097161 | 0.0594152 | 0.0126836 | 0.0939776 | 0.0759974 |
M2 | MLR | 0.5229346 | 0.9695725 | 0.0409948 | 0.9634997 | 0.0489183 | 0.0182297 | 0.0146701 | 0.0271783 | 0.0155180 | 0.1367468 | 0.0505995 |
M2 | ULSMV | 0.7160134 | 0.9542678 | 0.0645749 | 0.9451213 | 0.0774899 | 0.0114736 | 0.0114129 | 0.0410089 | 0.0218186 | 0.0968839 | 0.0424409 |
M2 | WLSMV | 0.7513266 | 0.9846025 | 0.0222259 | 0.9815230 | 0.0266711 | 0.0103058 | 0.0098072 | 0.0316043 | 0.0174071 | 0.1043579 | 0.0412210 |
M12 | MLR | 0.0441231 | 0.8985820 | 0.0458621 | 0.8799245 | 0.0538692 | 0.0386203 | 0.0105879 | 0.0490658 | 0.0112168 | 0.1308869 | 0.0509402 |
M12 | ULSMV | 0.4236863 | 0.9288116 | 0.0572006 | 0.9156980 | 0.0677375 | 0.0199017 | 0.0129339 | 0.0632456 | 0.0166762 | 0.0948095 | 0.0451347 |
M12 | WLSMV | 0.2105645 | 0.9331558 | 0.0339604 | 0.9208424 | 0.0402163 | 0.0281158 | 0.0096108 | 0.0590211 | 0.0124923 | 0.0994165 | 0.0444520 |
## make a copy of a to print into
a1 <- as_tibble(as.data.frame(matrix(NA, ncol=8,nrow=nrow(a))))
colnames(a1) <- c('Model', 'Estimation', "chi2", "CFI",'TLI', 'RMSEA', 'SRMRW', 'SRMRB')
i <- 1
for(i in 1:nrow(a)){
a1[i,3:8] <- unlist(c(
round(a[i,3],3),
paste0(round(a[i,4],3), ' (', round(a[i,5],2), ')'),
paste0(round(a[i,6],3), ' (', round(a[i,7],2), ')'),
paste0(round(a[i,8],3), ' (', round(a[i,9],2), ')'),
paste0(round(a[i,10],3), ' (', round(a[i,11],2), ')'),
paste0(round(a[i,12],3), ' (', round(a[i,12],2), ')')
))
}
a1[,1:2] <- a[,1:2]## add factors back
## Print out in tex
print(xtable(a1, digits = 3), booktabs = T, include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{llllllll}
\toprule
Model & Estimation & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
C & MLR & 0.82 & 0.981 (0.04) & 0.977 (0.04) & 0.012 (0.01) & 0.027 (0.01) & 0.113 (0.11) \\
C & ULSMV & 0.977 & 0.989 (0.03) & 0.987 (0.04) & 0.004 (0.01) & 0.037 (0.02) & 0.082 (0.08) \\
C & WLSMV & 0.975 & 0.994 (0.02) & 0.993 (0.02) & 0.005 (0.01) & 0.031 (0.02) & 0.088 (0.09) \\
M1 & MLR & 0.06 & 0.91 (0.05) & 0.892 (0.05) & 0.036 (0.01) & 0.049 (0.01) & 0.112 (0.11) \\
M1 & ULSMV & 0.478 & 0.94 (0.05) & 0.928 (0.06) & 0.018 (0.01) & 0.064 (0.02) & 0.087 (0.09) \\
M1 & WLSMV & 0.227 & 0.937 (0.03) & 0.924 (0.04) & 0.028 (0.01) & 0.059 (0.01) & 0.094 (0.09) \\
M2 & MLR & 0.523 & 0.97 (0.04) & 0.963 (0.05) & 0.018 (0.01) & 0.027 (0.02) & 0.137 (0.14) \\
M2 & ULSMV & 0.716 & 0.954 (0.06) & 0.945 (0.08) & 0.011 (0.01) & 0.041 (0.02) & 0.097 (0.1) \\
M2 & WLSMV & 0.751 & 0.985 (0.02) & 0.982 (0.03) & 0.01 (0.01) & 0.032 (0.02) & 0.104 (0.1) \\
M12 & MLR & 0.044 & 0.899 (0.05) & 0.88 (0.05) & 0.039 (0.01) & 0.049 (0.01) & 0.131 (0.13) \\
M12 & ULSMV & 0.424 & 0.929 (0.06) & 0.916 (0.07) & 0.02 (0.01) & 0.063 (0.02) & 0.095 (0.09) \\
M12 & WLSMV & 0.211 & 0.933 (0.03) & 0.921 (0.04) & 0.028 (0.01) & 0.059 (0.01) & 0.099 (0.1) \\
\bottomrule
\end{tabular}
\end{table}
An interesting additonal column is added called Prop.Use, which is the total proportion of usable replications for each marginal cell of the design. Each row of the following table represents the marginal distribution of each fit statistic over the ICC conditions. The total number of possible replications is 3000 (500 rep. \(\times\) 72 conditions). This gives a rough account of the admissibility of the estimation method across sample sizes.
mydata <- filter(sim_results, Converge == 1 & Admissible == 1)
## first table summary table
a <- mydata %>%
group_by(Model, Estimator, ss_l2, ss_l1) %>%
summarise(
Prop.Use=n()/3000,
chi2=mean(Chi2_pvalue_decision, na.rm = T),
CFI.m =mean(CFI, na.rm = T), CFI.sd =sd(CFI, na.rm = T),
TLI.m =mean(TLI, na.rm = T), TLI.sd =sd(TLI, na.rm = T),
RMSEA.m =mean(RMSEA, na.rm = T), RMSEA.sd =sd(RMSEA, na.rm = T),
SRMRW.m =mean(SRMRW, na.rm = T), SRMRW.sd =sd(SRMRW, na.rm = T),
SRMRB.m =mean(SRMRB, na.rm = T), SRMRB.sd =sd(SRMRB, na.rm = T)
)
## Print results in a nice looking table in HTML
kable(a, format='html') %>%
kable_styling(full_width = T)
Model | Estimator | ss_l2 | ss_l1 | Prop.Use | chi2 | CFI.m | CFI.sd | TLI.m | TLI.sd | RMSEA.m | RMSEA.sd | SRMRW.m | SRMRW.sd | SRMRB.m | SRMRB.sd |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | MLR | 30 | 5 | 0.5753333 | 0.5046350 | 0.8932985 | 0.0823341 | 0.8719582 | 0.0988009 | 0.0405051 | 0.0206701 | 0.0636427 | 0.0081998 | 0.2031333 | 0.0638188 |
C | MLR | 30 | 10 | 0.6846667 | 0.6183057 | 0.9516131 | 0.0392000 | 0.9419357 | 0.0470400 | 0.0249005 | 0.0142381 | 0.0418158 | 0.0055189 | 0.1709135 | 0.0473209 |
C | MLR | 30 | 30 | 0.8383333 | 0.6743539 | 0.9845929 | 0.0132663 | 0.9815114 | 0.0159196 | 0.0130712 | 0.0080568 | 0.0227393 | 0.0029658 | 0.1448123 | 0.0356252 |
C | MLR | 50 | 5 | 0.6773333 | 0.7337598 | 0.9571215 | 0.0418101 | 0.9485458 | 0.0501721 | 0.0221401 | 0.0159915 | 0.0493632 | 0.0065675 | 0.1597397 | 0.0549686 |
C | MLR | 50 | 10 | 0.7956667 | 0.7813155 | 0.9794866 | 0.0207334 | 0.9753839 | 0.0248801 | 0.0144655 | 0.0108222 | 0.0324331 | 0.0042679 | 0.1353715 | 0.0429718 |
C | MLR | 50 | 30 | 0.9016667 | 0.8473198 | 0.9939626 | 0.0065780 | 0.9927551 | 0.0078936 | 0.0072079 | 0.0059472 | 0.0175935 | 0.0022846 | 0.1106368 | 0.0269979 |
C | MLR | 100 | 5 | 0.8056667 | 0.8634671 | 0.9847650 | 0.0181757 | 0.9817180 | 0.0218109 | 0.0115672 | 0.0103175 | 0.0349806 | 0.0045561 | 0.1190202 | 0.0483755 |
C | MLR | 100 | 10 | 0.9200000 | 0.9094203 | 0.9932192 | 0.0082911 | 0.9918630 | 0.0099493 | 0.0074047 | 0.0068392 | 0.0230136 | 0.0029498 | 0.0956019 | 0.0326032 |
C | MLR | 100 | 30 | 0.9456667 | 0.9139937 | 0.9977692 | 0.0029064 | 0.9973231 | 0.0034877 | 0.0039914 | 0.0039469 | 0.0124694 | 0.0016427 | 0.0778343 | 0.0186974 |
C | MLR | 200 | 5 | 0.9233333 | 0.9173285 | 0.9939687 | 0.0080929 | 0.9927624 | 0.0097115 | 0.0067031 | 0.0067363 | 0.0248031 | 0.0032101 | 0.0876249 | 0.0391772 |
C | MLR | 200 | 10 | 0.9630000 | 0.9224645 | 0.9971589 | 0.0040648 | 0.9965907 | 0.0048778 | 0.0043523 | 0.0047177 | 0.0161595 | 0.0021331 | 0.0675193 | 0.0222516 |
C | MLR | 200 | 30 | 0.9753333 | 0.9371155 | 0.9990867 | 0.0013090 | 0.9989041 | 0.0015708 | 0.0023794 | 0.0026531 | 0.0087901 | 0.0011544 | 0.0547267 | 0.0130280 |
C | ULSMV | 30 | 5 | 0.4010000 | 0.9890756 | 0.9454461 | 0.0874627 | 0.9345353 | 0.1049552 | 0.0107766 | 0.0127331 | 0.0940581 | 0.0187408 | 0.1437741 | 0.0472604 |
C | ULSMV | 30 | 10 | 0.5730000 | 0.9941759 | 0.9832451 | 0.0397025 | 0.9798941 | 0.0476430 | 0.0049432 | 0.0079180 | 0.0630602 | 0.0151495 | 0.1308273 | 0.0529347 |
C | ULSMV | 30 | 30 | 0.7620000 | 0.9991251 | 0.9989324 | 0.0038866 | 0.9987189 | 0.0046639 | 0.0011944 | 0.0033515 | 0.0385429 | 0.0142576 | 0.1087197 | 0.0325369 |
C | ULSMV | 50 | 5 | 0.5316667 | 0.9774295 | 0.9647630 | 0.0524855 | 0.9577156 | 0.0629826 | 0.0102355 | 0.0112933 | 0.0698603 | 0.0132705 | 0.1186968 | 0.0593424 |
C | ULSMV | 50 | 10 | 0.7073333 | 0.9844486 | 0.9833106 | 0.0300769 | 0.9799727 | 0.0360923 | 0.0062335 | 0.0075432 | 0.0471195 | 0.0115804 | 0.1054053 | 0.0446192 |
C | ULSMV | 50 | 30 | 0.8796667 | 0.9954528 | 0.9987028 | 0.0044795 | 0.9984434 | 0.0053754 | 0.0013230 | 0.0030596 | 0.0290815 | 0.0103994 | 0.0814828 | 0.0242640 |
C | ULSMV | 100 | 5 | 0.6920000 | 0.9701349 | 0.9835891 | 0.0247387 | 0.9803069 | 0.0296864 | 0.0076592 | 0.0083623 | 0.0476319 | 0.0093270 | 0.0938483 | 0.0522473 |
C | ULSMV | 100 | 10 | 0.8730000 | 0.9648721 | 0.9907426 | 0.0168573 | 0.9888912 | 0.0202287 | 0.0050159 | 0.0058859 | 0.0322581 | 0.0072826 | 0.0733091 | 0.0293011 |
C | ULSMV | 100 | 30 | 0.9446667 | 0.9876500 | 0.9985521 | 0.0042864 | 0.9982626 | 0.0051437 | 0.0013400 | 0.0026252 | 0.0202040 | 0.0072211 | 0.0570341 | 0.0168804 |
C | ULSMV | 200 | 5 | 0.8753333 | 0.9508759 | 0.9925862 | 0.0123017 | 0.9911035 | 0.0147620 | 0.0052801 | 0.0061754 | 0.0329136 | 0.0062563 | 0.0697868 | 0.0378112 |
C | ULSMV | 200 | 10 | 0.9576667 | 0.9470936 | 0.9949812 | 0.0088710 | 0.9939774 | 0.0106452 | 0.0037695 | 0.0043763 | 0.0226012 | 0.0051646 | 0.0509646 | 0.0192118 |
C | ULSMV | 200 | 30 | 0.9743333 | 0.9791310 | 0.9983751 | 0.0038216 | 0.9980501 | 0.0045860 | 0.0014283 | 0.0021999 | 0.0141136 | 0.0049309 | 0.0400727 | 0.0117348 |
C | WLSMV | 30 | 5 | 0.3550000 | 0.9800190 | 0.9668167 | 0.0428512 | 0.9601800 | 0.0514214 | 0.0145736 | 0.0139307 | 0.0792162 | 0.0108543 | 0.1580229 | 0.0465658 |
C | WLSMV | 30 | 10 | 0.5080000 | 0.9895013 | 0.9898077 | 0.0176223 | 0.9877692 | 0.0211467 | 0.0068601 | 0.0088506 | 0.0518724 | 0.0070620 | 0.1432885 | 0.0762484 |
C | WLSMV | 30 | 30 | 0.6883333 | 0.9980630 | 0.9987074 | 0.0036447 | 0.9984488 | 0.0043736 | 0.0016198 | 0.0038659 | 0.0289064 | 0.0040449 | 0.1200868 | 0.0250014 |
C | WLSMV | 50 | 5 | 0.4700000 | 0.9695035 | 0.9786915 | 0.0271873 | 0.9744298 | 0.0326248 | 0.0120139 | 0.0115607 | 0.0611043 | 0.0083854 | 0.1249717 | 0.0473309 |
C | WLSMV | 50 | 10 | 0.6603333 | 0.9798082 | 0.9910403 | 0.0123614 | 0.9892484 | 0.0148337 | 0.0074499 | 0.0078938 | 0.0397920 | 0.0053735 | 0.1145602 | 0.0414510 |
C | WLSMV | 50 | 30 | 0.8196667 | 0.9955266 | 0.9989983 | 0.0024830 | 0.9987979 | 0.0029796 | 0.0016069 | 0.0033358 | 0.0220497 | 0.0029613 | 0.0896034 | 0.0194144 |
C | WLSMV | 100 | 5 | 0.6646667 | 0.9638917 | 0.9894180 | 0.0142140 | 0.9873016 | 0.0170568 | 0.0083205 | 0.0085951 | 0.0426039 | 0.0057673 | 0.1004546 | 0.0518476 |
C | WLSMV | 100 | 10 | 0.8243333 | 0.9656288 | 0.9955280 | 0.0062126 | 0.9946336 | 0.0074551 | 0.0055033 | 0.0058379 | 0.0280509 | 0.0036185 | 0.0784487 | 0.0263732 |
C | WLSMV | 100 | 30 | 0.9110000 | 0.9857300 | 0.9992901 | 0.0015954 | 0.9991481 | 0.0019144 | 0.0015406 | 0.0027663 | 0.0154768 | 0.0021092 | 0.0619890 | 0.0137278 |
C | WLSMV | 200 | 5 | 0.8486667 | 0.9481540 | 0.9949855 | 0.0071701 | 0.9939826 | 0.0086041 | 0.0056892 | 0.0062064 | 0.0299979 | 0.0040167 | 0.0729840 | 0.0358455 |
C | WLSMV | 200 | 10 | 0.9356667 | 0.9515497 | 0.9977034 | 0.0033198 | 0.9972441 | 0.0039838 | 0.0039304 | 0.0043703 | 0.0197049 | 0.0026053 | 0.0541746 | 0.0170661 |
C | WLSMV | 200 | 30 | 0.9733333 | 0.9784247 | 0.9995363 | 0.0009171 | 0.9994436 | 0.0011005 | 0.0014136 | 0.0021738 | 0.0108560 | 0.0014413 | 0.0432125 | 0.0096334 |
M1 | MLR | 30 | 5 | 0.4596667 | 0.2719362 | 0.8279448 | 0.1038494 | 0.7937454 | 0.1231198 | 0.0537087 | 0.0200521 | 0.0757545 | 0.0154374 | 0.1978938 | 0.0606371 |
M1 | MLR | 30 | 10 | 0.5826667 | 0.1401602 | 0.8795338 | 0.0619563 | 0.8555550 | 0.0728614 | 0.0427529 | 0.0126111 | 0.0578834 | 0.0088208 | 0.1677090 | 0.0431786 |
M1 | MLR | 30 | 30 | 0.7480000 | 0.0013369 | 0.9061395 | 0.0258827 | 0.8873674 | 0.0310592 | 0.0372108 | 0.0057018 | 0.0460096 | 0.0057624 | 0.1447929 | 0.0313018 |
M1 | MLR | 50 | 5 | 0.5576667 | 0.3287507 | 0.8981393 | 0.0602647 | 0.8777671 | 0.0723177 | 0.0381660 | 0.0146017 | 0.0636215 | 0.0089219 | 0.1565018 | 0.0527934 |
M1 | MLR | 50 | 10 | 0.6690000 | 0.0563029 | 0.9094790 | 0.0360598 | 0.8913748 | 0.0432718 | 0.0362868 | 0.0082390 | 0.0515803 | 0.0068527 | 0.1323486 | 0.0361130 |
M1 | MLR | 50 | 30 | 0.8420000 | 0.0000000 | 0.9154093 | 0.0231617 | 0.8984922 | 0.0277590 | 0.0346816 | 0.0042685 | 0.0437228 | 0.0043392 | 0.1133781 | 0.0223251 |
M1 | MLR | 100 | 5 | 0.5986667 | 0.1375278 | 0.9229975 | 0.0359734 | 0.9075970 | 0.0431681 | 0.0325719 | 0.0085964 | 0.0536799 | 0.0073109 | 0.1137741 | 0.0419142 |
M1 | MLR | 100 | 10 | 0.7820000 | 0.0012788 | 0.9215794 | 0.0241065 | 0.9058953 | 0.0289278 | 0.0335419 | 0.0052091 | 0.0468181 | 0.0055537 | 0.0964331 | 0.0282805 |
M1 | MLR | 100 | 30 | 0.9200000 | 0.0000000 | 0.9179311 | 0.0147859 | 0.9015174 | 0.0177431 | 0.0339103 | 0.0029876 | 0.0421127 | 0.0034376 | 0.0843857 | 0.0145124 |
M1 | MLR | 200 | 5 | 0.6490000 | 0.0056497 | 0.9285557 | 0.0239519 | 0.9142668 | 0.0287422 | 0.0311465 | 0.0050364 | 0.0478174 | 0.0055974 | 0.0839134 | 0.0320091 |
