Last updated: 2019-10-18
Checks: 7 0
Knit directory: mcfa-fit/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190507)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .RData
Ignored: .RDataTmp
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/est_ulsmv.Rmd
Untracked: analysis/est_wlsmv.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 6ee3d83 | noah-padgett | 2019-10-18 | updated estimation methods and ROC files |
html | 6ee3d83 | noah-padgett | 2019-10-18 | updated estimation methods and ROC files |
Rmd | ba44658 | noah-padgett | 2019-09-29 | wflow_git_commit(all = T) |
html | ba44658 | noah-padgett | 2019-09-29 | wflow_git_commit(all = T) |
html | 982c8f1 | noah-padgett | 2019-05-18 | roc analyses completed |
Rmd | 4a2f40d | noah-padgett | 2019-05-10 | fixed index page and updated roc file |
Rmd | 3cd3ef6 | noah-padgett | 2019-05-09 | updated analyses |
Purpose of this file:
##Chunk iptions
knitr::opts_chunk$set(out.width="225%")
#setwd('C:/Users/noahp/Dropbox/MCFA Thesis/Code Results')
## Packages
## General Packages
library(tidyverse)
-- Attaching packages -------------------------------------- tidyverse 1.2.1 --
v ggplot2 3.2.0 v purrr 0.3.2
v tibble 2.1.1 v dplyr 0.8.1
v tidyr 0.8.3 v stringr 1.4.0
v readr 1.3.1 v forcats 0.4.0
-- Conflicts ----------------------------------------- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
library(car)
Loading required package: carData
Attaching package: 'car'
The following object is masked from 'package:dplyr':
recode
The following object is masked from 'package:purrr':
some
library(psych)
Attaching package: 'psych'
The following object is masked from 'package:car':
logit
The following objects are masked from 'package:ggplot2':
%+%, alpha
# Formatting and Tables
library(kableExtra)
Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':
group_rows
library(xtable)
# For plotting
library(ggplot2)
theme_set(theme_bw() + theme(legend.position = 'bottom'))
# Data manipulating
library(dplyr)
# ROC Analysis
library(pROC)
Type 'citation("pROC")' for a citation.
Attaching package: 'pROC'
The following objects are masked from 'package:stats':
cov, smooth, var
## One global parameter for printing figures
save.fig <- F
## Load up the functions needed for ANOVA and Assumption checking
source('code/r_functions.R')
sim_results <- as_tibble(read.table('data/compiled_fit_results.txt', header=T,sep='\t'))
## Next, turn condition into a factor for plotting
sim_results$Condition <- as.factor(sim_results$Condition)
## Next, since TLI is non-normed, any value greater than 1 needs to be rescaled to 1.
sim_results$TLI <- ifelse(sim_results$TLI > 1, 1, sim_results$TLI)
sim_results$TLI <- ifelse(sim_results$TLI < 0, 0, sim_results$TLI)
## Next, summarize the results of the chi-square test of model fit. This is done simply by comparing the p-value to alpha (0.05) and indicating whether the model was flagged as fitting or not.