M1 | MLR | 200 | 10 | 0.8596667 | 0.0000000 | 0.9246596 | 0.0158180 | 0.9095916 | 0.0189816 | 0.0328584 | 0.0034157 | 0.0440500 | 0.0044707 | 0.0727541 | 0.0206507 |
M1 | MLR | 200 | 30 | 0.9460000 | 0.0000000 | 0.9189001 | 0.0085301 | 0.9026801 | 0.0102361 | 0.0336105 | 0.0021532 | 0.0412574 | 0.0027771 | 0.0645938 | 0.0101504 |
M1 | ULSMV | 30 | 5 | 0.3346667 | 0.9696970 | 0.9073943 | 0.1044099 | 0.8888731 | 0.1252919 | 0.0174782 | 0.0142945 | 0.1047616 | 0.0190994 | 0.1497136 | 0.1136820 |
M1 | ULSMV | 30 | 10 | 0.4750000 | 0.8903725 | 0.9462343 | 0.0647959 | 0.9354812 | 0.0777551 | 0.0132841 | 0.0127143 | 0.0800463 | 0.0149260 | 0.1344491 | 0.0646932 |
M1 | ULSMV | 30 | 30 | 0.5623333 | 0.7848251 | 0.9800241 | 0.0316037 | 0.9760289 | 0.0379244 | 0.0080622 | 0.0128189 | 0.0633565 | 0.0124231 | 0.1135873 | 0.0274332 |
M1 | ULSMV | 50 | 5 | 0.4470000 | 0.8575690 | 0.9172491 | 0.0737221 | 0.9006989 | 0.0884665 | 0.0200700 | 0.0129166 | 0.0855089 | 0.0142693 | 0.1182543 | 0.0579931 |
M1 | ULSMV | 50 | 10 | 0.5450000 | 0.6495413 | 0.9319071 | 0.0524389 | 0.9182885 | 0.0629266 | 0.0188332 | 0.0118942 | 0.0685087 | 0.0114979 | 0.1066408 | 0.0411526 |
M1 | ULSMV | 50 | 30 | 0.6556667 | 0.6578546 | 0.9716646 | 0.0332382 | 0.9659975 | 0.0398858 | 0.0107650 | 0.0136268 | 0.0577916 | 0.0087566 | 0.0875164 | 0.0195622 |
M1 | ULSMV | 100 | 5 | 0.5590000 | 0.5080501 | 0.9267744 | 0.0435493 | 0.9121292 | 0.0522592 | 0.0231327 | 0.0099313 | 0.0687324 | 0.0105225 | 0.0938491 | 0.0495554 |
M1 | ULSMV | 100 | 10 | 0.6566667 | 0.2994924 | 0.9289709 | 0.0355471 | 0.9147651 | 0.0426566 | 0.0225724 | 0.0102018 | 0.0590466 | 0.0079209 | 0.0772215 | 0.0266596 |
M1 | ULSMV | 100 | 30 | 0.7253333 | 0.4154412 | 0.9560404 | 0.0344288 | 0.9472485 | 0.0413145 | 0.0145168 | 0.0136608 | 0.0535876 | 0.0058511 | 0.0634259 | 0.0130710 |
M1 | ULSMV | 200 | 5 | 0.6723333 | 0.1333664 | 0.9296839 | 0.0274694 | 0.9156207 | 0.0329633 | 0.0253275 | 0.0078386 | 0.0593315 | 0.0076708 | 0.0715381 | 0.0359275 |
M1 | ULSMV | 200 | 10 | 0.7290000 | 0.0470965 | 0.9274715 | 0.0248166 | 0.9129658 | 0.0297799 | 0.0243513 | 0.0091773 | 0.0542042 | 0.0057894 | 0.0558310 | 0.0174003 |
M1 | ULSMV | 200 | 30 | 0.7666667 | 0.1873913 | 0.9371040 | 0.0287456 | 0.9245248 | 0.0344948 | 0.0181344 | 0.0122186 | 0.0514797 | 0.0041080 | 0.0465557 | 0.0088666 |
M1 | WLSMV | 30 | 5 | 0.2840000 | 0.8545888 | 0.9189596 | 0.0659712 | 0.9027516 | 0.0791655 | 0.0274477 | 0.0152448 | 0.0922661 | 0.0132521 | 0.1573806 | 0.0418333 |
M1 | WLSMV | 30 | 10 | 0.3893333 | 0.6915167 | 0.9393435 | 0.0423451 | 0.9272123 | 0.0508142 | 0.0246788 | 0.0111527 | 0.0711664 | 0.0096520 | 0.1506691 | 0.2482949 |
M1 | WLSMV | 30 | 30 | 0.4546667 | 0.5476540 | 0.9672782 | 0.0310901 | 0.9607339 | 0.0373081 | 0.0147945 | 0.0128011 | 0.0574748 | 0.0067499 | 0.1237206 | 0.0222551 |
M1 | WLSMV | 50 | 5 | 0.3663333 | 0.6323931 | 0.9240718 | 0.0514137 | 0.9088861 | 0.0616965 | 0.0284971 | 0.0123555 | 0.0778598 | 0.0108183 | 0.1265593 | 0.0471844 |
M1 | WLSMV | 50 | 10 | 0.4843333 | 0.2436339 | 0.9323828 | 0.0310196 | 0.9188594 | 0.0372236 | 0.0288184 | 0.0074252 | 0.0624854 | 0.0079416 | 0.1175497 | 0.0408589 |
M1 | WLSMV | 50 | 30 | 0.5536667 | 0.2829621 | 0.9532182 | 0.0248902 | 0.9438619 | 0.0298683 | 0.0209310 | 0.0100254 | 0.0537301 | 0.0053369 | 0.0954668 | 0.0157112 |
M1 | WLSMV | 100 | 5 | 0.4930000 | 0.2143340 | 0.9293181 | 0.0339205 | 0.9151817 | 0.0407046 | 0.0296656 | 0.0078239 | 0.0641684 | 0.0084442 | 0.1007401 | 0.0482194 |
M1 | WLSMV | 100 | 10 | 0.5560000 | 0.0053957 | 0.9314496 | 0.0218091 | 0.9177396 | 0.0261709 | 0.0311011 | 0.0049609 | 0.0555240 | 0.0060314 | 0.0833994 | 0.0248467 |
M1 | WLSMV | 100 | 30 | 0.6110000 | 0.0000000 | 0.9405006 | 0.0149149 | 0.9286007 | 0.0178979 | 0.0268681 | 0.0065361 | 0.0509208 | 0.0036706 | 0.0685730 | 0.0108172 |
M1 | WLSMV | 200 | 5 | 0.5983333 | 0.0027855 | 0.9304711 | 0.0220219 | 0.9165654 | 0.0264263 | 0.0308497 | 0.0050272 | 0.0565740 | 0.0064400 | 0.0770224 | 0.0356701 |
M1 | WLSMV | 200 | 10 | 0.6343333 | 0.0000000 | 0.9309639 | 0.0155415 | 0.9171567 | 0.0186498 | 0.0325573 | 0.0034691 | 0.0517302 | 0.0044779 | 0.0602821 | 0.0162349 |
M1 | WLSMV | 200 | 30 | 0.6380000 | 0.0000000 | 0.9352503 | 0.0109519 | 0.9223004 | 0.0131422 | 0.0307719 | 0.0043826 | 0.0494035 | 0.0025627 | 0.0502531 | 0.0078150 |
M2 | MLR | 30 | 5 | 0.5726667 | 0.4208382 | 0.8768868 | 0.0853363 | 0.8524864 | 0.1003233 | 0.0454019 | 0.0209482 | 0.0648371 | 0.0144530 | 0.2142905 | 0.0628831 |
M2 | MLR | 30 | 10 | 0.6846667 | 0.5141188 | 0.9394119 | 0.0418715 | 0.9272943 | 0.0502458 | 0.0291665 | 0.0146850 | 0.0418724 | 0.0056009 | 0.1845507 | 0.0423258 |
M2 | MLR | 30 | 30 | 0.8406667 | 0.4976209 | 0.9768239 | 0.0166290 | 0.9721887 | 0.0199548 | 0.0170544 | 0.0087010 | 0.0227204 | 0.0029506 | 0.1653603 | 0.0271548 |
M2 | MLR | 50 | 5 | 0.6833333 | 0.5975610 | 0.9424306 | 0.0455495 | 0.9309167 | 0.0546594 | 0.0279804 | 0.0169842 | 0.0500009 | 0.0068203 | 0.1759554 | 0.0528066 |
M2 | MLR | 50 | 10 | 0.7966667 | 0.5669456 | 0.9658055 | 0.0261056 | 0.9589666 | 0.0313268 | 0.0208794 | 0.0122474 | 0.0326685 | 0.0043425 | 0.1551570 | 0.0379620 |
M2 | MLR | 50 | 30 | 0.8966667 | 0.5613383 | 0.9868622 | 0.0113048 | 0.9842347 | 0.0135657 | 0.0119606 | 0.0075891 | 0.0176248 | 0.0022920 | 0.1348196 | 0.0212810 |
M2 | MLR | 100 | 5 | 0.8023333 | 0.5961778 | 0.9692922 | 0.0245319 | 0.9631507 | 0.0294383 | 0.0198589 | 0.0124892 | 0.0359699 | 0.0049588 | 0.1416916 | 0.0460302 |
M2 | MLR | 100 | 10 | 0.9093333 | 0.5546188 | 0.9800927 | 0.0172118 | 0.9761112 | 0.0206542 | 0.0152660 | 0.0103069 | 0.0232723 | 0.0030261 | 0.1217249 | 0.0302883 |
M2 | MLR | 100 | 30 | 0.9463333 | 0.5265939 | 0.9907999 | 0.0090406 | 0.9889599 | 0.0108487 | 0.0097267 | 0.0067564 | 0.0125287 | 0.0016545 | 0.1073089 | 0.0220481 |
M2 | MLR | 200 | 5 | 0.9153333 | 0.5149308 | 0.9783773 | 0.0182503 | 0.9740528 | 0.0219003 | 0.0163294 | 0.0112542 | 0.0261184 | 0.0039480 | 0.1155436 | 0.0394663 |
M2 | MLR | 200 | 10 | 0.9596667 | 0.4831539 | 0.9844525 | 0.0149561 | 0.9813430 | 0.0179473 | 0.0131158 | 0.0097141 | 0.0165422 | 0.0022726 | 0.0978743 | 0.0273643 |
M2 | MLR | 200 | 30 | 0.9700000 | 0.4402062 | 0.9921578 | 0.0084937 | 0.9905893 | 0.0101924 | 0.0088152 | 0.0064968 | 0.0088860 | 0.0011759 | 0.0886444 | 0.0262954 |
M2 | ULSMV | 30 | 5 | 0.3823333 | 0.9868074 | 0.9264214 | 0.0967748 | 0.9117057 | 0.1161297 | 0.0140636 | 0.0137196 | 0.0943324 | 0.0193981 | 0.1519312 | 0.0512032 |
M2 | ULSMV | 30 | 10 | 0.5730000 | 0.9784508 | 0.9668766 | 0.0581189 | 0.9602519 | 0.0697426 | 0.0081142 | 0.0099281 | 0.0643076 | 0.0165428 | 0.1384124 | 0.0502489 |
M2 | ULSMV | 30 | 30 | 0.7556667 | 0.9823555 | 0.9919844 | 0.0238393 | 0.9903813 | 0.0286072 | 0.0027527 | 0.0051926 | 0.0407429 | 0.0159208 | 0.1198659 | 0.0286560 |
M2 | ULSMV | 50 | 5 | 0.5250000 | 0.9180952 | 0.9427773 | 0.0663777 | 0.9313328 | 0.0796533 | 0.0151046 | 0.0127881 | 0.0711857 | 0.0144865 | 0.1260666 | 0.0516593 |
M2 | ULSMV | 50 | 10 | 0.7086667 | 0.8480715 | 0.9534984 | 0.0570345 | 0.9441981 | 0.0684414 | 0.0125772 | 0.0104281 | 0.0494179 | 0.0133196 | 0.1168586 | 0.0438318 |
M2 | ULSMV | 50 | 30 | 0.8646667 | 0.8430995 | 0.9749747 | 0.0531008 | 0.9699696 | 0.0637209 | 0.0053262 | 0.0075118 | 0.0329672 | 0.0135000 | 0.0961203 | 0.0203675 |
M2 | ULSMV | 100 | 5 | 0.7000000 | 0.7223810 | 0.9504737 | 0.0499822 | 0.9405685 | 0.0599786 | 0.0164645 | 0.0116254 | 0.0505291 | 0.0117531 | 0.1051609 | 0.0502177 |
M2 | ULSMV | 100 | 10 | 0.8826667 | 0.6076284 | 0.9470276 | 0.0591298 | 0.9364332 | 0.0709558 | 0.0146684 | 0.0113022 | 0.0361078 | 0.0105281 | 0.0888733 | 0.0273949 |
M2 | ULSMV | 100 | 30 | 0.9370000 | 0.6627535 | 0.9535552 | 0.0756336 | 0.9442662 | 0.0907603 | 0.0081699 | 0.0091489 | 0.0255416 | 0.0117089 | 0.0756964 | 0.0161622 |
M2 | ULSMV | 200 | 5 | 0.8963333 | 0.5135738 | 0.9537313 | 0.0467093 | 0.9444776 | 0.0560512 | 0.0165402 | 0.0123953 | 0.0368798 | 0.0097533 | 0.0855435 | 0.0362861 |
M2 | ULSMV | 200 | 10 | 0.9586667 | 0.4680111 | 0.9443404 | 0.0603178 | 0.9332085 | 0.0723814 | 0.0152573 | 0.0120317 | 0.0277382 | 0.0096519 | 0.0701240 | 0.0205928 |
M2 | ULSMV | 200 | 30 | 0.9706667 | 0.5065247 | 0.9369822 | 0.0862658 | 0.9243786 | 0.1035189 | 0.0102084 | 0.0095388 | 0.0208021 | 0.0107966 | 0.0619948 | 0.0168042 |
M2 | WLSMV | 30 | 5 | 0.3596667 | 0.9681051 | 0.9591080 | 0.0471423 | 0.9509296 | 0.0565707 | 0.0172070 | 0.0143739 | 0.0795665 | 0.0110994 | 0.1652995 | 0.0447009 |
M2 | WLSMV | 30 | 10 | 0.5296667 | 0.9836272 | 0.9857805 | 0.0205927 | 0.9829366 | 0.0247113 | 0.0089647 | 0.0096746 | 0.0519500 | 0.0071831 | 0.1501391 | 0.0438445 |
M2 | WLSMV | 30 | 30 | 0.7013333 | 0.9947719 | 0.9979767 | 0.0048825 | 0.9975720 | 0.0058590 | 0.0022790 | 0.0045687 | 0.0290990 | 0.0041329 | 0.1316784 | 0.0223058 |
M2 | WLSMV | 50 | 5 | 0.4976667 | 0.9296718 | 0.9689022 | 0.0329686 | 0.9626827 | 0.0395623 | 0.0158590 | 0.0123343 | 0.0615267 | 0.0085039 | 0.1346153 | 0.0486574 |
M2 | WLSMV | 50 | 10 | 0.6733333 | 0.9242574 | 0.9836566 | 0.0175404 | 0.9803879 | 0.0210485 | 0.0116228 | 0.0088297 | 0.0401239 | 0.0054389 | 0.1253863 | 0.0378966 |
M2 | WLSMV | 50 | 30 | 0.8186667 | 0.9429967 | 0.9964640 | 0.0065366 | 0.9957568 | 0.0078439 | 0.0037314 | 0.0051852 | 0.0222908 | 0.0030045 | 0.1055758 | 0.0168203 |
M2 | WLSMV | 100 | 5 | 0.6813333 | 0.7832681 | 0.9755103 | 0.0233066 | 0.9706123 | 0.0279680 | 0.0151498 | 0.0103333 | 0.0434504 | 0.0060392 | 0.1114324 | 0.0470169 |
M2 | WLSMV | 100 | 10 | 0.8400000 | 0.6801587 | 0.9834910 | 0.0176504 | 0.9801892 | 0.0211805 | 0.0123715 | 0.0085628 | 0.0286676 | 0.0037662 | 0.0949750 | 0.0249364 |
M2 | WLSMV | 100 | 30 | 0.9143333 | 0.7141816 | 0.9931811 | 0.0102629 | 0.9918173 | 0.0123155 | 0.0062363 | 0.0062334 | 0.0158115 | 0.0021682 | 0.0839499 | 0.0173962 |
M2 | WLSMV | 200 | 5 | 0.8676667 | 0.5532078 | 0.9771855 | 0.0227883 | 0.9726226 | 0.0273460 | 0.0148311 | 0.0102331 | 0.0312747 | 0.0046371 | 0.0896961 | 0.0343056 |
M2 | WLSMV | 200 | 10 | 0.9460000 | 0.4834390 | 0.9818385 | 0.0203680 | 0.9782062 | 0.0244416 | 0.0130322 | 0.0090693 | 0.0207342 | 0.0030618 | 0.0755724 | 0.0207490 |
M2 | WLSMV | 200 | 30 | 0.9696667 | 0.5084221 | 0.9909249 | 0.0123258 | 0.9891099 | 0.0147909 | 0.0080355 | 0.0064509 | 0.0113358 | 0.0015741 | 0.0697180 | 0.0210749 |
M12 | MLR | 30 | 5 | 0.5473333 | 0.2186358 | 0.8122564 | 0.1050549 | 0.7781211 | 0.1212436 | 0.0574015 | 0.0199415 | 0.0757239 | 0.0174724 | 0.2109369 | 0.0617553 |
M12 | MLR | 30 | 10 | 0.6766667 | 0.1108374 | 0.8698080 | 0.0551897 | 0.8458252 | 0.0653562 | 0.0451135 | 0.0126302 | 0.0574990 | 0.0079218 | 0.1825757 | 0.0435619 |
M12 | MLR | 30 | 30 | 0.8390000 | 0.0007946 | 0.9010196 | 0.0248010 | 0.8827864 | 0.0293697 | 0.0380411 | 0.0058893 | 0.0454899 | 0.0050897 | 0.1620194 | 0.0301549 |
M12 | MLR | 50 | 5 | 0.6670000 | 0.2353823 | 0.8780417 | 0.0621108 | 0.8555757 | 0.0735523 | 0.0433740 | 0.0152759 | 0.0632914 | 0.0087184 | 0.1715667 | 0.0518652 |
M12 | MLR | 50 | 10 | 0.7976667 | 0.0384455 | 0.8969962 | 0.0361292 | 0.8780218 | 0.0427846 | 0.0394144 | 0.0091658 | 0.0510261 | 0.0066060 | 0.1512124 | 0.0383161 |
M12 | MLR | 50 | 30 | 0.8956667 | 0.0000000 | 0.9113025 | 0.0177182 | 0.8949635 | 0.0209821 | 0.0353560 | 0.0044104 | 0.0431673 | 0.0041295 | 0.1296369 | 0.0221478 |
M12 | MLR | 100 | 5 | 0.8113333 | 0.0661463 | 0.9023798 | 0.0360181 | 0.8843972 | 0.0426530 | 0.0385858 | 0.0100967 | 0.0530380 | 0.0067296 | 0.1351073 | 0.0444233 |
M12 | MLR | 100 | 10 | 0.9163333 | 0.0007275 | 0.9096490 | 0.0227230 | 0.8930054 | 0.0269089 | 0.0363592 | 0.0065496 | 0.0458809 | 0.0051455 | 0.1159149 | 0.0294768 |
M12 | MLR | 100 | 30 | 0.9473333 | 0.0000000 | 0.9138584 | 0.0121888 | 0.8979902 | 0.0144341 | 0.0345671 | 0.0033846 | 0.0415303 | 0.0031746 | 0.1005420 | 0.0205126 |
M12 | MLR | 200 | 5 | 0.9263333 | 0.0021591 | 0.9104595 | 0.0226503 | 0.8939652 | 0.0268227 | 0.0366745 | 0.0076823 | 0.0467959 | 0.0053940 | 0.1081184 | 0.0371831 |
M12 | MLR | 200 | 10 | 0.9606667 | 0.0000000 | 0.9129963 | 0.0152327 | 0.8969693 | 0.0180388 | 0.0354119 | 0.0053128 | 0.0428842 | 0.0038452 | 0.0909054 | 0.0247797 |
M12 | MLR | 200 | 30 | 0.9716667 | 0.0000000 | 0.9147422 | 0.0085218 | 0.8990368 | 0.0100916 | 0.0342528 | 0.0028611 | 0.0406357 | 0.0024238 | 0.0808753 | 0.0234726 |
M12 | ULSMV | 30 | 5 | 0.3496667 | 0.9615014 | 0.8929173 | 0.1117543 | 0.8731916 | 0.1323406 | 0.0193149 | 0.0142984 | 0.1055940 | 0.0195633 | 0.1524434 | 0.0504126 |
M12 | ULSMV | 30 | 10 | 0.4960000 | 0.8633917 | 0.9349710 | 0.0729470 | 0.9229920 | 0.0863846 | 0.0150679 | 0.0129723 | 0.0797289 | 0.0153221 | 0.1413475 | 0.0526934 |
M12 | ULSMV | 30 | 30 | 0.6163333 | 0.7620335 | 0.9764866 | 0.0358736 | 0.9721552 | 0.0424819 | 0.0087562 | 0.0129682 | 0.0627361 | 0.0120926 | 0.1209981 | 0.0280917 |
M12 | ULSMV | 50 | 5 | 0.4676667 | 0.8068425 | 0.9056477 | 0.0780119 | 0.8882670 | 0.0923826 | 0.0220752 | 0.0129666 | 0.0849297 | 0.0143446 | 0.1270214 | 0.0549684 |
M12 | ULSMV | 50 | 10 | 0.5966667 | 0.5592179 | 0.9190078 | 0.0578230 | 0.9040882 | 0.0684746 | 0.0212568 | 0.0115508 | 0.0674124 | 0.0113188 | 0.1172690 | 0.0447423 |
M12 | ULSMV | 50 | 30 | 0.6913333 | 0.6142719 | 0.9644024 | 0.0393945 | 0.9578449 | 0.0466514 | 0.0122135 | 0.0136551 | 0.0570140 | 0.0083236 | 0.0942241 | 0.0197557 |
M12 | ULSMV | 100 | 5 | 0.5976667 | 0.3898494 | 0.9124454 | 0.0492565 | 0.8963169 | 0.0583301 | 0.0256472 | 0.0094146 | 0.0678399 | 0.0100662 | 0.1033590 | 0.0516531 |
M12 | ULSMV | 100 | 10 | 0.7076667 | 0.2190297 | 0.9156575 | 0.0441456 | 0.9001207 | 0.0522777 | 0.0245811 | 0.0097402 | 0.0580464 | 0.0073321 | 0.0852262 | 0.0272494 |
M12 | ULSMV | 100 | 30 | 0.7576667 | 0.3752750 | 0.9471744 | 0.0416849 | 0.9374434 | 0.0493636 | 0.0156615 | 0.0134813 | 0.0526453 | 0.0051173 | 0.0701375 | 0.0127914 |
M12 | ULSMV | 200 | 5 | 0.7306667 | 0.0903285 | 0.9168927 | 0.0353834 | 0.9015835 | 0.0419013 | 0.0273698 | 0.0077926 | 0.0581552 | 0.0072850 | 0.0809653 | 0.0372992 |
M12 | ULSMV | 200 | 10 | 0.7710000 | 0.0272374 | 0.9146034 | 0.0370768 | 0.8988724 | 0.0439067 | 0.0259418 | 0.0089017 | 0.0530784 | 0.0050690 | 0.0635525 | 0.0177569 |
M12 | ULSMV | 200 | 30 | 0.7956667 | 0.1051529 | 0.9249346 | 0.0379465 | 0.9111067 | 0.0449366 | 0.0190353 | 0.0116796 | 0.0502841 | 0.0031674 | 0.0537948 | 0.0098609 |
M12 | WLSMV | 30 | 5 | 0.3183333 | 0.8483563 | 0.9139667 | 0.0655161 | 0.8981185 | 0.0775849 | 0.0287698 | 0.0144873 | 0.0926543 | 0.0133104 | 0.1670900 | 0.0481952 |
M12 | WLSMV | 30 | 10 | 0.4580000 | 0.6924198 | 0.9377671 | 0.0430470 | 0.9263032 | 0.0509767 | 0.0249148 | 0.0110225 | 0.0707198 | 0.0095559 | 0.1509541 | 0.0467082 |
M12 | WLSMV | 30 | 30 | 0.5976667 | 0.5237033 | 0.9650444 | 0.0315736 | 0.9586052 | 0.0373898 | 0.0153373 | 0.0124542 | 0.0572708 | 0.0067354 | 0.1298915 | 0.0231663 |
M12 | WLSMV | 50 | 5 | 0.4196667 | 0.6084194 | 0.9200406 | 0.0514383 | 0.9053112 | 0.0609138 | 0.0295396 | 0.0118873 | 0.0778411 | 0.0110315 | 0.1343776 | 0.0497305 |
M12 | WLSMV | 50 | 10 | 0.5816667 | 0.2126074 | 0.9287980 | 0.0326966 | 0.9156819 | 0.0387197 | 0.0294168 | 0.0073772 | 0.0621519 | 0.0080141 | 0.1230980 | 0.0398964 |
M12 | WLSMV | 50 | 30 | 0.6866667 | 0.2509709 | 0.9500310 | 0.0265563 | 0.9408262 | 0.0314482 | 0.0214510 | 0.0097060 | 0.0535905 | 0.0052167 | 0.1005716 | 0.0167004 |
M12 | WLSMV | 100 | 5 | 0.5726667 | 0.1647264 | 0.9233434 | 0.0345696 | 0.9092224 | 0.0409377 | 0.0309663 | 0.0074938 | 0.0641541 | 0.0083080 | 0.1076600 | 0.0483367 |
M12 | WLSMV | 100 | 10 | 0.6970000 | 0.0043042 | 0.9268466 | 0.0249744 | 0.9133710 | 0.0295750 | 0.0317602 | 0.0051385 | 0.0554555 | 0.0060234 | 0.0892887 | 0.0255312 |
M12 | WLSMV | 100 | 30 | 0.7586667 | 0.0000000 | 0.9369300 | 0.0189741 | 0.9253118 | 0.0224693 | 0.0272624 | 0.0062509 | 0.0508182 | 0.0036739 | 0.0739779 | 0.0121518 |
M12 | WLSMV | 200 | 5 | 0.7156667 | 0.0023288 | 0.9254905 | 0.0245777 | 0.9117651 | 0.0291052 | 0.0317410 | 0.0053603 | 0.0563204 | 0.0065315 | 0.0839725 | 0.0361022 |
M12 | WLSMV | 200 | 10 | 0.7650000 | 0.0000000 | 0.9265558 | 0.0194881 | 0.9130267 | 0.0230780 | 0.0330855 | 0.0037924 | 0.0516664 | 0.0044090 | 0.0660142 | 0.0173355 |
M12 | WLSMV | 200 | 30 | 0.7790000 | 0.0000000 | 0.9318765 | 0.0147567 | 0.9193274 | 0.0174750 | 0.0309352 | 0.0041469 | 0.0493448 | 0.0025864 | 0.0557039 | 0.0103781 |
## make a copy of a to print into
a1 <- as_tibble(as.data.frame(matrix(NA, ncol=11,nrow=nrow(a))))
colnames(a1) <- c('Model', 'Estimation', "N2", "N1", "Prop.Use", "chi2", "CFI",'TLI', 'RMSEA', 'SRMRW', 'SRMRB')
i <- 1
for(i in 1:nrow(a)){
a1[i,5:11] <- unlist(c(
round(a[i,5],3), round(a[i,6],3),
paste0(round(a[i,7],3), ' (', round(a[i,8],2), ')'),
paste0(round(a[i,9],3), ' (', round(a[i,10],2), ')'),
paste0(round(a[i,11],3), ' (', round(a[i,12],2), ')'),
paste0(round(a[i,13],3), ' (', round(a[i,14],2), ')'),
paste0(round(a[i,15],3), ' (', round(a[i,16],2), ')')
))
}
a1[,1:4] <- a[,1:4]## add factors back
## Print out in tex
print(xtable(a1, digits = 3), booktabs = T, include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllllll}
\toprule
Model & Estimation & N2 & N1 & Prop.Use & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
C & MLR & 30 & 5 & 0.575 & 0.505 & 0.893 (0.08) & 0.872 (0.1) & 0.041 (0.02) & 0.064 (0.01) & 0.203 (0.06) \\
C & MLR & 30 & 10 & 0.685 & 0.618 & 0.952 (0.04) & 0.942 (0.05) & 0.025 (0.01) & 0.042 (0.01) & 0.171 (0.05) \\
C & MLR & 30 & 30 & 0.838 & 0.674 & 0.985 (0.01) & 0.982 (0.02) & 0.013 (0.01) & 0.023 (0) & 0.145 (0.04) \\
C & MLR & 50 & 5 & 0.677 & 0.734 & 0.957 (0.04) & 0.949 (0.05) & 0.022 (0.02) & 0.049 (0.01) & 0.16 (0.05) \\
C & MLR & 50 & 10 & 0.796 & 0.781 & 0.979 (0.02) & 0.975 (0.02) & 0.014 (0.01) & 0.032 (0) & 0.135 (0.04) \\
C & MLR & 50 & 30 & 0.902 & 0.847 & 0.994 (0.01) & 0.993 (0.01) & 0.007 (0.01) & 0.018 (0) & 0.111 (0.03) \\
C & MLR & 100 & 5 & 0.806 & 0.863 & 0.985 (0.02) & 0.982 (0.02) & 0.012 (0.01) & 0.035 (0) & 0.119 (0.05) \\
C & MLR & 100 & 10 & 0.92 & 0.909 & 0.993 (0.01) & 0.992 (0.01) & 0.007 (0.01) & 0.023 (0) & 0.096 (0.03) \\
C & MLR & 100 & 30 & 0.946 & 0.914 & 0.998 (0) & 0.997 (0) & 0.004 (0) & 0.012 (0) & 0.078 (0.02) \\
C & MLR & 200 & 5 & 0.923 & 0.917 & 0.994 (0.01) & 0.993 (0.01) & 0.007 (0.01) & 0.025 (0) & 0.088 (0.04) \\
C & MLR & 200 & 10 & 0.963 & 0.922 & 0.997 (0) & 0.997 (0) & 0.004 (0) & 0.016 (0) & 0.068 (0.02) \\
C & MLR & 200 & 30 & 0.975 & 0.937 & 0.999 (0) & 0.999 (0) & 0.002 (0) & 0.009 (0) & 0.055 (0.01) \\
C & ULSMV & 30 & 5 & 0.401 & 0.989 & 0.945 (0.09) & 0.935 (0.1) & 0.011 (0.01) & 0.094 (0.02) & 0.144 (0.05) \\
C & ULSMV & 30 & 10 & 0.573 & 0.994 & 0.983 (0.04) & 0.98 (0.05) & 0.005 (0.01) & 0.063 (0.02) & 0.131 (0.05) \\
C & ULSMV & 30 & 30 & 0.762 & 0.999 & 0.999 (0) & 0.999 (0) & 0.001 (0) & 0.039 (0.01) & 0.109 (0.03) \\
C & ULSMV & 50 & 5 & 0.532 & 0.977 & 0.965 (0.05) & 0.958 (0.06) & 0.01 (0.01) & 0.07 (0.01) & 0.119 (0.06) \\
C & ULSMV & 50 & 10 & 0.707 & 0.984 & 0.983 (0.03) & 0.98 (0.04) & 0.006 (0.01) & 0.047 (0.01) & 0.105 (0.04) \\
C & ULSMV & 50 & 30 & 0.88 & 0.995 & 0.999 (0) & 0.998 (0.01) & 0.001 (0) & 0.029 (0.01) & 0.081 (0.02) \\
C & ULSMV & 100 & 5 & 0.692 & 0.97 & 0.984 (0.02) & 0.98 (0.03) & 0.008 (0.01) & 0.048 (0.01) & 0.094 (0.05) \\
C & ULSMV & 100 & 10 & 0.873 & 0.965 & 0.991 (0.02) & 0.989 (0.02) & 0.005 (0.01) & 0.032 (0.01) & 0.073 (0.03) \\
C & ULSMV & 100 & 30 & 0.945 & 0.988 & 0.999 (0) & 0.998 (0.01) & 0.001 (0) & 0.02 (0.01) & 0.057 (0.02) \\
C & ULSMV & 200 & 5 & 0.875 & 0.951 & 0.993 (0.01) & 0.991 (0.01) & 0.005 (0.01) & 0.033 (0.01) & 0.07 (0.04) \\
C & ULSMV & 200 & 10 & 0.958 & 0.947 & 0.995 (0.01) & 0.994 (0.01) & 0.004 (0) & 0.023 (0.01) & 0.051 (0.02) \\
C & ULSMV & 200 & 30 & 0.974 & 0.979 & 0.998 (0) & 0.998 (0) & 0.001 (0) & 0.014 (0) & 0.04 (0.01) \\
C & WLSMV & 30 & 5 & 0.355 & 0.98 & 0.967 (0.04) & 0.96 (0.05) & 0.015 (0.01) & 0.079 (0.01) & 0.158 (0.05) \\
C & WLSMV & 30 & 10 & 0.508 & 0.99 & 0.99 (0.02) & 0.988 (0.02) & 0.007 (0.01) & 0.052 (0.01) & 0.143 (0.08) \\
C & WLSMV & 30 & 30 & 0.688 & 0.998 & 0.999 (0) & 0.998 (0) & 0.002 (0) & 0.029 (0) & 0.12 (0.03) \\
C & WLSMV & 50 & 5 & 0.47 & 0.97 & 0.979 (0.03) & 0.974 (0.03) & 0.012 (0.01) & 0.061 (0.01) & 0.125 (0.05) \\
C & WLSMV & 50 & 10 & 0.66 & 0.98 & 0.991 (0.01) & 0.989 (0.01) & 0.007 (0.01) & 0.04 (0.01) & 0.115 (0.04) \\
C & WLSMV & 50 & 30 & 0.82 & 0.996 & 0.999 (0) & 0.999 (0) & 0.002 (0) & 0.022 (0) & 0.09 (0.02) \\
C & WLSMV & 100 & 5 & 0.665 & 0.964 & 0.989 (0.01) & 0.987 (0.02) & 0.008 (0.01) & 0.043 (0.01) & 0.1 (0.05) \\
C & WLSMV & 100 & 10 & 0.824 & 0.966 & 0.996 (0.01) & 0.995 (0.01) & 0.006 (0.01) & 0.028 (0) & 0.078 (0.03) \\
C & WLSMV & 100 & 30 & 0.911 & 0.986 & 0.999 (0) & 0.999 (0) & 0.002 (0) & 0.015 (0) & 0.062 (0.01) \\
C & WLSMV & 200 & 5 & 0.849 & 0.948 & 0.995 (0.01) & 0.994 (0.01) & 0.006 (0.01) & 0.03 (0) & 0.073 (0.04) \\
C & WLSMV & 200 & 10 & 0.936 & 0.952 & 0.998 (0) & 0.997 (0) & 0.004 (0) & 0.02 (0) & 0.054 (0.02) \\
C & WLSMV & 200 & 30 & 0.973 & 0.978 & 1 (0) & 0.999 (0) & 0.001 (0) & 0.011 (0) & 0.043 (0.01) \\
M1 & MLR & 30 & 5 & 0.46 & 0.272 & 0.828 (0.1) & 0.794 (0.12) & 0.054 (0.02) & 0.076 (0.02) & 0.198 (0.06) \\
M1 & MLR & 30 & 10 & 0.583 & 0.14 & 0.88 (0.06) & 0.856 (0.07) & 0.043 (0.01) & 0.058 (0.01) & 0.168 (0.04) \\
M1 & MLR & 30 & 30 & 0.748 & 0.001 & 0.906 (0.03) & 0.887 (0.03) & 0.037 (0.01) & 0.046 (0.01) & 0.145 (0.03) \\
M1 & MLR & 50 & 5 & 0.558 & 0.329 & 0.898 (0.06) & 0.878 (0.07) & 0.038 (0.01) & 0.064 (0.01) & 0.157 (0.05) \\
M1 & MLR & 50 & 10 & 0.669 & 0.056 & 0.909 (0.04) & 0.891 (0.04) & 0.036 (0.01) & 0.052 (0.01) & 0.132 (0.04) \\
M1 & MLR & 50 & 30 & 0.842 & 0 & 0.915 (0.02) & 0.898 (0.03) & 0.035 (0) & 0.044 (0) & 0.113 (0.02) \\
M1 & MLR & 100 & 5 & 0.599 & 0.138 & 0.923 (0.04) & 0.908 (0.04) & 0.033 (0.01) & 0.054 (0.01) & 0.114 (0.04) \\
M1 & MLR & 100 & 10 & 0.782 & 0.001 & 0.922 (0.02) & 0.906 (0.03) & 0.034 (0.01) & 0.047 (0.01) & 0.096 (0.03) \\
M1 & MLR & 100 & 30 & 0.92 & 0 & 0.918 (0.01) & 0.902 (0.02) & 0.034 (0) & 0.042 (0) & 0.084 (0.01) \\
M1 & MLR & 200 & 5 & 0.649 & 0.006 & 0.929 (0.02) & 0.914 (0.03) & 0.031 (0.01) & 0.048 (0.01) & 0.084 (0.03) \\
M1 & MLR & 200 & 10 & 0.86 & 0 & 0.925 (0.02) & 0.91 (0.02) & 0.033 (0) & 0.044 (0) & 0.073 (0.02) \\
M1 & MLR & 200 & 30 & 0.946 & 0 & 0.919 (0.01) & 0.903 (0.01) & 0.034 (0) & 0.041 (0) & 0.065 (0.01) \\
M1 & ULSMV & 30 & 5 & 0.335 & 0.97 & 0.907 (0.1) & 0.889 (0.13) & 0.017 (0.01) & 0.105 (0.02) & 0.15 (0.11) \\
M1 & ULSMV & 30 & 10 & 0.475 & 0.89 & 0.946 (0.06) & 0.935 (0.08) & 0.013 (0.01) & 0.08 (0.01) & 0.134 (0.06) \\
M1 & ULSMV & 30 & 30 & 0.562 & 0.785 & 0.98 (0.03) & 0.976 (0.04) & 0.008 (0.01) & 0.063 (0.01) & 0.114 (0.03) \\
M1 & ULSMV & 50 & 5 & 0.447 & 0.858 & 0.917 (0.07) & 0.901 (0.09) & 0.02 (0.01) & 0.086 (0.01) & 0.118 (0.06) \\
M1 & ULSMV & 50 & 10 & 0.545 & 0.65 & 0.932 (0.05) & 0.918 (0.06) & 0.019 (0.01) & 0.069 (0.01) & 0.107 (0.04) \\
M1 & ULSMV & 50 & 30 & 0.656 & 0.658 & 0.972 (0.03) & 0.966 (0.04) & 0.011 (0.01) & 0.058 (0.01) & 0.088 (0.02) \\
M1 & ULSMV & 100 & 5 & 0.559 & 0.508 & 0.927 (0.04) & 0.912 (0.05) & 0.023 (0.01) & 0.069 (0.01) & 0.094 (0.05) \\
M1 & ULSMV & 100 & 10 & 0.657 & 0.299 & 0.929 (0.04) & 0.915 (0.04) & 0.023 (0.01) & 0.059 (0.01) & 0.077 (0.03) \\
M1 & ULSMV & 100 & 30 & 0.725 & 0.415 & 0.956 (0.03) & 0.947 (0.04) & 0.015 (0.01) & 0.054 (0.01) & 0.063 (0.01) \\
M1 & ULSMV & 200 & 5 & 0.672 & 0.133 & 0.93 (0.03) & 0.916 (0.03) & 0.025 (0.01) & 0.059 (0.01) & 0.072 (0.04) \\
M1 & ULSMV & 200 & 10 & 0.729 & 0.047 & 0.927 (0.02) & 0.913 (0.03) & 0.024 (0.01) & 0.054 (0.01) & 0.056 (0.02) \\