# Note: if p < 0.05 then this variable is flagged as 0, and 1 otherwise
sim_results$Chi2_pvalue_decision <- ifelse(sim_results$chisqu_pvalue > 0.05, 1, 0)
# 0 = rejected that these data fit this model
# 1 = failed to reject that these data fit this model
Currently, each condition is kind of like a hidden id that we don’t know what the actual factor is. So, first thing isto create meaningful labels for us to use. Remember, the 72 conditions for the this study were
## level-1 Sample size
ss_l1 <- c(5, 10, 30) ## 6 conditions each
ss_l2 <- c(30, 50, 100, 200) ## 18 condition each
icc_ov <- c(.1, .3, .5) ## 2 conditions each
icc_lv <- c(.1, .5) ## every other condition
nCon <- 72 # number of conditions
nRep <- 500 # number of replications per condition
nMod <- 12 ## numberof estimated models per conditions
## Total number of rows: 432,000
ss_l2 <- c(rep(ss_l2[1], 18*nRep*nMod), rep(ss_l2[2], 18*nRep*nMod), rep(ss_l2[3], 18*nRep*nMod), rep(ss_l2[4], 18*nRep*nMod))
ss_l1 <- rep(c(rep(ss_l1[1],6*nRep*nMod), rep(ss_l1[2],6*nRep*nMod), rep(ss_l1[3],6*nRep*nMod)), 4)
icc_ov <- rep(c(rep(icc_ov[1], 2*nRep*nMod), rep(icc_ov[2], 2*nRep*nMod), rep(icc_ov[3], 2*nRep*nMod)), 12)
icc_lv <- rep(c(rep(icc_lv[1], nRep*nMod), rep(icc_lv[2], nRep*nMod)), 36)
## Force these vectors to be column vectors
ss_l1 <- matrix(ss_l1, ncol=1)
ss_l2 <- matrix(ss_l2, ncol=1)
icc_ov <- matrix(icc_ov, ncol=1)
icc_lv <- matrix(icc_lv, ncol=1)
## Add the labels to the results data frame
sim_results <- sim_results[order(sim_results$Condition),]
sim_results <- cbind(sim_results, ss_l1, ss_l2, icc_ov, icc_lv)
## Force the conditions to be factors
sim_results$ss_l1 <- as.factor(sim_results$ss_l1)
sim_results$ss_l2 <- as.factor(sim_results$ss_l2)
sim_results$icc_ov <- as.factor(sim_results$icc_ov)
sim_results$icc_lv <- as.factor(sim_results$icc_lv)
sim_results$Model <- factor(sim_results$Model, levels = c('C','M1','M2','M12'), ordered = T)
Make coding of variables/model specifications for the ROC analyses. The coding of the variables is in order to get the correct specifications labeled for the ROC analyses to come. The coding is as follows:
## Need to make codes for the ROC analyses outcomes
# first, C vs. M1,M2,M12 - Perfect specification
sim_results$C <- ifelse(sim_results$Model == 'C', 1, 0)
table(sim_results$C)
0 1
324000 108000
# second, C vs. M1|M12- correct level 1 model
sim_results$CvM1 <- ifelse(sim_results$Model == 'C', 1, 0)
sim_results$CvM1[sim_results$Model == "M2" | sim_results$Model == "M12"] <- NA
table(sim_results$CvM1)
0 1
108000 108000
# third, C vs. M2|M12- correct level 2 model
sim_results$CvM2 <- ifelse(sim_results$Model == 'C', 1, 0)
sim_results$CvM2[sim_results$Model == "M1" | sim_results$Model == "M12"] <- NA
table(sim_results$CvM2)
0 1
108000 108000
ROC stands for Receiver Operating Characteristic. ROC analysis aims to detect the presense of signals in data by looking at how the ability to classify an outcome (usually binary) based on a continuous or ordinal indicator. ROC analyses was orginally used in wartime to help detect the presence of radar signals. However, now ROC analysis is used in many areas including medical and psychology research. It is commonly used as a tool to help make decisions about what tools or methods help classify objects or individuals into specific groups.
In R, a package called pROC (Robin et al., 2011) was built that greatly enhancing the flexibility of using R for ROC analysis. For example, aside from just being able to conduct ROC analysis, one can compute confidences for this curve and conduct specific statistical tests comparing AUCs from the same data.
For the ROC analyses, we conducted them in pieces to build more and more fine grained information about the classification quality of fit indices for detecting a simple type of misspecification. For misspecification, we broke up the ROC analyses into three major chunks.
Within each of these major chunks of analyses, we furhter investigated whether classification of correctly specified models was depended upon estimator, level-1 sample size, or level-2 sample size. There are intitally be MANY ROC curve figures and over 1200 ROC analyses.