M1 & ULSMV & 200 & 30 & 0.767 & 0.187 & 0.937 (0.03) & 0.925 (0.03) & 0.018 (0.01) & 0.051 (0) & 0.047 (0.01) \\
M1 & WLSMV & 30 & 5 & 0.284 & 0.855 & 0.919 (0.07) & 0.903 (0.08) & 0.027 (0.02) & 0.092 (0.01) & 0.157 (0.04) \\
M1 & WLSMV & 30 & 10 & 0.389 & 0.692 & 0.939 (0.04) & 0.927 (0.05) & 0.025 (0.01) & 0.071 (0.01) & 0.151 (0.25) \\
M1 & WLSMV & 30 & 30 & 0.455 & 0.548 & 0.967 (0.03) & 0.961 (0.04) & 0.015 (0.01) & 0.057 (0.01) & 0.124 (0.02) \\
M1 & WLSMV & 50 & 5 & 0.366 & 0.632 & 0.924 (0.05) & 0.909 (0.06) & 0.028 (0.01) & 0.078 (0.01) & 0.127 (0.05) \\
M1 & WLSMV & 50 & 10 & 0.484 & 0.244 & 0.932 (0.03) & 0.919 (0.04) & 0.029 (0.01) & 0.062 (0.01) & 0.118 (0.04) \\
M1 & WLSMV & 50 & 30 & 0.554 & 0.283 & 0.953 (0.02) & 0.944 (0.03) & 0.021 (0.01) & 0.054 (0.01) & 0.095 (0.02) \\
M1 & WLSMV & 100 & 5 & 0.493 & 0.214 & 0.929 (0.03) & 0.915 (0.04) & 0.03 (0.01) & 0.064 (0.01) & 0.101 (0.05) \\
M1 & WLSMV & 100 & 10 & 0.556 & 0.005 & 0.931 (0.02) & 0.918 (0.03) & 0.031 (0) & 0.056 (0.01) & 0.083 (0.02) \\
M1 & WLSMV & 100 & 30 & 0.611 & 0 & 0.941 (0.01) & 0.929 (0.02) & 0.027 (0.01) & 0.051 (0) & 0.069 (0.01) \\
M1 & WLSMV & 200 & 5 & 0.598 & 0.003 & 0.93 (0.02) & 0.917 (0.03) & 0.031 (0.01) & 0.057 (0.01) & 0.077 (0.04) \\
M1 & WLSMV & 200 & 10 & 0.634 & 0 & 0.931 (0.02) & 0.917 (0.02) & 0.033 (0) & 0.052 (0) & 0.06 (0.02) \\
M1 & WLSMV & 200 & 30 & 0.638 & 0 & 0.935 (0.01) & 0.922 (0.01) & 0.031 (0) & 0.049 (0) & 0.05 (0.01) \\
M2 & MLR & 30 & 5 & 0.573 & 0.421 & 0.877 (0.09) & 0.852 (0.1) & 0.045 (0.02) & 0.065 (0.01) & 0.214 (0.06) \\
M2 & MLR & 30 & 10 & 0.685 & 0.514 & 0.939 (0.04) & 0.927 (0.05) & 0.029 (0.01) & 0.042 (0.01) & 0.185 (0.04) \\
M2 & MLR & 30 & 30 & 0.841 & 0.498 & 0.977 (0.02) & 0.972 (0.02) & 0.017 (0.01) & 0.023 (0) & 0.165 (0.03) \\
M2 & MLR & 50 & 5 & 0.683 & 0.598 & 0.942 (0.05) & 0.931 (0.05) & 0.028 (0.02) & 0.05 (0.01) & 0.176 (0.05) \\
M2 & MLR & 50 & 10 & 0.797 & 0.567 & 0.966 (0.03) & 0.959 (0.03) & 0.021 (0.01) & 0.033 (0) & 0.155 (0.04) \\
M2 & MLR & 50 & 30 & 0.897 & 0.561 & 0.987 (0.01) & 0.984 (0.01) & 0.012 (0.01) & 0.018 (0) & 0.135 (0.02) \\
M2 & MLR & 100 & 5 & 0.802 & 0.596 & 0.969 (0.02) & 0.963 (0.03) & 0.02 (0.01) & 0.036 (0) & 0.142 (0.05) \\
M2 & MLR & 100 & 10 & 0.909 & 0.555 & 0.98 (0.02) & 0.976 (0.02) & 0.015 (0.01) & 0.023 (0) & 0.122 (0.03) \\
M2 & MLR & 100 & 30 & 0.946 & 0.527 & 0.991 (0.01) & 0.989 (0.01) & 0.01 (0.01) & 0.013 (0) & 0.107 (0.02) \\
M2 & MLR & 200 & 5 & 0.915 & 0.515 & 0.978 (0.02) & 0.974 (0.02) & 0.016 (0.01) & 0.026 (0) & 0.116 (0.04) \\
M2 & MLR & 200 & 10 & 0.96 & 0.483 & 0.984 (0.01) & 0.981 (0.02) & 0.013 (0.01) & 0.017 (0) & 0.098 (0.03) \\
M2 & MLR & 200 & 30 & 0.97 & 0.44 & 0.992 (0.01) & 0.991 (0.01) & 0.009 (0.01) & 0.009 (0) & 0.089 (0.03) \\
M2 & ULSMV & 30 & 5 & 0.382 & 0.987 & 0.926 (0.1) & 0.912 (0.12) & 0.014 (0.01) & 0.094 (0.02) & 0.152 (0.05) \\
M2 & ULSMV & 30 & 10 & 0.573 & 0.978 & 0.967 (0.06) & 0.96 (0.07) & 0.008 (0.01) & 0.064 (0.02) & 0.138 (0.05) \\
M2 & ULSMV & 30 & 30 & 0.756 & 0.982 & 0.992 (0.02) & 0.99 (0.03) & 0.003 (0.01) & 0.041 (0.02) & 0.12 (0.03) \\
M2 & ULSMV & 50 & 5 & 0.525 & 0.918 & 0.943 (0.07) & 0.931 (0.08) & 0.015 (0.01) & 0.071 (0.01) & 0.126 (0.05) \\
M2 & ULSMV & 50 & 10 & 0.709 & 0.848 & 0.953 (0.06) & 0.944 (0.07) & 0.013 (0.01) & 0.049 (0.01) & 0.117 (0.04) \\
M2 & ULSMV & 50 & 30 & 0.865 & 0.843 & 0.975 (0.05) & 0.97 (0.06) & 0.005 (0.01) & 0.033 (0.01) & 0.096 (0.02) \\
M2 & ULSMV & 100 & 5 & 0.7 & 0.722 & 0.95 (0.05) & 0.941 (0.06) & 0.016 (0.01) & 0.051 (0.01) & 0.105 (0.05) \\
M2 & ULSMV & 100 & 10 & 0.883 & 0.608 & 0.947 (0.06) & 0.936 (0.07) & 0.015 (0.01) & 0.036 (0.01) & 0.089 (0.03) \\
M2 & ULSMV & 100 & 30 & 0.937 & 0.663 & 0.954 (0.08) & 0.944 (0.09) & 0.008 (0.01) & 0.026 (0.01) & 0.076 (0.02) \\
M2 & ULSMV & 200 & 5 & 0.896 & 0.514 & 0.954 (0.05) & 0.944 (0.06) & 0.017 (0.01) & 0.037 (0.01) & 0.086 (0.04) \\
M2 & ULSMV & 200 & 10 & 0.959 & 0.468 & 0.944 (0.06) & 0.933 (0.07) & 0.015 (0.01) & 0.028 (0.01) & 0.07 (0.02) \\
M2 & ULSMV & 200 & 30 & 0.971 & 0.507 & 0.937 (0.09) & 0.924 (0.1) & 0.01 (0.01) & 0.021 (0.01) & 0.062 (0.02) \\
M2 & WLSMV & 30 & 5 & 0.36 & 0.968 & 0.959 (0.05) & 0.951 (0.06) & 0.017 (0.01) & 0.08 (0.01) & 0.165 (0.04) \\
M2 & WLSMV & 30 & 10 & 0.53 & 0.984 & 0.986 (0.02) & 0.983 (0.02) & 0.009 (0.01) & 0.052 (0.01) & 0.15 (0.04) \\
M2 & WLSMV & 30 & 30 & 0.701 & 0.995 & 0.998 (0) & 0.998 (0.01) & 0.002 (0) & 0.029 (0) & 0.132 (0.02) \\
M2 & WLSMV & 50 & 5 & 0.498 & 0.93 & 0.969 (0.03) & 0.963 (0.04) & 0.016 (0.01) & 0.062 (0.01) & 0.135 (0.05) \\
M2 & WLSMV & 50 & 10 & 0.673 & 0.924 & 0.984 (0.02) & 0.98 (0.02) & 0.012 (0.01) & 0.04 (0.01) & 0.125 (0.04) \\
M2 & WLSMV & 50 & 30 & 0.819 & 0.943 & 0.996 (0.01) & 0.996 (0.01) & 0.004 (0.01) & 0.022 (0) & 0.106 (0.02) \\
M2 & WLSMV & 100 & 5 & 0.681 & 0.783 & 0.976 (0.02) & 0.971 (0.03) & 0.015 (0.01) & 0.043 (0.01) & 0.111 (0.05) \\
M2 & WLSMV & 100 & 10 & 0.84 & 0.68 & 0.983 (0.02) & 0.98 (0.02) & 0.012 (0.01) & 0.029 (0) & 0.095 (0.02) \\
M2 & WLSMV & 100 & 30 & 0.914 & 0.714 & 0.993 (0.01) & 0.992 (0.01) & 0.006 (0.01) & 0.016 (0) & 0.084 (0.02) \\
M2 & WLSMV & 200 & 5 & 0.868 & 0.553 & 0.977 (0.02) & 0.973 (0.03) & 0.015 (0.01) & 0.031 (0) & 0.09 (0.03) \\
M2 & WLSMV & 200 & 10 & 0.946 & 0.483 & 0.982 (0.02) & 0.978 (0.02) & 0.013 (0.01) & 0.021 (0) & 0.076 (0.02) \\
M2 & WLSMV & 200 & 30 & 0.97 & 0.508 & 0.991 (0.01) & 0.989 (0.01) & 0.008 (0.01) & 0.011 (0) & 0.07 (0.02) \\
M12 & MLR & 30 & 5 & 0.547 & 0.219 & 0.812 (0.11) & 0.778 (0.12) & 0.057 (0.02) & 0.076 (0.02) & 0.211 (0.06) \\
M12 & MLR & 30 & 10 & 0.677 & 0.111 & 0.87 (0.06) & 0.846 (0.07) & 0.045 (0.01) & 0.057 (0.01) & 0.183 (0.04) \\
M12 & MLR & 30 & 30 & 0.839 & 0.001 & 0.901 (0.02) & 0.883 (0.03) & 0.038 (0.01) & 0.045 (0.01) & 0.162 (0.03) \\
M12 & MLR & 50 & 5 & 0.667 & 0.235 & 0.878 (0.06) & 0.856 (0.07) & 0.043 (0.02) & 0.063 (0.01) & 0.172 (0.05) \\
M12 & MLR & 50 & 10 & 0.798 & 0.038 & 0.897 (0.04) & 0.878 (0.04) & 0.039 (0.01) & 0.051 (0.01) & 0.151 (0.04) \\
M12 & MLR & 50 & 30 & 0.896 & 0 & 0.911 (0.02) & 0.895 (0.02) & 0.035 (0) & 0.043 (0) & 0.13 (0.02) \\
M12 & MLR & 100 & 5 & 0.811 & 0.066 & 0.902 (0.04) & 0.884 (0.04) & 0.039 (0.01) & 0.053 (0.01) & 0.135 (0.04) \\
M12 & MLR & 100 & 10 & 0.916 & 0.001 & 0.91 (0.02) & 0.893 (0.03) & 0.036 (0.01) & 0.046 (0.01) & 0.116 (0.03) \\
M12 & MLR & 100 & 30 & 0.947 & 0 & 0.914 (0.01) & 0.898 (0.01) & 0.035 (0) & 0.042 (0) & 0.101 (0.02) \\
M12 & MLR & 200 & 5 & 0.926 & 0.002 & 0.91 (0.02) & 0.894 (0.03) & 0.037 (0.01) & 0.047 (0.01) & 0.108 (0.04) \\
M12 & MLR & 200 & 10 & 0.961 & 0 & 0.913 (0.02) & 0.897 (0.02) & 0.035 (0.01) & 0.043 (0) & 0.091 (0.02) \\
M12 & MLR & 200 & 30 & 0.972 & 0 & 0.915 (0.01) & 0.899 (0.01) & 0.034 (0) & 0.041 (0) & 0.081 (0.02) \\
M12 & ULSMV & 30 & 5 & 0.35 & 0.962 & 0.893 (0.11) & 0.873 (0.13) & 0.019 (0.01) & 0.106 (0.02) & 0.152 (0.05) \\
M12 & ULSMV & 30 & 10 & 0.496 & 0.863 & 0.935 (0.07) & 0.923 (0.09) & 0.015 (0.01) & 0.08 (0.02) & 0.141 (0.05) \\
M12 & ULSMV & 30 & 30 & 0.616 & 0.762 & 0.976 (0.04) & 0.972 (0.04) & 0.009 (0.01) & 0.063 (0.01) & 0.121 (0.03) \\
M12 & ULSMV & 50 & 5 & 0.468 & 0.807 & 0.906 (0.08) & 0.888 (0.09) & 0.022 (0.01) & 0.085 (0.01) & 0.127 (0.05) \\
M12 & ULSMV & 50 & 10 & 0.597 & 0.559 & 0.919 (0.06) & 0.904 (0.07) & 0.021 (0.01) & 0.067 (0.01) & 0.117 (0.04) \\
M12 & ULSMV & 50 & 30 & 0.691 & 0.614 & 0.964 (0.04) & 0.958 (0.05) & 0.012 (0.01) & 0.057 (0.01) & 0.094 (0.02) \\
M12 & ULSMV & 100 & 5 & 0.598 & 0.39 & 0.912 (0.05) & 0.896 (0.06) & 0.026 (0.01) & 0.068 (0.01) & 0.103 (0.05) \\
M12 & ULSMV & 100 & 10 & 0.708 & 0.219 & 0.916 (0.04) & 0.9 (0.05) & 0.025 (0.01) & 0.058 (0.01) & 0.085 (0.03) \\
M12 & ULSMV & 100 & 30 & 0.758 & 0.375 & 0.947 (0.04) & 0.937 (0.05) & 0.016 (0.01) & 0.053 (0.01) & 0.07 (0.01) \\
M12 & ULSMV & 200 & 5 & 0.731 & 0.09 & 0.917 (0.04) & 0.902 (0.04) & 0.027 (0.01) & 0.058 (0.01) & 0.081 (0.04) \\
M12 & ULSMV & 200 & 10 & 0.771 & 0.027 & 0.915 (0.04) & 0.899 (0.04) & 0.026 (0.01) & 0.053 (0.01) & 0.064 (0.02) \\
M12 & ULSMV & 200 & 30 & 0.796 & 0.105 & 0.925 (0.04) & 0.911 (0.04) & 0.019 (0.01) & 0.05 (0) & 0.054 (0.01) \\
M12 & WLSMV & 30 & 5 & 0.318 & 0.848 & 0.914 (0.07) & 0.898 (0.08) & 0.029 (0.01) & 0.093 (0.01) & 0.167 (0.05) \\
M12 & WLSMV & 30 & 10 & 0.458 & 0.692 & 0.938 (0.04) & 0.926 (0.05) & 0.025 (0.01) & 0.071 (0.01) & 0.151 (0.05) \\
M12 & WLSMV & 30 & 30 & 0.598 & 0.524 & 0.965 (0.03) & 0.959 (0.04) & 0.015 (0.01) & 0.057 (0.01) & 0.13 (0.02) \\
M12 & WLSMV & 50 & 5 & 0.42 & 0.608 & 0.92 (0.05) & 0.905 (0.06) & 0.03 (0.01) & 0.078 (0.01) & 0.134 (0.05) \\
M12 & WLSMV & 50 & 10 & 0.582 & 0.213 & 0.929 (0.03) & 0.916 (0.04) & 0.029 (0.01) & 0.062 (0.01) & 0.123 (0.04) \\
M12 & WLSMV & 50 & 30 & 0.687 & 0.251 & 0.95 (0.03) & 0.941 (0.03) & 0.021 (0.01) & 0.054 (0.01) & 0.101 (0.02) \\
M12 & WLSMV & 100 & 5 & 0.573 & 0.165 & 0.923 (0.03) & 0.909 (0.04) & 0.031 (0.01) & 0.064 (0.01) & 0.108 (0.05) \\
M12 & WLSMV & 100 & 10 & 0.697 & 0.004 & 0.927 (0.02) & 0.913 (0.03) & 0.032 (0.01) & 0.055 (0.01) & 0.089 (0.03) \\
M12 & WLSMV & 100 & 30 & 0.759 & 0 & 0.937 (0.02) & 0.925 (0.02) & 0.027 (0.01) & 0.051 (0) & 0.074 (0.01) \\
M12 & WLSMV & 200 & 5 & 0.716 & 0.002 & 0.925 (0.02) & 0.912 (0.03) & 0.032 (0.01) & 0.056 (0.01) & 0.084 (0.04) \\
M12 & WLSMV & 200 & 10 & 0.765 & 0 & 0.927 (0.02) & 0.913 (0.02) & 0.033 (0) & 0.052 (0) & 0.066 (0.02) \\
M12 & WLSMV & 200 & 30 & 0.779 & 0 & 0.932 (0.01) & 0.919 (0.02) & 0.031 (0) & 0.049 (0) & 0.056 (0.01) \\
\bottomrule
\end{tabular}
\end{table}
## Now, create MANY subset tables to breakdown these relationships
## loop around these iterators
for(M in mods){
for(E in ests){
### subset tothe model (M) and estimator (E)
#M <- 'C'
#E <- 'MLR'
cat('\n\n ===============================\n')
cat('\nModel:\t', M)
cat('\nEstimator:\t', E, '\n')
sub_dat <- mydata[ mydata$Model == M & mydata$Estimator == E,]
a <- sub_dat %>%
group_by(ss_l1, ss_l2, icc_ov, icc_lv) %>%
summarise(
N = n(),
chi2=mean(Chi2_pvalue_decision, na.rm = T),
CFI.m =mean(CFI, na.rm = T), CFI.sd =sd(CFI, na.rm = T),
TLI.m =mean(TLI, na.rm = T), TLI.sd =sd(TLI, na.rm = T),
RMSEA.m =mean(RMSEA, na.rm = T), RMSEA.sd =sd(RMSEA, na.rm = T),
SRMRW.m =mean(SRMRW, na.rm = T), SRMRW.sd =sd(SRMRW, na.rm = T),
SRMRB.m =mean(SRMRB, na.rm = T), SRMRB.sd =sd(SRMRB, na.rm = T)
)
#print(xtable(a, digits = 3), booktabs = T, include.rownames = F)
## Now, create subsets of this results matrix for outputting into small(ish) tables
## Subset by ICC conditions
ICCO <- unique(a$icc_ov)
ICCL <- unique(a$icc_lv)
icco <- ICCO[1]
iccl <- ICCL[1]
for(icco in ICCO){
for(iccl in ICCL){
### subset tothe model (M) and estimator (E)
#M <- 'C'
#E <- 'MLR'
cat('\n===============================\n')
cat('\nModel:\t', M)
cat('\nEstimator:\t', E)
cat('\nICC Obs. Var.:\t', icco)
cat('\nICC Lat. Var.:\t', iccl,'\n')
a_s <- filter(a, icc_ov == icco, icc_lv == iccl)
## make a copy of a to print into
a1 <- as_tibble(as.data.frame(matrix(NA, ncol=9,nrow=nrow(a_s))))
colnames(a1) <- c('N2', 'N1', 'Num_Rep', "chi2", "CFI",'TLI', 'RMSEA', 'SRMRW', 'SRMRB')
i <- 1
for(i in 1:nrow(a_s)){
a1[i,3:9] <- unlist(c(
round(a_s[i,5],2),
round(a_s[i,6],2),
paste0(round(a_s[i,7],2), '(', round(a_s[i,8],2), ')'),
paste0(round(a_s[i,9],2), '(', round(a_s[i,10],2), ')'),
paste0(round(a_s[i,11],2), '(', round(a_s[i,12],2), ')'),
paste0(round(a_s[i,13],2), '(', round(a_s[i,14],2), ')'),
paste0(round(a_s[i,15],2), '(', round(a_s[i,16],2), ')')
))
}
a1[,1:2] <- a_s[,c(2,1)]## add factors back with diff. order
## Print out in tex
print(xtable(a1,
caption = paste0('Summary of Fit Statistics Across Conditions: Model ',
M,', Estimator ',E,', ICC_O ',icco,' and ICC_L ', iccl)),
booktabs = T, include.rownames = F)
}
}## End subset table printing
}
} ## End loops..
===============================
Model: C
Estimator: MLR
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 261 & 0.35 & 0.88(0.09) & 0.85(0.11) & 0.05(0.02) & 0.06(0.01) & 0.32(0.05) \\
50 & 5 & 280 & 0.53 & 0.94(0.04) & 0.93(0.05) & 0.03(0.02) & 0.05(0.01) & 0.27(0.04) \\
100 & 5 & 376 & 0.7 & 0.98(0.02) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.22(0.03) \\
200 & 5 & 476 & 0.9 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.17(0.02) \\
30 & 10 & 304 & 0.44 & 0.94(0.04) & 0.93(0.04) & 0.03(0.01) & 0.04(0.01) & 0.25(0.04) \\
50 & 10 & 416 & 0.68 & 0.97(0.02) & 0.97(0.03) & 0.02(0.01) & 0.03(0) & 0.21(0.03) \\
100 & 10 & 485 & 0.88 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.15(0.02) \\
200 & 10 & 500 & 0.91 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.11(0.02) \\
30 & 30 & 475 & 0.61 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.19(0.03) \\
50 & 30 & 498 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.14(0.02) \\
100 & 30 & 500 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.1(0.01) \\
200 & 30 & 500 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 186 & 0.44 & 0.93(0.04) & 0.92(0.05) & 0.04(0.02) & 0.07(0.01) & 0.16(0.04) \\
50 & 5 & 250 & 0.69 & 0.97(0.03) & 0.97(0.03) & 0.03(0.02) & 0.05(0.01) & 0.12(0.02) \\
100 & 5 & 363 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.09(0.02) \\
200 & 5 & 478 & 0.9 & 1(0) & 1(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 247 & 0.49 & 0.96(0.03) & 0.95(0.03) & 0.03(0.01) & 0.04(0.01) & 0.12(0.03) \\
50 & 10 & 381 & 0.71 & 0.98(0.02) & 0.98(0.02) & 0.02(0.01) & 0.03(0) & 0.1(0.02) \\
100 & 10 & 494 & 0.89 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\
200 & 10 & 500 & 0.92 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 469 & 0.62 & 0.99(0.01) & 0.98(0.01) & 0.01(0.01) & 0.02(0) & 0.1(0.02) \\
50 & 30 & 497 & 0.85 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\
100 & 30 & 500 & 0.9 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
200 & 30 & 500 & 0.93 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.04(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 234 & 0.5 & 0.88(0.09) & 0.85(0.11) & 0.04(0.02) & 0.06(0.01) & 0.23(0.03) \\
50 & 5 & 274 & 0.75 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.05(0.01) & 0.19(0.02) \\
100 & 5 & 380 & 0.91 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.03(0) & 0.14(0.02) \\
200 & 5 & 445 & 0.9 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.09(0.01) \\
30 & 10 & 292 & 0.63 & 0.95(0.04) & 0.93(0.05) & 0.02(0.01) & 0.04(0.01) & 0.2(0.02) \\
50 & 10 & 349 & 0.8 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.03(0) & 0.15(0.02) \\
100 & 10 & 445 & 0.88 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.11(0.01) \\
200 & 10 & 491 & 0.93 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\
30 & 30 & 344 & 0.7 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\
50 & 30 & 415 & 0.82 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.13(0.01) \\
100 & 30 & 481 & 0.92 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.09(0.01) \\
200 & 30 & 499 & 0.92 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 396 & 0.49 & 0.91(0.06) & 0.89(0.08) & 0.04(0.02) & 0.07(0.01) & 0.17(0.03) \\
50 & 5 & 486 & 0.73 & 0.96(0.04) & 0.95(0.04) & 0.02(0.02) & 0.05(0.01) & 0.13(0.02) \\
100 & 5 & 498 & 0.91 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.09(0.01) \\
200 & 5 & 500 & 0.93 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 494 & 0.65 & 0.96(0.04) & 0.95(0.04) & 0.02(0.01) & 0.04(0.01) & 0.15(0.02) \\
50 & 10 & 500 & 0.82 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.03(0) & 0.11(0.02) \\
100 & 10 & 500 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.08(0.01) \\
200 & 10 & 500 & 0.93 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 500 & 0.71 & 0.99(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.13(0.02) \\
50 & 30 & 499 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 498 & 0.92 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.07(0.01) \\
200 & 30 & 498 & 0.95 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 180 & 0.59 & 0.87(0.1) & 0.84(0.12) & 0.04(0.02) & 0.06(0.01) & 0.19(0.02) \\
50 & 5 & 244 & 0.83 & 0.95(0.05) & 0.94(0.05) & 0.02(0.01) & 0.05(0.01) & 0.15(0.02) \\
100 & 5 & 300 & 0.92 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.1(0.01) \\
200 & 5 & 372 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\
30 & 10 & 223 & 0.71 & 0.95(0.05) & 0.94(0.06) & 0.02(0.01) & 0.04(0.01) & 0.17(0.02) \\
50 & 10 & 241 & 0.85 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.13(0.01) \\
100 & 10 & 336 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.09(0.01) \\
200 & 10 & 398 & 0.93 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 230 & 0.7 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\
50 & 30 & 296 & 0.89 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.01) \\
100 & 30 & 358 & 0.93 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\
200 & 30 & 429 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 469 & 0.6 & 0.89(0.08) & 0.87(0.1) & 0.04(0.02) & 0.06(0.01) & 0.17(0.03) \\
50 & 5 & 498 & 0.82 & 0.96(0.04) & 0.95(0.05) & 0.02(0.02) & 0.05(0.01) & 0.13(0.02) \\
100 & 5 & 500 & 0.88 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0) & 0.09(0.01) \\
200 & 5 & 499 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.06(0.01) \\
30 & 10 & 494 & 0.71 & 0.95(0.04) & 0.95(0.05) & 0.02(0.01) & 0.04(0.01) & 0.15(0.02) \\
50 & 10 & 500 & 0.83 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.12(0.02) \\
100 & 10 & 500 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.08(0.01) \\
200 & 10 & 500 & 0.92 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 497 & 0.73 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.14(0.02) \\
50 & 30 & 500 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.11(0.01) \\
100 & 30 & 500 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\
200 & 30 & 500 & 0.93 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: ULSMV
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:13 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 15 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.07(0.01) & 0.35(0.06) \\
50 & 5 & 69 & 0.99 & 0.99(0.02) & 0.99(0.03) & 0.01(0.01) & 0.06(0.01) & 0.32(0.13) \\
100 & 5 & 247 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.22(0.05) \\
200 & 5 & 445 & 0.95 & 1(0.01) & 1(0.01) & 0(0.01) & 0.03(0) & 0.15(0.03) \\
30 & 10 & 176 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.25(0.06) \\
50 & 10 & 334 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.19(0.04) \\
100 & 10 & 466 & 0.97 & 1(0) & 1(0.01) & 0.01(0.01) & 0.03(0) & 0.13(0.02) \\
200 & 10 & 499 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.09(0.01) \\
30 & 30 & 451 & 1 & 1(0) & 1(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.02) \\
50 & 30 & 494 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.11(0.01) \\
100 & 30 & 500 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\
200 & 30 & 500 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 18 & 1 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.09(0.01) & 0.13(0.03) \\
50 & 5 & 46 & 1 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.07(0.01) & 0.1(0.02) \\
100 & 5 & 157 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.07(0.02) \\
200 & 5 & 364 & 0.96 & 0.99(0.01) & 0.99(0.01) & 0(0.01) & 0.03(0) & 0.05(0.01) \\
30 & 10 & 67 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.06(0.01) & 0.09(0.02) \\
50 & 10 & 193 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.04(0.01) & 0.07(0.02) \\
100 & 10 & 377 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0(0.01) & 0.03(0) & 0.05(0.01) \\
200 & 10 & 489 & 0.96 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.03(0.01) \\
30 & 30 & 259 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.07(0.02) \\
50 & 30 & 422 & 1 & 1(0) & 1(0.01) & 0(0) & 0.03(0) & 0.05(0.01) \\
100 & 30 & 485 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.04(0.01) \\
200 & 30 & 500 & 0.98 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.02(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 178 & 0.99 & 0.96(0.05) & 0.96(0.06) & 0.01(0.01) & 0.08(0.01) & 0.21(0.04) \\
50 & 5 & 271 & 0.97 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.16(0.03) \\
100 & 5 & 379 & 0.98 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\
200 & 5 & 440 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
30 & 10 & 287 & 0.99 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 10 & 349 & 0.98 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\
100 & 10 & 442 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
200 & 10 & 490 & 0.95 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 345 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.03(0) & 0.13(0.01) \\
50 & 30 & 424 & 0.99 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 480 & 0.97 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 500 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 365 & 0.99 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.09(0.01) & 0.13(0.03) \\
50 & 5 & 469 & 0.97 & 0.97(0.04) & 0.97(0.05) & 0.01(0.01) & 0.07(0.01) & 0.1(0.02) \\
100 & 5 & 495 & 0.97 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.05(0.01) & 0.07(0.01) \\
200 & 5 & 500 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.05(0.01) \\
30 & 10 & 476 & 0.99 & 0.98(0.04) & 0.98(0.05) & 0(0.01) & 0.06(0.01) & 0.1(0.02) \\
50 & 10 & 497 & 0.97 & 0.98(0.03) & 0.98(0.03) & 0.01(0.01) & 0.05(0.01) & 0.08(0.01) \\
100 & 10 & 500 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0(0.01) & 0.04(0) & 0.05(0.01) \\
200 & 10 & 500 & 0.95 & 1(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.04(0.01) \\
30 & 30 & 495 & 1 & 1(0) & 1(0) & 0(0) & 0.04(0.01) & 0.09(0.02) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.07(0.01) \\
100 & 30 & 500 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.05(0.01) \\
200 & 30 & 500 & 0.99 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.03(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 162 & 0.97 & 0.91(0.13) & 0.89(0.15) & 0.01(0.01) & 0.09(0.02) & 0.15(0.02) \\
50 & 5 & 241 & 0.96 & 0.95(0.07) & 0.94(0.08) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 5 & 298 & 0.98 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 5 & 377 & 0.95 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 224 & 1 & 0.97(0.06) & 0.97(0.07) & 0(0.01) & 0.06(0.01) & 0.13(0.02) \\
50 & 10 & 249 & 0.99 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\
100 & 10 & 334 & 0.95 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
200 & 10 & 395 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 241 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.12(0.01) \\
50 & 30 & 299 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.09(0.01) \\
100 & 30 & 369 & 1 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 423 & 0.99 & 1(0.01) & 1(0.01) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 465 & 1 & 0.94(0.1) & 0.92(0.11) & 0.01(0.01) & 0.11(0.02) & 0.12(0.02) \\
50 & 5 & 499 & 0.99 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.08(0.01) & 0.09(0.01) \\
100 & 5 & 500 & 0.97 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.06(0.01) \\
200 & 5 & 500 & 0.95 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.04(0.01) \\
30 & 10 & 489 & 1 & 0.99(0.04) & 0.99(0.05) & 0(0) & 0.08(0.01) & 0.1(0.02) \\
50 & 10 & 500 & 0.99 & 0.98(0.04) & 0.98(0.05) & 0(0.01) & 0.06(0.01) & 0.08(0.01) \\
100 & 10 & 500 & 0.97 & 0.98(0.03) & 0.98(0.03) & 0(0.01) & 0.04(0.01) & 0.06(0.01) \\
200 & 10 & 500 & 0.94 & 0.99(0.01) & 0.99(0.02) & 0(0) & 0.03(0) & 0.04(0) \\
30 & 30 & 495 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.01) & 0.09(0.01) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.05(0.01) & 0.07(0.01) \\
100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.05(0.01) \\
200 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: WLSMV
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 24 & 1 & 0.99(0.02) & 0.99(0.03) & 0.01(0.01) & 0.07(0.01) & 0.34(0.05) \\
50 & 5 & 73 & 1 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.29(0.05) \\
100 & 5 & 278 & 0.95 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.22(0.05) \\
200 & 5 & 450 & 0.95 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.14(0.03) \\
30 & 10 & 182 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.26(0.18) \\
50 & 10 & 363 & 0.96 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.19(0.04) \\
100 & 10 & 473 & 0.97 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.12(0.02) \\
200 & 10 & 500 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\
30 & 30 & 445 & 0.99 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.02) \\
50 & 30 & 495 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.11(0.01) \\
100 & 30 & 500 & 0.96 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\
200 & 30 & 500 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 12 & 1 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.07(0.01) & 0.16(0.04) \\
50 & 5 & 26 & 1 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.06(0.01) & 0.12(0.02) \\
100 & 5 & 119 & 0.96 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.02) \\
200 & 5 & 307 & 0.96 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 40 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.12(0.03) \\
50 & 10 & 109 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.08(0.02) \\
100 & 10 & 259 & 0.97 & 1(0.01) & 1(0.01) & 0(0.01) & 0.03(0) & 0.06(0.01) \\
200 & 10 & 428 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0.01) \\
30 & 30 & 117 & 1 & 1(0) & 1(0.01) & 0(0) & 0.03(0) & 0.08(0.01) \\
50 & 30 & 276 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.06(0.01) \\
100 & 30 & 406 & 0.98 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0.01) \\
200 & 30 & 491 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.03(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 125 & 0.98 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.07(0.01) & 0.21(0.06) \\
50 & 5 & 202 & 0.96 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.15(0.02) \\
100 & 5 & 341 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\
200 & 5 & 431 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
30 & 10 & 209 & 0.97 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.05(0.01) & 0.15(0.02) \\
50 & 10 & 309 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\
100 & 10 & 423 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
200 & 10 & 490 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 318 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.13(0.01) \\
50 & 30 & 408 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 481 & 0.98 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 499 & 0.96 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 337 & 0.97 & 0.97(0.05) & 0.96(0.05) & 0.02(0.01) & 0.08(0.01) & 0.15(0.02) \\
50 & 5 & 434 & 0.96 & 0.98(0.03) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.11(0.02) \\
100 & 5 & 491 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 5 & 500 & 0.95 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.05(0.01) \\
30 & 10 & 427 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.12(0.02) \\
50 & 10 & 488 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.09(0.01) \\
100 & 10 & 499 & 0.97 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
200 & 10 & 500 & 0.96 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0.01) \\
30 & 30 & 475 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.1(0.01) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\
100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
200 & 30 & 500 & 0.99 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.04(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 112 & 0.96 & 0.95(0.05) & 0.94(0.06) & 0.02(0.01) & 0.08(0.01) & 0.16(0.02) \\
50 & 5 & 179 & 0.97 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 5 & 266 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 5 & 358 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 179 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.13(0.02) \\
50 & 10 & 212 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\
100 & 10 & 319 & 0.97 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
200 & 10 & 389 & 0.96 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 216 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.01) \\
50 & 30 & 280 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.09(0.01) \\
100 & 30 & 346 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 430 & 1 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 455 & 0.99 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.08(0.01) & 0.14(0.02) \\
50 & 5 & 496 & 0.98 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 5 & 499 & 0.95 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.07(0.01) \\
200 & 5 & 500 & 0.95 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.05(0.01) \\
30 & 10 & 487 & 1 & 0.99(0.01) & 0.99(0.02) & 0(0.01) & 0.05(0.01) & 0.12(0.02) \\
50 & 10 & 500 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0.01) & 0.09(0.01) \\
100 & 10 & 500 & 0.96 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
200 & 10 & 500 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 494 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.11(0.01) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\
100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.06(0.01) \\
200 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.04(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: MLR
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 160 & 0.11 & 0.78(0.14) & 0.74(0.16) & 0.07(0.02) & 0.08(0.03) & 0.32(0.06) \\
50 & 5 & 150 & 0.15 & 0.88(0.07) & 0.85(0.08) & 0.05(0.01) & 0.06(0.01) & 0.29(0.05) \\
100 & 5 & 133 & 0.05 & 0.91(0.03) & 0.89(0.04) & 0.04(0.01) & 0.05(0.01) & 0.24(0.04) \\
200 & 5 & 121 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.19(0.03) \\
30 & 10 & 191 & 0.04 & 0.86(0.08) & 0.83(0.09) & 0.05(0.02) & 0.06(0.01) & 0.25(0.04) \\
50 & 10 & 224 & 0.01 & 0.9(0.03) & 0.88(0.04) & 0.04(0.01) & 0.05(0.01) & 0.21(0.03) \\