Setting up the objects to store the individual results so that we can use them all for the figures. First, we run over each condition separately then go into the conditional ROC analyses.
fit_roc <- fit_roc_smooth <- list()
roc_summary <- as.data.frame(matrix(0,ncol=13, nrow=5*3*4*4*5))
colnames(roc_summary) <- c('Classification','Index', 'Estimator', 'Level-2 SS',
'Level-1 SS', 'AUC',
'partial-AUC','Smoothed-AUC', 'Threshold',
'Specificity','Sensitivity', 'Num-C', 'Num-Mis')
roc_summary_gen <- as.data.frame(matrix(0,ncol=8, nrow=5)*3)
colnames(roc_summary_gen) <- c('Classification','Index', 'AUC',
'partial-AUC','Smoothed-AUC', 'Optimal-Threshold',
'Specificity','Sensitivity')
# Defining iterators
CLASS <- c('C', 'CvM1','CvM2')
INDEX <- c('CFI', 'TLI', 'RMSEA', 'SRMRW', 'SRMRB')
EST <- c('ALL','MLR', 'ULSMV', 'WLSMV')
SS_L1 <- c('ALL', 5, 10, 30)
SS_L2 <- c('ALL', 30, 50, 100, 200)
## Subset to the usable cases
sim_results <- filter(sim_results, Converge == 1 & Admissible == 1)
ig <- 1 ## counter for roc_summary
j <- 1 ## Which class?
for(index in INDEX){
## Print out which iteration so we know what we am looking at
cat('\n\nROC Analysis in')
cat('\nIndex:\t', index)
cat('\nClassification:\t', CLASS[j])
## Set up iteration key
key <- paste0(index,'.',CLASS[j])
## Create formula
model <- as.formula(paste0(CLASS[j], '~', index))
## Fit ROC curve
fit_roc[[key]] <- roc(model, data=sim_results, quiet=TRUE,
plot=TRUE, ci=TRUE, print.auc=TRUE)
## Create a plot of "smoothed" curve for plotting
fit_roc_smooth[[key]] <- smooth(roc(model, data=sim_results))
## Compute partial AUC for specificity .8-1
p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
partial.auc.focus = 'sp', partial.auc.correct = T)
## get summary info
roc_summary_gen[ig, 2] <- index
roc_summary_gen[ig, 1] <- CLASS[j]
roc_summary_gen[ig, 3] <- fit_roc[[key]]$auc ## total AUC
roc_summary_gen[ig, 4] <- p.auc ## corrected partial AUC (.5 is no discrimination)
roc_summary_gen[ig, 5] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
roc_summary_gen[ig, 6:8] <- coords(fit_roc[[key]], "best",
ret=c("threshold", "specificity", 'sensitivity'),
transpose=TRUE)
## print summary
cat('\n\nSummary of ROC:\n')
print(roc_summary_gen[ig, ])
## add to summary iterator
ig <- ig + 1
} ## End loop round index
ROC Analysis in
Index: CFI
Classification: C
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
1 C CFI 0.8156696 0.6374748 0.8456461
Optimal-Threshold Specificity Sensitivity
1 0.977017 0.7024613 0.8549251
ROC Analysis in
Index: TLI
Classification: C
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
2 C TLI 0.8154291 0.6374691 0.8453772