100 & 10 & 276 & 0 & 0.92(0.02) & 0.9(0.03) & 0.03(0.01) & 0.05(0) & 0.16(0.02) \\
200 & 10 & 317 & 0 & 0.92(0.01) & 0.91(0.02) & 0.03(0) & 0.04(0) & 0.12(0.02) \\
30 & 30 & 376 & 0 & 0.9(0.03) & 0.88(0.04) & 0.04(0.01) & 0.05(0.01) & 0.18(0.03) \\
50 & 30 & 423 & 0 & 0.91(0.04) & 0.89(0.05) & 0.04(0.01) & 0.04(0) & 0.14(0.02) \\
100 & 30 & 476 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.1(0.01) \\
200 & 30 & 495 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 133 & 0.12 & 0.88(0.06) & 0.85(0.07) & 0.06(0.02) & 0.08(0.01) & 0.16(0.03) \\
50 & 5 & 160 & 0.15 & 0.92(0.04) & 0.91(0.04) & 0.05(0.01) & 0.07(0.01) & 0.13(0.03) \\
100 & 5 & 137 & 0.02 & 0.95(0.02) & 0.93(0.02) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\
200 & 5 & 125 & 0 & 0.95(0.01) & 0.94(0.02) & 0.03(0.01) & 0.05(0.01) & 0.08(0.01) \\
30 & 10 & 182 & 0.05 & 0.9(0.04) & 0.88(0.05) & 0.05(0.01) & 0.06(0.01) & 0.13(0.03) \\
50 & 10 & 257 & 0.01 & 0.92(0.02) & 0.91(0.03) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\
100 & 10 & 381 & 0 & 0.94(0.01) & 0.92(0.02) & 0.04(0) & 0.05(0) & 0.08(0.01) \\
200 & 10 & 448 & 0 & 0.94(0.01) & 0.93(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 426 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0.01) & 0.05(0.01) & 0.11(0.02) \\
50 & 30 & 488 & 0 & 0.92(0.01) & 0.91(0.02) & 0.04(0) & 0.05(0) & 0.09(0.02) \\
100 & 30 & 499 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 500 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 195 & 0.27 & 0.8(0.12) & 0.76(0.14) & 0.05(0.02) & 0.07(0.02) & 0.23(0.03) \\
50 & 5 & 247 & 0.36 & 0.89(0.06) & 0.87(0.08) & 0.04(0.01) & 0.06(0.01) & 0.19(0.02) \\
100 & 5 & 297 & 0.19 & 0.92(0.04) & 0.9(0.05) & 0.03(0.01) & 0.05(0.01) & 0.14(0.02) \\
200 & 5 & 349 & 0.01 & 0.92(0.02) & 0.9(0.03) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\
30 & 10 & 271 & 0.14 & 0.87(0.06) & 0.84(0.08) & 0.04(0.01) & 0.06(0.01) & 0.19(0.03) \\
50 & 10 & 317 & 0.07 & 0.9(0.04) & 0.88(0.05) & 0.04(0.01) & 0.05(0.01) & 0.15(0.02) \\
100 & 10 & 381 & 0.01 & 0.91(0.03) & 0.89(0.03) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\
200 & 10 & 444 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.07(0.01) \\
30 & 30 & 309 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 30 & 369 & 0 & 0.91(0.02) & 0.89(0.02) & 0.03(0) & 0.04(0) & 0.12(0.01) \\
100 & 30 & 445 & 0 & 0.91(0.01) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
200 & 30 & 471 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 313 & 0.26 & 0.85(0.08) & 0.83(0.09) & 0.05(0.02) & 0.08(0.01) & 0.17(0.03) \\
50 & 5 & 409 & 0.31 & 0.91(0.05) & 0.89(0.06) & 0.04(0.01) & 0.07(0.01) & 0.14(0.02) \\
100 & 5 & 453 & 0.1 & 0.93(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
200 & 5 & 495 & 0.01 & 0.94(0.02) & 0.93(0.02) & 0.03(0) & 0.05(0.01) & 0.07(0.01) \\
30 & 10 & 439 & 0.12 & 0.89(0.04) & 0.87(0.05) & 0.04(0.01) & 0.06(0.01) & 0.15(0.02) \\
50 & 10 & 470 & 0.04 & 0.92(0.03) & 0.9(0.04) & 0.04(0.01) & 0.05(0.01) & 0.12(0.02) \\
100 & 10 & 495 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0.01) & 0.09(0.01) \\
200 & 10 & 500 & 0 & 0.93(0.01) & 0.91(0.01) & 0.03(0) & 0.04(0) & 0.07(0.01) \\
30 & 30 & 467 & 0 & 0.91(0.02) & 0.89(0.03) & 0.04(0.01) & 0.05(0) & 0.13(0.02) \\
50 & 30 & 492 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.11(0.02) \\
100 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
200 & 30 & 499 & 0 & 0.92(0.01) & 0.91(0.01) & 0.03(0) & 0.04(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 191 & 0.34 & 0.8(0.1) & 0.76(0.13) & 0.05(0.02) & 0.07(0.01) & 0.19(0.02) \\
50 & 5 & 251 & 0.42 & 0.89(0.07) & 0.87(0.08) & 0.03(0.01) & 0.06(0.01) & 0.15(0.02) \\
100 & 5 & 282 & 0.23 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\
200 & 5 & 357 & 0.01 & 0.91(0.03) & 0.9(0.03) & 0.03(0.01) & 0.05(0.01) & 0.07(0.01) \\
30 & 10 & 221 & 0.22 & 0.88(0.06) & 0.85(0.08) & 0.04(0.01) & 0.06(0.01) & 0.17(0.02) \\
50 & 10 & 255 & 0.09 & 0.9(0.04) & 0.88(0.05) & 0.03(0.01) & 0.05(0.01) & 0.13(0.01) \\
100 & 10 & 314 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0.01) & 0.04(0) & 0.09(0.01) \\
200 & 10 & 370 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
30 & 30 & 216 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0) & 0.05(0.01) & 0.15(0.02) \\
50 & 30 & 266 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.01) \\
100 & 30 & 340 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
200 & 30 & 373 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 387 & 0.37 & 0.84(0.09) & 0.8(0.11) & 0.05(0.02) & 0.07(0.01) & 0.17(0.02) \\
50 & 5 & 456 & 0.4 & 0.9(0.06) & 0.88(0.07) & 0.04(0.01) & 0.06(0.01) & 0.13(0.02) \\
100 & 5 & 494 & 0.15 & 0.92(0.03) & 0.9(0.04) & 0.03(0.01) & 0.05(0.01) & 0.09(0.01) \\
200 & 5 & 500 & 0 & 0.93(0.02) & 0.91(0.03) & 0.03(0) & 0.05(0.01) & 0.07(0.01) \\
30 & 10 & 444 & 0.2 & 0.88(0.07) & 0.86(0.08) & 0.04(0.01) & 0.06(0.01) & 0.15(0.02) \\
50 & 10 & 484 & 0.09 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.12(0.02) \\
100 & 10 & 499 & 0 & 0.92(0.02) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
200 & 10 & 500 & 0 & 0.92(0.02) & 0.91(0.02) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
30 & 30 & 450 & 0 & 0.91(0.03) & 0.89(0.03) & 0.03(0.01) & 0.04(0) & 0.14(0.02) \\
50 & 30 & 488 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.11(0.01) \\
100 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
200 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: ULSMV
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 19 & 1 & 0.96(0.05) & 0.95(0.06) & 0.02(0.02) & 0.09(0.01) & 0.52(0.68) \\
50 & 5 & 54 & 0.65 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.32(0.14) \\
100 & 5 & 190 & 0.09 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.22(0.05) \\
200 & 5 & 337 & 0 & 0.92(0.02) & 0.91(0.03) & 0.04(0.01) & 0.05(0.01) & 0.14(0.03) \\
30 & 10 & 154 & 0.44 & 0.93(0.04) & 0.92(0.04) & 0.03(0.01) & 0.07(0.01) & 0.26(0.12) \\
50 & 10 & 236 & 0.05 & 0.92(0.03) & 0.91(0.04) & 0.04(0.01) & 0.06(0.01) & 0.19(0.04) \\
100 & 10 & 361 & 0 & 0.92(0.02) & 0.91(0.03) & 0.04(0.01) & 0.05(0.01) & 0.13(0.02) \\
200 & 10 & 417 & 0 & 0.92(0.01) & 0.91(0.02) & 0.04(0) & 0.05(0) & 0.09(0.01) \\
30 & 30 & 342 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0.01) & 0.05(0.01) & 0.15(0.02) \\
50 & 30 & 393 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.11(0.01) \\
100 & 30 & 439 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.08(0.01) \\
200 & 30 & 472 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 6 & 1 & 0.97(0.05) & 0.96(0.06) & 0.01(0.01) & 0.09(0.02) & 0.13(0.04) \\
50 & 5 & 11 & 0.55 & 0.91(0.06) & 0.89(0.07) & 0.03(0.01) & 0.09(0.01) & 0.1(0.03) \\
100 & 5 & 13 & 0.31 & 0.92(0.04) & 0.9(0.05) & 0.03(0.01) & 0.07(0.01) & 0.07(0.01) \\
200 & 5 & 1 & 0 & 0.95(NA) & 0.94(NA) & 0.02(NA) & 0.06(NA) & 0.04(NA) \\
30 & 10 & 9 & 0.78 & 0.91(0.08) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.09(0.02) \\
50 & 10 & 10 & 0.2 & 0.88(0.05) & 0.85(0.06) & 0.03(0.01) & 0.07(0.01) & 0.07(0.02) \\
100 & 10 & 1 & 0 & 0.9(NA) & 0.88(NA) & 0.03(NA) & 0.05(NA) & 0.06(NA) \\
30 & 30 & 4 & 0.5 & 0.92(0.05) & 0.91(0.05) & 0.02(0.01) & 0.06(0) & 0.08(0.03) \\
50 & 30 & 1 & 0 & 0.82(NA) & 0.78(NA) & 0.02(NA) & 0.06(NA) & 0.06(NA) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 168 & 0.93 & 0.91(0.08) & 0.9(0.09) & 0.02(0.01) & 0.09(0.01) & 0.21(0.04) \\
50 & 5 & 244 & 0.76 & 0.93(0.05) & 0.91(0.06) & 0.02(0.01) & 0.07(0.01) & 0.15(0.03) \\
100 & 5 & 334 & 0.3 & 0.93(0.04) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
200 & 5 & 418 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
30 & 10 & 256 & 0.82 & 0.92(0.05) & 0.91(0.06) & 0.02(0.01) & 0.07(0.01) & 0.15(0.02) \\
50 & 10 & 326 & 0.38 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 10 & 401 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\
200 & 10 & 462 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 316 & 0.93 & 0.97(0.03) & 0.96(0.03) & 0.01(0.01) & 0.06(0.01) & 0.13(0.01) \\
50 & 30 & 388 & 0.3 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0) & 0.1(0.01) \\
100 & 30 & 459 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 481 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 263 & 0.97 & 0.91(0.09) & 0.9(0.11) & 0.02(0.01) & 0.1(0.01) & 0.13(0.03) \\
50 & 5 & 329 & 0.79 & 0.91(0.07) & 0.89(0.08) & 0.02(0.01) & 0.09(0.01) & 0.1(0.02) \\
100 & 5 & 354 & 0.4 & 0.92(0.04) & 0.9(0.05) & 0.03(0.01) & 0.07(0.01) & 0.07(0.01) \\
200 & 5 & 411 & 0.01 & 0.92(0.03) & 0.9(0.03) & 0.03(0) & 0.06(0.01) & 0.05(0.01) \\
30 & 10 & 323 & 0.95 & 0.93(0.07) & 0.91(0.09) & 0.02(0.01) & 0.08(0.01) & 0.11(0.02) \\
50 & 10 & 329 & 0.67 & 0.91(0.06) & 0.89(0.07) & 0.02(0.01) & 0.07(0.01) & 0.08(0.01) \\
100 & 10 & 385 & 0.08 & 0.91(0.04) & 0.89(0.04) & 0.02(0) & 0.06(0.01) & 0.06(0.01) \\
200 & 10 & 429 & 0 & 0.9(0.02) & 0.88(0.03) & 0.02(0) & 0.06(0) & 0.05(0.01) \\
30 & 30 & 333 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.07(0.01) & 0.09(0.01) \\
50 & 30 & 397 & 0.98 & 0.98(0.03) & 0.98(0.03) & 0(0) & 0.06(0.01) & 0.07(0.01) \\
100 & 30 & 417 & 0.11 & 0.93(0.03) & 0.92(0.03) & 0.01(0) & 0.06(0) & 0.05(0.01) \\
200 & 30 & 458 & 0 & 0.9(0.02) & 0.88(0.02) & 0.02(0) & 0.05(0) & 0.04(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 162 & 0.97 & 0.88(0.13) & 0.85(0.16) & 0.02(0.01) & 0.1(0.02) & 0.15(0.02) \\
50 & 5 & 246 & 0.94 & 0.91(0.08) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.11(0.01) \\
100 & 5 & 292 & 0.77 & 0.93(0.05) & 0.92(0.06) & 0.02(0.01) & 0.06(0.01) & 0.08(0.01) \\
200 & 5 & 350 & 0.34 & 0.94(0.03) & 0.93(0.03) & 0.02(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 238 & 0.99 & 0.95(0.07) & 0.94(0.09) & 0.01(0.01) & 0.07(0.01) & 0.13(0.01) \\
50 & 10 & 257 & 0.93 & 0.94(0.06) & 0.92(0.07) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 10 & 325 & 0.66 & 0.94(0.04) & 0.93(0.04) & 0.01(0.01) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 379 & 0.12 & 0.94(0.02) & 0.93(0.02) & 0.02(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 239 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.01) & 0.12(0.01) \\
50 & 30 & 300 & 1 & 1(0) & 1(0.01) & 0(0) & 0.05(0) & 0.09(0.01) \\
100 & 30 & 361 & 0.99 & 0.98(0.02) & 0.98(0.02) & 0(0) & 0.05(0) & 0.06(0.01) \\
200 & 30 & 389 & 0.23 & 0.96(0.01) & 0.95(0.02) & 0.01(0) & 0.05(0) & 0.05(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 386 & 0.99 & 0.91(0.11) & 0.89(0.13) & 0.01(0.01) & 0.12(0.02) & 0.12(0.02) \\
50 & 5 & 457 & 0.95 & 0.92(0.08) & 0.9(0.1) & 0.02(0.01) & 0.09(0.01) & 0.09(0.01) \\
100 & 5 & 494 & 0.73 & 0.93(0.05) & 0.91(0.06) & 0.02(0.01) & 0.08(0.01) & 0.06(0.01) \\
200 & 5 & 500 & 0.27 & 0.93(0.03) & 0.92(0.03) & 0.02(0) & 0.07(0.01) & 0.05(0.01) \\
30 & 10 & 445 & 1 & 0.98(0.06) & 0.97(0.07) & 0(0.01) & 0.09(0.01) & 0.1(0.02) \\
50 & 10 & 477 & 0.97 & 0.95(0.06) & 0.94(0.07) & 0.01(0.01) & 0.08(0.01) & 0.08(0.01) \\
100 & 10 & 497 & 0.68 & 0.94(0.04) & 0.92(0.05) & 0.01(0.01) & 0.07(0.01) & 0.06(0.01) \\
200 & 10 & 500 & 0.12 & 0.93(0.03) & 0.92(0.03) & 0.02(0) & 0.06(0.01) & 0.04(0) \\
30 & 30 & 453 & 1 & 1(0) & 1(0) & 0(0) & 0.08(0.01) & 0.09(0.01) \\
50 & 30 & 488 & 1 & 1(0) & 1(0) & 0(0) & 0.07(0.01) & 0.07(0.01) \\
100 & 30 & 500 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.06(0.01) & 0.05(0.01) \\
200 & 30 & 500 & 0.68 & 0.97(0.02) & 0.96(0.02) & 0.01(0) & 0.06(0) & 0.04(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: WLSMV
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 20 & 0.9 & 0.94(0.06) & 0.93(0.07) & 0.02(0.02) & 0.09(0.01) & 0.33(0.04) \\
50 & 5 & 63 & 0.68 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.28(0.05) \\
100 & 5 & 201 & 0.2 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.21(0.04) \\
200 & 5 & 354 & 0 & 0.93(0.02) & 0.91(0.03) & 0.03(0.01) & 0.05(0.01) & 0.14(0.02) \\
30 & 10 & 144 & 0.51 & 0.93(0.04) & 0.92(0.05) & 0.03(0.01) & 0.07(0.01) & 0.3(0.69) \\
50 & 10 & 280 & 0.15 & 0.93(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.19(0.04) \\
100 & 10 & 370 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0.01) & 0.12(0.02) \\
200 & 10 & 437 & 0 & 0.93(0.01) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.09(0.01) \\
30 & 30 & 339 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0.01) & 0.15(0.02) \\
50 & 30 & 414 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.11(0.01) \\
100 & 30 & 449 & 0 & 0.93(0.01) & 0.91(0.01) & 0.03(0) & 0.05(0) & 0.08(0.01) \\
200 & 30 & 481 & 0 & 0.93(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 4 & 1 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.08(0.01) & 0.14(0.05) \\
50 & 5 & 3 & 0 & 0.86(0.01) & 0.83(0.01) & 0.04(0) & 0.09(0.01) & 0.14(0.07) \\
100 & 5 & 5 & 0.4 & 0.93(0.04) & 0.91(0.05) & 0.03(0.01) & 0.06(0.01) & 0.08(0.02) \\
30 & 10 & 5 & 0.4 & 0.91(0.06) & 0.9(0.07) & 0.03(0.01) & 0.07(0.01) & 0.14(0.03) \\
50 & 10 & 3 & 0 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.07(0.02) & 0.1(0.03) \\
30 & 30 & 2 & 0.5 & 0.96(0.03) & 0.95(0.04) & 0.02(0.01) & 0.05(0.01) & 0.08(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 114 & 0.87 & 0.92(0.07) & 0.9(0.08) & 0.03(0.02) & 0.09(0.01) & 0.2(0.03) \\
50 & 5 & 191 & 0.59 & 0.92(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.15(0.02) \\
100 & 5 & 311 & 0.21 & 0.93(0.03) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
200 & 5 & 408 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.07(0.01) \\
30 & 10 & 196 & 0.51 & 0.92(0.05) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.15(0.02) \\
50 & 10 & 290 & 0.13 & 0.93(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 10 & 379 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\
200 & 10 & 460 & 0 & 0.94(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 271 & 0.12 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.06(0.01) & 0.13(0.01) \\
50 & 30 & 371 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.1(0.01) \\
100 & 30 & 446 & 0 & 0.94(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 483 & 0 & 0.94(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 226 & 0.81 & 0.91(0.07) & 0.9(0.08) & 0.03(0.02) & 0.09(0.01) & 0.15(0.03) \\
50 & 5 & 245 & 0.56 & 0.92(0.06) & 0.9(0.07) & 0.03(0.01) & 0.08(0.01) & 0.11(0.02) \\
100 & 5 & 231 & 0.18 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\
200 & 5 & 222 & 0 & 0.93(0.02) & 0.91(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 246 & 0.56 & 0.93(0.04) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.13(0.02) \\
50 & 10 & 219 & 0.15 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.09(0.01) \\
100 & 10 & 174 & 0 & 0.92(0.03) & 0.9(0.03) & 0.03(0.01) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 140 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 199 & 0.8 & 0.97(0.02) & 0.97(0.02) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\
50 & 30 & 185 & 0.04 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0.01) & 0.08(0.01) \\
100 & 30 & 129 & 0 & 0.93(0.01) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
200 & 30 & 83 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 127 & 0.82 & 0.91(0.07) & 0.89(0.08) & 0.03(0.02) & 0.09(0.01) & 0.15(0.02) \\
50 & 5 & 197 & 0.71 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.11(0.01) \\
100 & 5 & 268 & 0.28 & 0.94(0.03) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\
200 & 5 & 330 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 178 & 0.8 & 0.95(0.04) & 0.93(0.05) & 0.02(0.01) & 0.07(0.01) & 0.13(0.02) \\
50 & 10 & 216 & 0.3 & 0.94(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 10 & 288 & 0 & 0.94(0.02) & 0.92(0.02) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 370 & 0 & 0.94(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 201 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0(0.01) & 0.06(0.01) & 0.12(0.01) \\
50 & 30 & 271 & 0.37 & 0.97(0.01) & 0.96(0.02) & 0.01(0) & 0.05(0.01) & 0.09(0.01) \\
100 & 30 & 336 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.06(0.01) \\
200 & 30 & 371 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 361 & 0.89 & 0.93(0.06) & 0.91(0.07) & 0.03(0.01) & 0.09(0.01) & 0.14(0.02) \\
50 & 5 & 400 & 0.66 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.1(0.01) \\
100 & 5 & 463 & 0.2 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.07(0.01) & 0.07(0.01) \\
200 & 5 & 481 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.05(0.01) \\
30 & 10 & 399 & 0.88 & 0.96(0.04) & 0.95(0.05) & 0.02(0.01) & 0.07(0.01) & 0.12(0.02) \\
50 & 10 & 445 & 0.4 & 0.94(0.03) & 0.93(0.04) & 0.03(0.01) & 0.06(0.01) & 0.09(0.01) \\
100 & 10 & 457 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 496 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 352 & 1 & 1(0) & 1(0.01) & 0(0) & 0.06(0.01) & 0.11(0.01) \\
50 & 30 & 420 & 0.86 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.06(0.01) & 0.09(0.01) \\
100 & 30 & 473 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.06(0.01) \\
200 & 30 & 496 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: MLR
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 248 & 0.35 & 0.87(0.11) & 0.84(0.12) & 0.05(0.02) & 0.06(0.03) & 0.33(0.06) \\
50 & 5 & 281 & 0.52 & 0.94(0.04) & 0.93(0.05) & 0.03(0.02) & 0.05(0.01) & 0.28(0.04) \\
100 & 5 & 382 & 0.69 & 0.98(0.02) & 0.97(0.03) & 0.02(0.01) & 0.03(0) & 0.23(0.03) \\
200 & 5 & 463 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.18(0.03) \\
30 & 10 & 290 & 0.42 & 0.94(0.04) & 0.92(0.05) & 0.03(0.01) & 0.04(0.01) & 0.26(0.04) \\
50 & 10 & 401 & 0.6 & 0.97(0.02) & 0.96(0.03) & 0.02(0.01) & 0.03(0) & 0.22(0.03) \\
100 & 10 & 483 & 0.81 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.17(0.02) \\
200 & 10 & 500 & 0.79 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.02) \\
30 & 30 & 468 & 0.56 & 0.98(0.01) & 0.98(0.02) & 0.02(0.01) & 0.02(0) & 0.2(0.03) \\
50 & 30 & 498 & 0.72 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.15(0.02) \\
100 & 30 & 500 & 0.74 & 1(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.12(0.01) \\
200 & 30 & 500 & 0.59 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.09(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 191 & 0.2 & 0.89(0.06) & 0.87(0.07) & 0.06(0.02) & 0.07(0.01) & 0.21(0.05) \\
50 & 5 & 275 & 0.2 & 0.93(0.03) & 0.91(0.04) & 0.04(0.01) & 0.05(0.01) & 0.18(0.03) \\
100 & 5 & 386 & 0.09 & 0.95(0.02) & 0.94(0.03) & 0.03(0.01) & 0.04(0) & 0.16(0.03) \\
200 & 5 & 487 & 0 & 0.96(0.01) & 0.95(0.02) & 0.03(0.01) & 0.03(0) & 0.14(0.02) \\
30 & 10 & 265 & 0.15 & 0.92(0.04) & 0.91(0.04) & 0.04(0.01) & 0.04(0.01) & 0.17(0.04) \\
50 & 10 & 403 & 0.09 & 0.94(0.02) & 0.93(0.03) & 0.03(0.01) & 0.04(0) & 0.16(0.03) \\
100 & 10 & 495 & 0 & 0.96(0.01) & 0.95(0.01) & 0.03(0) & 0.03(0) & 0.14(0.02) \\
200 & 10 & 500 & 0 & 0.96(0.01) & 0.95(0.01) & 0.03(0) & 0.02(0) & 0.13(0.01) \\
30 & 30 & 476 & 0.08 & 0.96(0.02) & 0.95(0.02) & 0.03(0.01) & 0.02(0) & 0.16(0.03) \\
50 & 30 & 500 & 0.03 & 0.97(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.15(0.02) \\
100 & 30 & 500 & 0 & 0.98(0.01) & 0.97(0.01) & 0.02(0) & 0.01(0) & 0.14(0.02) \\
200 & 30 & 500 & 0 & 0.98(0) & 0.97(0) & 0.02(0) & 0.01(0) & 0.13(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:14 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 219 & 0.47 & 0.87(0.09) & 0.85(0.11) & 0.04(0.02) & 0.06(0.01) & 0.23(0.03) \\
50 & 5 & 269 & 0.78 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.05(0.01) & 0.19(0.02) \\
100 & 5 & 351 & 0.88 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.03(0) & 0.14(0.02) \\
200 & 5 & 430 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.1(0.01) \\
30 & 10 & 287 & 0.63 & 0.94(0.04) & 0.93(0.05) & 0.02(0.01) & 0.04(0.01) & 0.2(0.02) \\
50 & 10 & 347 & 0.77 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.03(0) & 0.16(0.02) \\
100 & 10 & 429 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.11(0.01) \\
200 & 10 & 486 & 0.88 & 1(0) & 1(0.01) & 0.01(0) & 0.02(0) & 0.08(0.01) \\
30 & 30 & 337 & 0.71 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\
50 & 30 & 413 & 0.8 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.13(0.01) \\
100 & 30 & 481 & 0.88 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.09(0.01) \\
200 & 30 & 496 & 0.88 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 411 & 0.37 & 0.88(0.07) & 0.86(0.08) & 0.05(0.02) & 0.07(0.01) & 0.19(0.03) \\
50 & 5 & 489 & 0.52 & 0.94(0.04) & 0.93(0.05) & 0.03(0.02) & 0.05(0.01) & 0.16(0.02) \\
100 & 5 & 500 & 0.46 & 0.96(0.02) & 0.96(0.03) & 0.02(0.01) & 0.04(0) & 0.12(0.02) \\
200 & 5 & 500 & 0.14 & 0.97(0.01) & 0.96(0.02) & 0.02(0.01) & 0.03(0) & 0.11(0.01) \\
30 & 10 & 493 & 0.47 & 0.94(0.04) & 0.92(0.05) & 0.03(0.01) & 0.04(0.01) & 0.17(0.03) \\
50 & 10 & 500 & 0.5 & 0.96(0.02) & 0.96(0.03) & 0.02(0.01) & 0.03(0) & 0.14(0.02) \\
100 & 10 & 500 & 0.26 & 0.97(0.01) & 0.97(0.02) & 0.02(0.01) & 0.02(0) & 0.11(0.01) \\
200 & 10 & 500 & 0.02 & 0.98(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.1(0.01) \\
30 & 30 & 500 & 0.49 & 0.98(0.02) & 0.97(0.02) & 0.02(0.01) & 0.02(0) & 0.16(0.02) \\
50 & 30 & 498 & 0.43 & 0.98(0.01) & 0.98(0.01) & 0.01(0.01) & 0.02(0) & 0.13(0.02) \\
100 & 30 & 499 & 0.19 & 0.99(0.01) & 0.99(0.01) & 0.01(0) & 0.01(0) & 0.11(0.01) \\
200 & 30 & 498 & 0 & 0.99(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.1(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 177 & 0.57 & 0.87(0.1) & 0.84(0.12) & 0.04(0.02) & 0.06(0.01) & 0.19(0.02) \\
50 & 5 & 238 & 0.83 & 0.95(0.05) & 0.94(0.05) & 0.02(0.01) & 0.05(0.01) & 0.15(0.02) \\
100 & 5 & 288 & 0.92 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.11(0.01) \\
200 & 5 & 366 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\
30 & 10 & 228 & 0.75 & 0.95(0.04) & 0.94(0.05) & 0.02(0.01) & 0.04(0.01) & 0.17(0.02) \\
50 & 10 & 240 & 0.85 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.03(0) & 0.13(0.01) \\
100 & 10 & 321 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.09(0.01) \\
200 & 10 & 393 & 0.92 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\
30 & 30 & 242 & 0.69 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\
50 & 30 & 281 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.01) \\
100 & 30 & 359 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\
200 & 30 & 416 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 472 & 0.51 & 0.88(0.09) & 0.85(0.1) & 0.04(0.02) & 0.06(0.01) & 0.18(0.03) \\
50 & 5 & 498 & 0.73 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.05(0.01) & 0.14(0.02) \\
100 & 5 & 500 & 0.67 & 0.97(0.03) & 0.96(0.03) & 0.02(0.01) & 0.04(0) & 0.11(0.01) \\
200 & 5 & 500 & 0.48 & 0.98(0.01) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.08(0.01) \\
30 & 10 & 491 & 0.64 & 0.94(0.04) & 0.93(0.05) & 0.02(0.01) & 0.04(0.01) & 0.16(0.02) \\
50 & 10 & 499 & 0.71 & 0.97(0.03) & 0.96(0.03) & 0.02(0.01) & 0.03(0) & 0.13(0.02) \\
100 & 10 & 500 & 0.64 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.1(0.01) \\
200 & 10 & 500 & 0.39 & 0.99(0.01) & 0.98(0.01) & 0.01(0) & 0.02(0) & 0.08(0.01) \\
30 & 30 & 499 & 0.62 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.15(0.02) \\
50 & 30 & 500 & 0.7 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.02) \\
100 & 30 & 500 & 0.56 & 0.99(0) & 0.99(0.01) & 0.01(0) & 0.01(0) & 0.1(0.01) \\
200 & 30 & 500 & 0.32 & 0.99(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.08(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: ULSMV
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 23 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.07(0.01) & 0.36(0.06) \\
50 & 5 & 77 & 0.99 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.31(0.06) \\
100 & 5 & 257 & 0.94 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.22(0.05) \\
200 & 5 & 460 & 0.93 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.03) \\
30 & 10 & 186 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.26(0.04) \\
50 & 10 & 348 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.2(0.04) \\
100 & 10 & 477 & 0.94 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.14(0.02) \\
200 & 10 & 499 & 0.87 & 1(0) & 1(0) & 0.01(0) & 0.02(0) & 0.1(0.01) \\
30 & 30 & 461 & 0.99 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.16(0.02) \\
50 & 30 & 497 & 0.96 & 1(0) & 1(0) & 0.01(0) & 0.02(0) & 0.12(0.02) \\
100 & 30 & 500 & 0.84 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.09(0.01) \\
200 & 30 & 500 & 0.62 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 24 & 1 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.08(0.01) & 0.15(0.04) \\
50 & 5 & 71 & 0.79 & 0.93(0.06) & 0.91(0.07) & 0.02(0.01) & 0.07(0.01) & 0.13(0.03) \\
100 & 5 & 213 & 0.25 & 0.92(0.05) & 0.9(0.06) & 0.03(0.01) & 0.05(0.01) & 0.11(0.02) \\
200 & 5 & 410 & 0 & 0.9(0.04) & 0.88(0.04) & 0.03(0.01) & 0.04(0.01) & 0.1(0.01) \\
30 & 10 & 101 & 0.87 & 0.93(0.08) & 0.91(0.1) & 0.02(0.01) & 0.06(0.01) & 0.13(0.03) \\
50 & 10 & 234 & 0.34 & 0.89(0.06) & 0.87(0.07) & 0.03(0.01) & 0.05(0.01) & 0.11(0.02) \\
100 & 10 & 416 & 0 & 0.87(0.05) & 0.84(0.06) & 0.03(0.01) & 0.04(0.01) & 0.1(0.02) \\
200 & 10 & 491 & 0 & 0.85(0.04) & 0.82(0.05) & 0.03(0) & 0.03(0) & 0.09(0.01) \\
30 & 30 & 299 & 0.88 & 0.95(0.05) & 0.94(0.06) & 0.01(0.01) & 0.04(0.01) & 0.11(0.02) \\
50 & 30 & 425 & 0.12 & 0.87(0.06) & 0.85(0.07) & 0.02(0) & 0.03(0.01) & 0.1(0.02) \\
100 & 30 & 482 & 0 & 0.81(0.06) & 0.77(0.07) & 0.03(0) & 0.03(0.01) & 0.09(0.01) \\
200 & 30 & 500 & 0 & 0.77(0.05) & 0.73(0.06) & 0.03(0) & 0.03(0) & 0.09(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 183 & 0.99 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.08(0.01) & 0.21(0.04) \\
50 & 5 & 275 & 0.97 & 0.97(0.04) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.16(0.02) \\
100 & 5 & 368 & 0.97 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\
200 & 5 & 444 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
30 & 10 & 292 & 0.99 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 10 & 344 & 0.98 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\
100 & 10 & 443 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
200 & 10 & 488 & 0.92 & 1(0) & 1(0.01) & 0.01(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 338 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.03(0) & 0.13(0.01) \\
50 & 30 & 414 & 0.99 & 1(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 483 & 0.96 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 496 & 0.87 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 331 & 0.98 & 0.93(0.08) & 0.92(0.09) & 0.02(0.01) & 0.09(0.01) & 0.14(0.03) \\
50 & 5 & 444 & 0.84 & 0.93(0.06) & 0.92(0.08) & 0.02(0.01) & 0.07(0.01) & 0.11(0.02) \\
100 & 5 & 488 & 0.46 & 0.93(0.05) & 0.91(0.06) & 0.02(0.01) & 0.06(0.01) & 0.09(0.01) \\
200 & 5 & 499 & 0.05 & 0.92(0.03) & 0.9(0.04) & 0.03(0.01) & 0.04(0.01) & 0.07(0.01) \\
30 & 10 & 448 & 0.96 & 0.95(0.07) & 0.93(0.08) & 0.01(0.01) & 0.07(0.01) & 0.12(0.02) \\
50 & 10 & 480 & 0.72 & 0.93(0.06) & 0.91(0.07) & 0.02(0.01) & 0.05(0.01) & 0.09(0.02) \\
100 & 10 & 497 & 0.17 & 0.91(0.05) & 0.89(0.06) & 0.02(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 10 & 500 & 0 & 0.9(0.03) & 0.89(0.04) & 0.02(0) & 0.04(0.01) & 0.07(0.01) \\
30 & 30 & 465 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.05(0.01) & 0.1(0.02) \\
50 & 30 & 490 & 0.99 & 0.99(0.03) & 0.98(0.03) & 0(0) & 0.04(0.01) & 0.08(0.01) \\
100 & 30 & 496 & 0.26 & 0.93(0.04) & 0.92(0.04) & 0.01(0) & 0.03(0.01) & 0.07(0.01) \\
200 & 30 & 500 & 0 & 0.9(0.03) & 0.88(0.03) & 0.02(0) & 0.03(0.01) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 165 & 0.96 & 0.9(0.13) & 0.88(0.16) & 0.01(0.01) & 0.09(0.02) & 0.15(0.02) \\
50 & 5 & 243 & 0.97 & 0.95(0.07) & 0.94(0.08) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 5 & 291 & 0.97 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 5 & 378 & 0.94 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 235 & 1 & 0.97(0.06) & 0.97(0.07) & 0(0.01) & 0.06(0.01) & 0.13(0.02) \\
50 & 10 & 247 & 0.99 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\
100 & 10 & 327 & 0.95 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
200 & 10 & 399 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 242 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.12(0.01) \\
50 & 30 & 283 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.09(0.01) \\
100 & 30 & 359 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 416 & 0.99 & 1(0.01) & 1(0.01) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 421 & 0.99 & 0.91(0.11) & 0.89(0.13) & 0.01(0.01) & 0.11(0.02) & 0.12(0.02) \\
50 & 5 & 465 & 0.95 & 0.93(0.08) & 0.92(0.1) & 0.01(0.01) & 0.08(0.01) & 0.09(0.01) \\
100 & 5 & 483 & 0.74 & 0.93(0.05) & 0.92(0.06) & 0.02(0.01) & 0.06(0.01) & 0.07(0.01) \\
200 & 5 & 498 & 0.33 & 0.93(0.04) & 0.92(0.05) & 0.02(0.01) & 0.05(0.01) & 0.06(0.01) \\
30 & 10 & 457 & 1 & 0.98(0.05) & 0.98(0.06) & 0(0.01) & 0.08(0.02) & 0.11(0.02) \\
50 & 10 & 473 & 0.96 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.06(0.01) & 0.09(0.01) \\
100 & 10 & 488 & 0.71 & 0.94(0.05) & 0.93(0.06) & 0.01(0.01) & 0.05(0.01) & 0.06(0.01) \\
200 & 10 & 499 & 0.19 & 0.93(0.03) & 0.92(0.04) & 0.02(0) & 0.04(0.01) & 0.05(0.01) \\
30 & 30 & 462 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.02) & 0.1(0.01) \\
50 & 30 & 485 & 1 & 1(0) & 1(0) & 0(0) & 0.05(0.01) & 0.08(0.01) \\
100 & 30 & 491 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.04(0.01) & 0.06(0.01) \\
200 & 30 & 500 & 0.65 & 0.97(0.03) & 0.96(0.03) & 0.01(0) & 0.03(0.01) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: WLSMV
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 29 & 1 & 0.98(0.03) & 0.98(0.04) & 0.01(0.01) & 0.07(0.01) & 0.35(0.06) \\
50 & 5 & 85 & 1 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.3(0.06) \\
100 & 5 & 275 & 0.93 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0.01) & 0.22(0.04) \\
200 & 5 & 460 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.03) \\
30 & 10 & 189 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.25(0.04) \\
50 & 10 & 363 & 0.96 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.19(0.03) \\
100 & 10 & 483 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.13(0.02) \\
200 & 10 & 500 & 0.83 & 1(0) & 0.99(0.01) & 0.01(0) & 0.02(0) & 0.1(0.01) \\
30 & 30 & 457 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.16(0.02) \\
50 & 30 & 497 & 0.95 & 1(0) & 0.99(0.01) & 0.01(0) & 0.02(0) & 0.12(0.02) \\
100 & 30 & 500 & 0.79 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.09(0.01) \\
200 & 30 & 500 & 0.49 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 22 & 1 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.07(0.01) & 0.19(0.05) \\
50 & 5 & 47 & 0.74 & 0.95(0.04) & 0.94(0.05) & 0.02(0.01) & 0.06(0.01) & 0.15(0.02) \\
100 & 5 & 164 & 0.43 & 0.95(0.03) & 0.94(0.03) & 0.02(0.01) & 0.05(0.01) & 0.12(0.02) \\
200 & 5 & 358 & 0.01 & 0.94(0.02) & 0.93(0.02) & 0.03(0.01) & 0.03(0) & 0.11(0.01) \\
30 & 10 & 59 & 0.97 & 0.97(0.02) & 0.97(0.03) & 0.02(0.01) & 0.05(0.01) & 0.15(0.03) \\
50 & 10 & 136 & 0.7 & 0.97(0.02) & 0.96(0.03) & 0.02(0.01) & 0.04(0.01) & 0.13(0.02) \\
100 & 10 & 307 & 0.05 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.03(0) & 0.11(0.01) \\
200 & 10 & 461 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.02(0) & 0.1(0.01) \\
30 & 30 & 131 & 0.97 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.13(0.02) \\
50 & 30 & 274 & 0.6 & 0.98(0.01) & 0.98(0.01) & 0.01(0) & 0.02(0) & 0.12(0.01) \\
100 & 30 & 419 & 0 & 0.97(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.11(0.01) \\
200 & 30 & 498 & 0 & 0.97(0.01) & 0.96(0.01) & 0.02(0) & 0.01(0) & 0.11(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 118 & 0.97 & 0.96(0.04) & 0.96(0.05) & 0.02(0.01) & 0.08(0.01) & 0.21(0.04) \\
50 & 5 & 212 & 0.95 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.15(0.02) \\
100 & 5 & 341 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\
200 & 5 & 425 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
30 & 10 & 205 & 0.97 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 10 & 307 & 0.98 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\
100 & 10 & 423 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
200 & 10 & 487 & 0.92 & 1(0) & 1(0) & 0.01(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 319 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.13(0.01) \\
50 & 30 & 410 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 478 & 0.96 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 497 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 347 & 0.94 & 0.95(0.05) & 0.94(0.06) & 0.02(0.01) & 0.08(0.01) & 0.16(0.03) \\
50 & 5 & 455 & 0.89 & 0.96(0.03) & 0.95(0.04) & 0.02(0.01) & 0.06(0.01) & 0.13(0.02) \\
100 & 5 & 498 & 0.61 & 0.96(0.02) & 0.96(0.03) & 0.02(0.01) & 0.04(0.01) & 0.1(0.01) \\
200 & 5 & 500 & 0.14 & 0.96(0.02) & 0.96(0.02) & 0.02(0.01) & 0.03(0) & 0.08(0.01) \\
30 & 10 & 454 & 0.97 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.05(0.01) & 0.14(0.02) \\
50 & 10 & 495 & 0.85 & 0.98(0.02) & 0.97(0.02) & 0.02(0.01) & 0.04(0.01) & 0.11(0.02) \\
100 & 10 & 500 & 0.34 & 0.97(0.01) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.09(0.01) \\
200 & 10 & 500 & 0.01 & 0.97(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.08(0.01) \\
30 & 30 & 485 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.02) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 500 & 0.52 & 0.99(0) & 0.99(0.01) & 0.01(0) & 0.02(0) & 0.09(0.01) \\
200 & 30 & 500 & 0 & 0.99(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.08(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 105 & 0.95 & 0.96(0.05) & 0.95(0.06) & 0.02(0.01) & 0.08(0.01) & 0.16(0.02) \\
50 & 5 & 196 & 0.97 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 5 & 266 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 5 & 360 & 0.96 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 195 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.13(0.01) \\
50 & 10 & 219 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\
100 & 10 & 307 & 0.96 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
200 & 10 & 390 & 0.94 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 217 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.01) \\
50 & 30 & 275 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.09(0.01) \\
100 & 30 & 346 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 414 & 1 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 458 & 0.98 & 0.96(0.04) & 0.95(0.05) & 0.02(0.01) & 0.08(0.01) & 0.15(0.02) \\
50 & 5 & 498 & 0.95 & 0.97(0.03) & 0.96(0.04) & 0.02(0.01) & 0.06(0.01) & 0.11(0.01) \\
100 & 5 & 500 & 0.77 & 0.97(0.02) & 0.97(0.03) & 0.02(0.01) & 0.05(0.01) & 0.08(0.01) \\
200 & 5 & 500 & 0.42 & 0.98(0.01) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 487 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.05(0.01) & 0.13(0.02) \\
50 & 10 & 500 & 0.97 & 0.99(0.01) & 0.98(0.02) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\
100 & 10 & 500 & 0.77 & 0.99(0.01) & 0.98(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
200 & 10 & 500 & 0.27 & 0.99(0.01) & 0.98(0.01) & 0.01(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 495 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.02) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\
200 & 30 & 500 & 0.73 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: MLR
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 255 & 0.1 & 0.77(0.14) & 0.73(0.16) & 0.07(0.02) & 0.08(0.04) & 0.32(0.06) \\
50 & 5 & 276 & 0.1 & 0.86(0.06) & 0.83(0.07) & 0.05(0.01) & 0.06(0.01) & 0.28(0.04) \\
100 & 5 & 376 & 0.01 & 0.89(0.04) & 0.87(0.04) & 0.04(0.01) & 0.05(0.01) & 0.22(0.03) \\
200 & 5 & 468 & 0 & 0.91(0.02) & 0.9(0.03) & 0.04(0) & 0.05(0.01) & 0.17(0.02) \\
30 & 10 & 301 & 0.03 & 0.86(0.05) & 0.83(0.06) & 0.05(0.01) & 0.06(0.01) & 0.26(0.04) \\
50 & 10 & 414 & 0.01 & 0.89(0.04) & 0.87(0.04) & 0.04(0.01) & 0.05(0.01) & 0.22(0.03) \\
100 & 10 & 486 & 0 & 0.91(0.02) & 0.9(0.03) & 0.04(0) & 0.05(0) & 0.16(0.02) \\
200 & 10 & 499 & 0 & 0.92(0.01) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.02) \\
30 & 30 & 472 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0.01) & 0.05(0) & 0.19(0.03) \\
50 & 30 & 496 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.04(0) & 0.15(0.02) \\
100 & 30 & 500 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.11(0.01) \\
200 & 30 & 500 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 169 & 0.03 & 0.83(0.06) & 0.8(0.07) & 0.07(0.02) & 0.08(0.01) & 0.2(0.04) \\