Optimal-Threshold Specificity Sensitivity
2 0.9724203 0.7022691 0.8549251
ROC Analysis in
Index: RMSEA
Classification: C
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
3 C RMSEA 0.8034875 0.6348255 0.8299624
Optimal-Threshold Specificity Sensitivity
3 0.01504671 0.6849311 0.829003
ROC Analysis in
Index: SRMRW
Classification: C
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
4 C SRMRW 0.7420696 0.6079951 0.7165381
Optimal-Threshold Specificity Sensitivity
4 0.03812817 0.7281555 0.7226555
ROC Analysis in
Index: SRMRB
Classification: C
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
5 C SRMRB 0.5979973 0.5720031 0.6039185
Optimal-Threshold Specificity Sensitivity
5 0.06685217 0.8038081 0.3519244
kable(roc_summary_gen[1:5,], format = 'html', digits=3) %>%
kable_styling(full_width = T)
Classification | Index | AUC | partial-AUC | Smoothed-AUC | Optimal-Threshold | Specificity | Sensitivity |
---|---|---|---|---|---|---|---|
C | CFI | 0.816 | 0.637 | 0.846 | 0.977 | 0.702 | 0.855 |
C | TLI | 0.815 | 0.637 | 0.845 | 0.972 | 0.702 | 0.855 |
C | RMSEA | 0.803 | 0.635 | 0.830 | 0.015 | 0.685 | 0.829 |
C | SRMRW | 0.742 | 0.608 | 0.717 | 0.038 | 0.728 | 0.723 |
C | SRMRB | 0.598 | 0.572 | 0.604 | 0.067 | 0.804 | 0.352 |
print(xtable(roc_summary_gen[1:5,c(2:3,6:8)], digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:30:33 2019
\begin{table}[ht]
\centering
\begin{tabular}{lrrrr}
\toprule
Index & AUC & Optimal-Threshold & Specificity & Sensitivity \\
\midrule
CFI & 0.816 & 0.977 & 0.702 & 0.855 \\
TLI & 0.815 & 0.972 & 0.702 & 0.855 \\
RMSEA & 0.803 & 0.015 & 0.685 & 0.829 \\
SRMRW & 0.742 & 0.038 & 0.728 & 0.723 \\
SRMRB & 0.598 & 0.067 & 0.804 & 0.352 \\
\bottomrule
\end{tabular}
\end{table}
i <- 1 ## counter for roc_summary
j <- 1 ## Which class?
for(index in INDEX){
for(est in EST){
for(s2 in SS_L2){
for(s1 in SS_L1){
## Print out which iteration so we know what we are looking at
#cat('\n\nROC Analysis in')
#cat('\nIndex:\t', index)
#cat('\nClassification:\t', CLASS[j])
#cat('\nEstimation Method:\t', est)
#cat('\nLevel-2 Sample Size:\t', s2)
#cat('\nLevel-1 Sample Size:\t', s1)
## Set up iteration key
key <- paste0(index,'.',CLASS[j],'.',est,'.', s2,'.',s1)
# Subset data as needed
if(est == 'ALL' & s2 == 'ALL' & s1 == 'ALL') mydata <- sim_results
if(est != 'ALL' & s2 == 'ALL' & s1 == 'ALL'){
mydata <- filter(sim_results, Estimator == est)
}
if(est == 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
mydata <- filter(sim_results, ss_l2 == s2)
}
if(est == 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, ss_l1 == s1)
}
if(est != 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
mydata <- filter(sim_results, Estimator == est, ss_l2 == s2)
}
if(est != 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, Estimator == est, ss_l1 == s1)
}
if(est == 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, ss_l2 == s2, ss_l1 == s1)
}
if(est != 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, Estimator == est, ss_l2 == s2, ss_l1 == s1)
}
## Create formula
model <- as.formula(paste0(CLASS[j], '~', index))
## Fit ROC curve
fit_roc[[key]] <- roc(model, data=mydata, quiet=T,
plot =F, ci=TRUE, print.auc=TRUE)
## Create a plot of "smoothed" curve for plotting
fit_roc_smooth[[key]] <- smooth(roc(model, data=mydata))
## Compute partial AUC for specificity .8-1
p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
partial.auc.focus = 'sp', partial.auc.correct = T)
## get summary info
roc_summary[i, 2] <- index
roc_summary[i, 1] <- CLASS[j]
roc_summary[i, 3] <- est ##estimator
roc_summary[i, 4] <- s2 ## level-2 sample size
roc_summary[i, 5] <- s1 ## level-1 sample size
roc_summary[i, 6] <- fit_roc[[key]]$auc ## total AUC
roc_summary[i, 7] <- p.auc ## corrected partial AUC (.5 is no discrimination)
roc_summary[i, 8] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
roc_summary[i, 9:11] <- coords(fit_roc[[key]], "best",
ret=c("threshold", "specificity", 'sensitivity'),
transpose=TRUE)
## add number of C and number of miss models in analysis
n.C <- nrow(mydata[ mydata[, CLASS[j]] == 1, ])
n.M <- nrow(mydata[ mydata[, CLASS[j]] == 0, ])
roc_summary[i, 12] <- n.C
roc_summary[i, 13] <- n.M
## print summary
#cat('\n\nSummary of ROC:\n')
#print(roc_summary[i, ])
## add to summary iterator
i <- i + 1
} ## end loop around ss l1
} ## End loop around ss l2
} ## End loop around estimator
} ## End loop round index
kable(roc_summary[1:400, ], format = 'html', digits=3) %>%
kable_styling(full_width = T)
Classification | Index | Estimator | Level-2 SS | Level-1 SS | AUC | partial-AUC | Smoothed-AUC | Threshold | Specificity | Sensitivity | Num-C | Num-Mis |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | CFI | ALL | ALL | ALL | 0.816 | 0.637 | 0.846 | 0.977 | 0.702 | 0.855 | 83510 | 223868 |
C | CFI | ALL | ALL | 5 | 0.784 | 0.649 | 0.799 | 0.971 | 0.749 | 0.752 | 23460 | 63082 |
C | CFI | ALL | ALL | 10 | 0.842 | 0.672 | 0.860 | 0.972 | 0.718 | 0.873 | 28208 | 75749 |
C | CFI | ALL | ALL | 30 | 0.829 | 0.612 | 0.809 | 0.986 | 0.643 | 0.944 | 31842 | 85037 |
C | CFI | ALL | 30 | ALL | 0.679 | 0.544 | 0.713 | 0.968 | 0.587 | 0.739 | 16157 | 43767 |
C | CFI | ALL | 30 | 5 | 0.636 | 0.546 | 0.640 | 0.899 | 0.490 | 0.719 | 3994 | 10825 |