50 & 5 & 247 & 0.01 & 0.87(0.04) & 0.85(0.05) & 0.06(0.01) & 0.07(0.01) & 0.17(0.03) \\
100 & 5 & 388 & 0 & 0.89(0.03) & 0.88(0.03) & 0.05(0.01) & 0.06(0.01) & 0.14(0.02) \\
200 & 5 & 491 & 0 & 0.9(0.02) & 0.88(0.02) & 0.05(0) & 0.05(0.01) & 0.13(0.02) \\
30 & 10 & 264 & 0.02 & 0.86(0.05) & 0.84(0.05) & 0.06(0.01) & 0.06(0.01) & 0.17(0.04) \\
50 & 10 & 393 & 0 & 0.89(0.03) & 0.87(0.03) & 0.05(0.01) & 0.05(0.01) & 0.15(0.03) \\
100 & 10 & 496 & 0 & 0.9(0.02) & 0.88(0.02) & 0.05(0) & 0.05(0.01) & 0.13(0.02) \\
200 & 10 & 500 & 0 & 0.9(0.01) & 0.89(0.01) & 0.04(0) & 0.05(0) & 0.12(0.01) \\
30 & 30 & 469 & 0 & 0.9(0.02) & 0.88(0.03) & 0.04(0.01) & 0.05(0) & 0.16(0.04) \\
50 & 30 & 500 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.04(0) & 0.14(0.02) \\
100 & 30 & 500 & 0 & 0.91(0.01) & 0.89(0.01) & 0.04(0) & 0.04(0) & 0.13(0.02) \\
200 & 30 & 500 & 0 & 0.91(0.01) & 0.89(0.01) & 0.04(0) & 0.04(0) & 0.12(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 205 & 0.28 & 0.8(0.13) & 0.76(0.15) & 0.05(0.02) & 0.07(0.01) & 0.23(0.03) \\
50 & 5 & 274 & 0.35 & 0.88(0.07) & 0.86(0.08) & 0.04(0.01) & 0.06(0.01) & 0.19(0.02) \\
100 & 5 & 373 & 0.14 & 0.91(0.05) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.14(0.02) \\
200 & 5 & 443 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\
30 & 10 & 295 & 0.13 & 0.87(0.06) & 0.84(0.07) & 0.04(0.01) & 0.06(0.01) & 0.2(0.02) \\
50 & 10 & 350 & 0.06 & 0.9(0.04) & 0.88(0.05) & 0.04(0.01) & 0.05(0.01) & 0.15(0.02) \\
100 & 10 & 440 & 0 & 0.91(0.02) & 0.89(0.03) & 0.03(0.01) & 0.05(0.01) & 0.11(0.01) \\
200 & 10 & 490 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
30 & 30 & 347 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 30 & 418 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.13(0.01) \\
100 & 30 & 485 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
200 & 30 & 497 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 382 & 0.17 & 0.83(0.09) & 0.8(0.1) & 0.06(0.02) & 0.08(0.01) & 0.18(0.03) \\
50 & 5 & 465 & 0.15 & 0.88(0.05) & 0.86(0.06) & 0.05(0.01) & 0.07(0.01) & 0.15(0.02) \\
100 & 5 & 494 & 0.01 & 0.9(0.03) & 0.89(0.04) & 0.04(0.01) & 0.05(0.01) & 0.12(0.02) \\
200 & 5 & 500 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.05(0) & 0.1(0.01) \\
30 & 10 & 473 & 0.06 & 0.87(0.05) & 0.85(0.06) & 0.05(0.01) & 0.06(0.01) & 0.17(0.03) \\
50 & 10 & 494 & 0.01 & 0.9(0.03) & 0.88(0.04) & 0.04(0.01) & 0.05(0.01) & 0.13(0.02) \\
100 & 10 & 500 & 0 & 0.91(0.02) & 0.89(0.03) & 0.04(0) & 0.05(0) & 0.1(0.01) \\
200 & 10 & 500 & 0 & 0.91(0.01) & 0.9(0.02) & 0.04(0) & 0.04(0) & 0.09(0.01) \\
30 & 30 & 489 & 0 & 0.9(0.02) & 0.89(0.03) & 0.04(0.01) & 0.05(0) & 0.15(0.02) \\
50 & 30 & 496 & 0 & 0.91(0.02) & 0.9(0.02) & 0.04(0) & 0.04(0) & 0.12(0.02) \\
100 & 30 & 500 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.1(0.01) \\
200 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 172 & 0.38 & 0.81(0.1) & 0.78(0.12) & 0.05(0.02) & 0.07(0.01) & 0.19(0.02) \\
50 & 5 & 246 & 0.39 & 0.88(0.07) & 0.86(0.08) & 0.03(0.01) & 0.06(0.01) & 0.15(0.02) \\
100 & 5 & 304 & 0.21 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.11(0.01) \\
200 & 5 & 377 & 0.01 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.05(0.01) & 0.07(0.01) \\
30 & 10 & 216 & 0.26 & 0.88(0.06) & 0.86(0.07) & 0.04(0.01) & 0.06(0.01) & 0.17(0.02) \\
50 & 10 & 243 & 0.09 & 0.9(0.04) & 0.88(0.04) & 0.03(0.01) & 0.05(0.01) & 0.13(0.01) \\
100 & 10 & 327 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
200 & 10 & 393 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
30 & 30 & 249 & 0 & 0.9(0.02) & 0.88(0.03) & 0.04(0) & 0.05(0) & 0.16(0.02) \\
50 & 30 & 277 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.01) \\
100 & 30 & 357 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
200 & 30 & 418 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 459 & 0.3 & 0.82(0.09) & 0.79(0.11) & 0.05(0.02) & 0.07(0.01) & 0.18(0.03) \\
50 & 5 & 493 & 0.36 & 0.89(0.07) & 0.87(0.08) & 0.04(0.01) & 0.06(0.01) & 0.13(0.02) \\
100 & 5 & 499 & 0.07 & 0.9(0.04) & 0.89(0.04) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\
200 & 5 & 500 & 0 & 0.91(0.02) & 0.9(0.03) & 0.03(0) & 0.05(0.01) & 0.08(0.01) \\
30 & 10 & 481 & 0.18 & 0.88(0.06) & 0.85(0.07) & 0.04(0.01) & 0.06(0.01) & 0.16(0.02) \\
50 & 10 & 499 & 0.07 & 0.9(0.04) & 0.89(0.04) & 0.03(0.01) & 0.05(0.01) & 0.12(0.02) \\
100 & 10 & 500 & 0 & 0.91(0.02) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
200 & 10 & 500 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.07(0.01) \\
30 & 30 & 491 & 0 & 0.9(0.03) & 0.89(0.03) & 0.03(0.01) & 0.04(0) & 0.15(0.02) \\
50 & 30 & 500 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.02) \\
100 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
200 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: ULSMV
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 20 & 1 & 0.95(0.05) & 0.94(0.05) & 0.02(0.01) & 0.09(0.01) & 0.35(0.06) \\
50 & 5 & 74 & 0.61 & 0.93(0.05) & 0.92(0.06) & 0.03(0.01) & 0.07(0.01) & 0.32(0.06) \\
100 & 5 & 226 & 0.09 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.22(0.05) \\
200 & 5 & 410 & 0 & 0.93(0.02) & 0.91(0.03) & 0.04(0.01) & 0.05(0.01) & 0.15(0.03) \\
30 & 10 & 174 & 0.43 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.07(0.01) & 0.26(0.05) \\
50 & 10 & 313 & 0.05 & 0.93(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.2(0.04) \\
100 & 10 & 422 & 0 & 0.92(0.02) & 0.91(0.02) & 0.04(0.01) & 0.05(0.01) & 0.13(0.02) \\
200 & 10 & 469 & 0 & 0.92(0.01) & 0.91(0.02) & 0.04(0) & 0.05(0) & 0.09(0.01) \\
30 & 30 & 390 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 30 & 453 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.12(0.02) \\
100 & 30 & 485 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.09(0.01) \\
200 & 30 & 499 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 11 & 0.82 & 0.9(0.12) & 0.88(0.14) & 0.02(0.02) & 0.09(0.01) & 0.16(0.04) \\
50 & 5 & 32 & 0.44 & 0.87(0.07) & 0.85(0.08) & 0.03(0.01) & 0.08(0.01) & 0.14(0.03) \\
100 & 5 & 33 & 0.06 & 0.87(0.04) & 0.85(0.05) & 0.04(0.01) & 0.07(0.01) & 0.12(0.02) \\
200 & 5 & 34 & 0 & 0.86(0.04) & 0.83(0.05) & 0.04(0.01) & 0.06(0.01) & 0.11(0.02) \\
30 & 10 & 30 & 0.47 & 0.86(0.08) & 0.83(0.1) & 0.03(0.01) & 0.07(0.01) & 0.15(0.04) \\
50 & 10 & 42 & 0.14 & 0.85(0.07) & 0.82(0.08) & 0.03(0.01) & 0.06(0.01) & 0.12(0.03) \\
100 & 10 & 26 & 0 & 0.82(0.05) & 0.79(0.06) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\
200 & 10 & 8 & 0 & 0.77(0.05) & 0.73(0.05) & 0.04(0) & 0.05(0.01) & 0.11(0.02) \\
30 & 30 & 42 & 0.36 & 0.88(0.05) & 0.86(0.06) & 0.02(0.01) & 0.06(0.01) & 0.12(0.03) \\
50 & 30 & 28 & 0 & 0.81(0.05) & 0.78(0.06) & 0.03(0) & 0.06(0) & 0.11(0.02) \\
100 & 30 & 5 & 0 & 0.75(0.03) & 0.7(0.04) & 0.03(0) & 0.05(0) & 0.09(0.02) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 173 & 0.95 & 0.92(0.08) & 0.9(0.09) & 0.02(0.01) & 0.09(0.01) & 0.21(0.04) \\
50 & 5 & 246 & 0.76 & 0.92(0.06) & 0.91(0.07) & 0.02(0.01) & 0.07(0.01) & 0.16(0.02) \\
100 & 5 & 365 & 0.3 & 0.93(0.04) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.11(0.01) \\
200 & 5 & 440 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\
30 & 10 & 277 & 0.84 & 0.92(0.05) & 0.91(0.06) & 0.02(0.01) & 0.07(0.01) & 0.16(0.02) \\
50 & 10 & 351 & 0.38 & 0.93(0.03) & 0.91(0.04) & 0.02(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 10 & 444 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\
200 & 10 & 488 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 343 & 0.93 & 0.97(0.03) & 0.96(0.03) & 0.01(0.01) & 0.06(0.01) & 0.13(0.01) \\
50 & 30 & 419 & 0.31 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0) & 0.1(0.01) \\
100 & 30 & 485 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 496 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 292 & 0.93 & 0.9(0.1) & 0.88(0.12) & 0.02(0.01) & 0.11(0.01) & 0.14(0.03) \\
50 & 5 & 362 & 0.66 & 0.89(0.08) & 0.87(0.09) & 0.03(0.01) & 0.09(0.01) & 0.11(0.02) \\
100 & 5 & 393 & 0.17 & 0.89(0.05) & 0.87(0.06) & 0.03(0.01) & 0.07(0.01) & 0.09(0.01) \\
200 & 5 & 432 & 0 & 0.89(0.03) & 0.87(0.04) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
30 & 10 & 353 & 0.89 & 0.91(0.08) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.12(0.02) \\
50 & 10 & 379 & 0.48 & 0.89(0.06) & 0.87(0.07) & 0.02(0.01) & 0.07(0.01) & 0.1(0.02) \\
100 & 10 & 419 & 0.02 & 0.88(0.04) & 0.85(0.05) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 452 & 0 & 0.87(0.03) & 0.84(0.04) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 381 & 1 & 1(0.02) & 1(0.02) & 0(0) & 0.06(0.01) & 0.1(0.02) \\
50 & 30 & 413 & 0.93 & 0.97(0.04) & 0.96(0.04) & 0.01(0) & 0.06(0.01) & 0.08(0.01) \\
100 & 30 & 447 & 0.01 & 0.9(0.03) & 0.88(0.04) & 0.02(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 477 & 0 & 0.86(0.03) & 0.84(0.03) & 0.02(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 153 & 0.95 & 0.87(0.14) & 0.84(0.17) & 0.02(0.01) & 0.1(0.02) & 0.15(0.02) \\
50 & 5 & 243 & 0.94 & 0.9(0.09) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.12(0.01) \\
100 & 5 & 299 & 0.77 & 0.93(0.05) & 0.92(0.06) & 0.02(0.01) & 0.06(0.01) & 0.08(0.01) \\
200 & 5 & 378 & 0.36 & 0.94(0.03) & 0.93(0.03) & 0.02(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 213 & 0.99 & 0.95(0.07) & 0.94(0.09) & 0.01(0.01) & 0.07(0.01) & 0.13(0.01) \\
50 & 10 & 241 & 0.94 & 0.93(0.06) & 0.92(0.07) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 10 & 329 & 0.66 & 0.94(0.04) & 0.93(0.04) & 0.01(0.01) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 397 & 0.13 & 0.94(0.02) & 0.93(0.02) & 0.02(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 249 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.01) & 0.12(0.01) \\
50 & 30 & 283 & 1 & 1(0) & 1(0) & 0(0) & 0.05(0) & 0.09(0.01) \\
100 & 30 & 358 & 0.99 & 0.98(0.02) & 0.98(0.02) & 0(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 416 & 0.22 & 0.96(0.01) & 0.95(0.02) & 0.01(0) & 0.05(0) & 0.05(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 400 & 0.99 & 0.89(0.12) & 0.87(0.14) & 0.02(0.01) & 0.12(0.02) & 0.12(0.02) \\
50 & 5 & 446 & 0.93 & 0.91(0.09) & 0.89(0.1) & 0.02(0.01) & 0.09(0.01) & 0.09(0.01) \\
100 & 5 & 477 & 0.57 & 0.9(0.06) & 0.89(0.07) & 0.02(0.01) & 0.08(0.01) & 0.07(0.01) \\
200 & 5 & 498 & 0.11 & 0.91(0.04) & 0.89(0.04) & 0.02(0) & 0.06(0.01) & 0.05(0.01) \\
30 & 10 & 441 & 0.99 & 0.97(0.07) & 0.96(0.08) & 0(0.01) & 0.09(0.01) & 0.11(0.02) \\
50 & 10 & 464 & 0.94 & 0.93(0.07) & 0.92(0.08) & 0.01(0.01) & 0.08(0.01) & 0.08(0.01) \\
100 & 10 & 483 & 0.48 & 0.91(0.05) & 0.9(0.06) & 0.02(0.01) & 0.06(0.01) & 0.06(0.01) \\
200 & 10 & 499 & 0.02 & 0.91(0.03) & 0.89(0.04) & 0.02(0) & 0.06(0.01) & 0.05(0.01) \\
30 & 30 & 444 & 1 & 1(0) & 1(0) & 0(0) & 0.08(0.01) & 0.1(0.01) \\
50 & 30 & 478 & 1 & 1(0) & 1(0) & 0(0) & 0.07(0.01) & 0.08(0.01) \\
100 & 30 & 493 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0) & 0.06(0.01) & 0.06(0.01) \\
200 & 30 & 499 & 0.32 & 0.94(0.03) & 0.93(0.03) & 0.01(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: WLSMV
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 31 & 0.94 & 0.94(0.05) & 0.93(0.06) & 0.02(0.01) & 0.09(0.01) & 0.35(0.06) \\
50 & 5 & 78 & 0.68 & 0.93(0.05) & 0.92(0.06) & 0.03(0.01) & 0.07(0.01) & 0.3(0.05) \\
100 & 5 & 230 & 0.2 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.22(0.04) \\
200 & 5 & 418 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.05(0.01) & 0.15(0.03) \\
30 & 10 & 182 & 0.62 & 0.93(0.04) & 0.92(0.05) & 0.03(0.01) & 0.07(0.01) & 0.25(0.05) \\
50 & 10 & 325 & 0.15 & 0.93(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.19(0.03) \\
100 & 10 & 444 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0.01) & 0.13(0.02) \\
200 & 10 & 481 & 0 & 0.93(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.09(0.01) \\
30 & 30 & 421 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0.01) & 0.16(0.02) \\
50 & 30 & 475 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.12(0.01) \\
100 & 30 & 495 & 0 & 0.93(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.09(0.01) \\
200 & 30 & 499 & 0 & 0.93(0.01) & 0.91(0.01) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 19 & 0.79 & 0.91(0.09) & 0.89(0.1) & 0.03(0.02) & 0.09(0.01) & 0.2(0.06) \\
50 & 5 & 36 & 0.22 & 0.89(0.04) & 0.87(0.05) & 0.04(0.01) & 0.08(0.01) & 0.16(0.03) \\
100 & 5 & 54 & 0.02 & 0.9(0.04) & 0.88(0.04) & 0.04(0.01) & 0.06(0.01) & 0.12(0.02) \\
200 & 5 & 69 & 0 & 0.88(0.03) & 0.86(0.03) & 0.04(0) & 0.06(0.01) & 0.11(0.02) \\
30 & 10 & 32 & 0.34 & 0.91(0.06) & 0.89(0.07) & 0.03(0.01) & 0.07(0.01) & 0.16(0.04) \\
50 & 10 & 60 & 0.03 & 0.89(0.04) & 0.87(0.05) & 0.04(0.01) & 0.06(0.01) & 0.12(0.02) \\
100 & 10 & 67 & 0 & 0.87(0.04) & 0.85(0.04) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\
200 & 10 & 41 & 0 & 0.87(0.02) & 0.84(0.03) & 0.04(0) & 0.05(0) & 0.1(0.02) \\
30 & 30 & 69 & 0.03 & 0.92(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.13(0.02) \\
50 & 30 & 81 & 0 & 0.9(0.02) & 0.88(0.03) & 0.03(0) & 0.05(0) & 0.11(0.02) \\
100 & 30 & 55 & 0 & 0.87(0.02) & 0.84(0.03) & 0.04(0) & 0.05(0) & 0.1(0.01) \\
200 & 30 & 18 & 0 & 0.86(0.02) & 0.83(0.02) & 0.04(0) & 0.05(0) & 0.09(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 117 & 0.9 & 0.91(0.07) & 0.9(0.08) & 0.03(0.01) & 0.09(0.01) & 0.21(0.04) \\
50 & 5 & 200 & 0.63 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.16(0.02) \\
100 & 5 & 333 & 0.21 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.11(0.01) \\
200 & 5 & 420 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\
30 & 10 & 193 & 0.57 & 0.93(0.04) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.15(0.02) \\
50 & 10 & 311 & 0.16 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 10 & 418 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\
200 & 10 & 485 & 0 & 0.94(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 319 & 0.14 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.06(0.01) & 0.13(0.01) \\
50 & 30 & 403 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.1(0.01) \\
100 & 30 & 482 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 498 & 0 & 0.94(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 286 & 0.81 & 0.91(0.07) & 0.89(0.08) & 0.03(0.01) & 0.09(0.01) & 0.16(0.03) \\
50 & 5 & 318 & 0.51 & 0.91(0.05) & 0.89(0.06) & 0.03(0.01) & 0.08(0.01) & 0.13(0.02) \\
100 & 5 & 354 & 0.06 & 0.91(0.03) & 0.9(0.04) & 0.03(0.01) & 0.06(0.01) & 0.09(0.01) \\
200 & 5 & 389 & 0 & 0.91(0.02) & 0.9(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
30 & 10 & 342 & 0.53 & 0.92(0.04) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.14(0.02) \\
50 & 10 & 356 & 0.11 & 0.92(0.03) & 0.9(0.04) & 0.03(0.01) & 0.06(0.01) & 0.11(0.02) \\
100 & 10 & 371 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\
200 & 10 & 401 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.05(0) & 0.07(0.01) \\
30 & 30 & 341 & 0.74 & 0.97(0.02) & 0.96(0.02) & 0.01(0.01) & 0.06(0.01) & 0.12(0.02) \\
50 & 30 & 370 & 0.04 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0.01) & 0.09(0.01) \\
100 & 30 & 406 & 0 & 0.93(0.01) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.08(0.01) \\
200 & 30 & 413 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:15 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 95 & 0.8 & 0.91(0.07) & 0.89(0.08) & 0.03(0.02) & 0.09(0.01) & 0.15(0.02) \\
50 & 5 & 179 & 0.7 & 0.92(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.12(0.01) \\
100 & 5 & 266 & 0.27 & 0.93(0.03) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\
200 & 5 & 353 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 185 & 0.83 & 0.95(0.04) & 0.94(0.04) & 0.02(0.01) & 0.07(0.01) & 0.13(0.01) \\
50 & 10 & 217 & 0.29 & 0.94(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 10 & 305 & 0 & 0.94(0.02) & 0.93(0.02) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 387 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 211 & 0.98 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.06(0.01) & 0.12(0.01) \\
50 & 30 & 265 & 0.41 & 0.97(0.01) & 0.96(0.02) & 0.01(0) & 0.05(0.01) & 0.09(0.01) \\
100 & 30 & 343 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 409 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Sun Sep 29 00:47:16 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 407 & 0.87 & 0.92(0.06) & 0.9(0.07) & 0.03(0.01) & 0.09(0.01) & 0.14(0.02) \\
50 & 5 & 448 & 0.65 & 0.92(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.11(0.01) \\
100 & 5 & 481 & 0.15 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.07(0.01) & 0.08(0.01) \\
200 & 5 & 498 & 0 & 0.92(0.02) & 0.91(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 440 & 0.87 & 0.95(0.04) & 0.95(0.05) & 0.02(0.01) & 0.07(0.01) & 0.13(0.02) \\
50 & 10 & 476 & 0.35 & 0.94(0.03) & 0.93(0.04) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 10 & 486 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 500 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 432 & 1 & 1(0) & 1(0.01) & 0(0) & 0.06(0.01) & 0.12(0.01) \\
50 & 30 & 466 & 0.85 & 0.98(0.02) & 0.98(0.02) & 0.01(0) & 0.06(0.01) & 0.09(0.01) \\
100 & 30 & 495 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 500 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] xtable_1.8-4 kableExtra_1.1.0 forcats_0.4.0 stringr_1.4.0
[5] dplyr_0.8.1 purrr_0.3.2 readr_1.3.1 tidyr_0.8.3
[9] tibble_2.1.1 ggplot2_3.2.0 tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] tidyselect_0.2.5 xfun_0.7 haven_2.1.0
[4] lattice_0.20-38 colorspace_1.4-1 generics_0.0.2
[7] htmltools_0.3.6 viridisLite_0.3.0 yaml_2.2.0
[10] rlang_0.3.4 pillar_1.4.1 glue_1.3.1
[13] withr_2.1.2 modelr_0.1.4 readxl_1.3.1
[16] munsell_0.5.0 gtable_0.3.0 workflowr_1.4.0
[19] cellranger_1.1.0 rvest_0.3.4 evaluate_0.14
[22] knitr_1.23 highr_0.8 broom_0.5.2
[25] Rcpp_1.0.1 scales_1.0.0 backports_1.1.4
[28] webshot_0.5.1 jsonlite_1.6 fs_1.3.1
[31] hms_0.4.2 digest_0.6.19 stringi_1.4.3
[34] grid_3.6.0 rprojroot_1.3-2 cli_1.1.0
[37] tools_3.6.0 magrittr_1.5 lazyeval_0.2.2
[40] crayon_1.3.4 whisker_0.3-2 pkgconfig_2.0.2
[43] xml2_1.2.0 lubridate_1.7.4 assertthat_0.2.1
[46] rmarkdown_1.13 httr_1.4.0 rstudioapi_0.10
[49] R6_2.4.0 nlme_3.1-139 git2r_0.26.1
[52] compiler_3.6.0