C | CFI | ALL | 30 | 10 | 0.708 | 0.560 | 0.721 | 0.959 | 0.597 | 0.728 | 5297 | 14595 |
C | CFI | ALL | 30 | 30 | 0.706 | 0.535 | 0.639 | 0.971 | 0.467 | 0.943 | 6866 | 18347 |
C | CFI | ALL | 50 | ALL | 0.774 | 0.597 | 0.802 | 0.970 | 0.642 | 0.826 | 19330 | 52168 |
C | CFI | ALL | 50 | 5 | 0.720 | 0.585 | 0.727 | 0.956 | 0.654 | 0.680 | 5037 | 13894 |
C | CFI | ALL | 50 | 10 | 0.818 | 0.642 | 0.830 | 0.965 | 0.683 | 0.843 | 6490 | 17559 |
C | CFI | ALL | 50 | 30 | 0.795 | 0.580 | 0.763 | 0.983 | 0.589 | 0.969 | 7803 | 20715 |
C | CFI | ALL | 100 | ALL | 0.864 | 0.684 | 0.884 | 0.977 | 0.723 | 0.905 | 22743 | 60844 |
C | CFI | ALL | 100 | 5 | 0.850 | 0.687 | 0.859 | 0.967 | 0.723 | 0.845 | 6487 | 17448 |
C | CFI | ALL | 100 | 10 | 0.889 | 0.725 | 0.901 | 0.974 | 0.741 | 0.946 | 7852 | 20843 |
C | CFI | ALL | 100 | 30 | 0.865 | 0.659 | 0.841 | 0.991 | 0.701 | 0.971 | 8404 | 22553 |
C | CFI | ALL | 200 | ALL | 0.912 | 0.767 | 0.922 | 0.980 | 0.764 | 0.965 | 25280 | 67089 |
C | CFI | ALL | 200 | 5 | 0.904 | 0.747 | 0.914 | 0.977 | 0.787 | 0.940 | 7942 | 20915 |
C | CFI | ALL | 200 | 10 | 0.916 | 0.772 | 0.913 | 0.983 | 0.789 | 0.963 | 8569 | 22752 |
C | CFI | ALL | 200 | 30 | 0.931 | 0.811 | 0.923 | 0.994 | 0.797 | 0.965 | 8769 | 23422 |
C | CFI | MLR | ALL | ALL | 0.841 | 0.710 | 0.840 | 0.967 | 0.746 | 0.834 | 30018 | 85647 |
C | CFI | MLR | ALL | 5 | 0.773 | 0.678 | 0.777 | 0.971 | 0.814 | 0.663 | 8945 | 24572 |
C | CFI | MLR | ALL | 10 | 0.854 | 0.717 | 0.856 | 0.967 | 0.772 | 0.816 | 10090 | 28785 |
C | CFI | MLR | ALL | 30 | 0.897 | 0.742 | 0.891 | 0.977 | 0.733 | 0.933 | 10983 | 32290 |
C | CFI | MLR | 30 | ALL | 0.747 | 0.639 | 0.739 | 0.940 | 0.726 | 0.698 | 6295 | 17854 |
C | CFI | MLR | 30 | 5 | 0.666 | 0.569 | 0.664 | 0.888 | 0.673 | 0.589 | 1726 | 4739 |
C | CFI | MLR | 30 | 10 | 0.774 | 0.622 | 0.773 | 0.918 | 0.612 | 0.815 | 2054 | 5832 |
C | CFI | MLR | 30 | 30 | 0.873 | 0.686 | 0.876 | 0.957 | 0.693 | 0.966 | 2515 | 7283 |
C | CFI | MLR | 50 | ALL | 0.828 | 0.674 | 0.827 | 0.956 | 0.713 | 0.835 | 7124 | 20417 |
C | CFI | MLR | 50 | 5 | 0.747 | 0.608 | 0.748 | 0.929 | 0.612 | 0.763 | 2032 | 5724 |
C | CFI | MLR | 50 | 10 | 0.859 | 0.690 | 0.859 | 0.956 | 0.734 | 0.867 | 2387 | 6790 |
C | CFI | MLR | 50 | 30 | 0.894 | 0.719 | 0.889 | 0.979 | 0.739 | 0.969 | 2705 | 7903 |
C | CFI | MLR | 100 | ALL | 0.893 | 0.735 | 0.898 | 0.974 | 0.750 | 0.918 | 8014 | 22901 |
C | CFI | MLR | 100 | 5 | 0.866 | 0.705 | 0.867 | 0.959 | 0.700 | 0.897 | 2417 | 6637 |
C | CFI | MLR | 100 | 10 | 0.906 | 0.748 | 0.901 | 0.974 | 0.768 | 0.967 | 2760 | 7823 |
C | CFI | MLR | 100 | 30 | 0.918 | 0.775 | 0.912 | 0.991 | 0.792 | 0.970 | 2837 | 8441 |
C | CFI | MLR | 200 | ALL | 0.917 | 0.778 | 0.911 | 0.981 | 0.767 | 0.973 | 8585 | 24475 |
C | CFI | MLR | 200 | 5 | 0.911 | 0.761 | 0.906 | 0.976 | 0.787 | 0.958 | 2770 | 7472 |
C | CFI | MLR | 200 | 10 | 0.923 | 0.788 | 0.915 | 0.986 | 0.809 | 0.975 | 2889 | 8340 |
C | CFI | MLR | 200 | 30 | 0.938 | 0.827 | 0.932 | 0.995 | 0.824 | 0.986 | 2926 | 8663 |
C | CFI | ULSMV | ALL | ALL | 0.780 | 0.587 | 0.841 | 0.973 | 0.628 | 0.888 | 27515 | 71584 |
C | CFI | ULSMV | ALL | 5 | 0.775 | 0.618 | 0.807 | 0.967 | 0.697 | 0.794 | 7500 | 19987 |
C | CFI | ULSMV | ALL | 10 | 0.818 | 0.625 | 0.854 | 0.970 | 0.687 | 0.888 | 9333 | 24300 |
C | CFI | ULSMV | ALL | 30 | 0.762 | 0.561 | 0.725 | 0.987 | 0.531 | 0.975 | 10682 | 27297 |
C | CFI | ULSMV | 30 | ALL | 0.628 | 0.524 | 0.720 | 0.982 | 0.431 | 0.821 | 5208 | 13635 |
C | CFI | ULSMV | 30 | 5 | 0.617 | 0.531 | 0.638 | 0.981 | 0.633 | 0.575 | 1203 | 3200 |
C | CFI | ULSMV | 30 | 10 | 0.665 | 0.535 | 0.726 | 0.978 | 0.498 | 0.795 | 1719 | 4632 |
C | CFI | ULSMV | 30 | 30 | 0.614 | 0.516 | 0.481 | 0.988 | 0.268 | 0.975 | 2286 | 5803 |
C | CFI | ULSMV | 50 | ALL | 0.712 | 0.554 | 0.770 | 0.973 | 0.552 | 0.826 | 6356 | 16505 |
C | CFI | ULSMV | 50 | 5 | 0.686 | 0.564 | 0.699 | 0.967 | 0.647 | 0.639 | 1595 | 4319 |
C | CFI | ULSMV | 50 | 10 | 0.774 | 0.603 | 0.801 | 0.970 | 0.659 | 0.804 | 2122 | 5551 |
C | CFI | ULSMV | 50 | 30 | 0.694 | 0.535 | 0.643 | 0.989 | 0.417 | 0.974 | 2639 | 6635 |
C | CFI | ULSMV | 100 | ALL | 0.827 | 0.634 | 0.855 | 0.971 | 0.667 | 0.906 | 7529 | 19571 |
C | CFI | ULSMV | 100 | 5 | 0.829 | 0.671 | 0.840 | 0.965 | 0.709 | 0.823 | 2076 | 5570 |
C | CFI | ULSMV | 100 | 10 | 0.874 | 0.711 | 0.886 | 0.970 | 0.742 | 0.908 | 2619 | 6741 |
C | CFI | ULSMV | 100 | 30 | 0.798 | 0.584 | 0.740 | 0.989 | 0.583 | 0.967 | 2834 | 7260 |
C | CFI | ULSMV | 200 | ALL | 0.911 | 0.764 | 0.919 | 0.975 | 0.785 | 0.957 | 8422 | 21873 |
C | CFI | ULSMV | 200 | 5 | 0.898 | 0.738 | 0.908 | 0.967 | 0.766 | 0.950 | 2626 | 6898 |
C | CFI | ULSMV | 200 | 10 | 0.912 | 0.761 | 0.907 | 0.970 | 0.796 | 0.971 | 2873 | 7376 |
C | CFI | ULSMV | 200 | 30 | 0.929 | 0.805 | 0.921 | 0.987 | 0.794 | 0.975 | 2923 | 7599 |
C | CFI | WLSMV | ALL | ALL | 0.836 | 0.649 | 0.871 | 0.982 | 0.682 | 0.896 | 25977 | 66637 |
C | CFI | WLSMV | ALL | 5 | 0.818 | 0.656 | 0.835 | 0.972 | 0.704 | 0.838 | 7015 | 18523 |
C | CFI | WLSMV | ALL | 10 | 0.866 | 0.686 | 0.880 | 0.982 | 0.724 | 0.902 | 8785 | 22664 |
C | CFI | WLSMV | ALL | 30 | 0.841 | 0.625 | 0.797 | 0.995 | 0.669 | 0.951 | 10177 | 25450 |
C | CFI | WLSMV | 30 | ALL | 0.705 | 0.552 | 0.758 | 0.983 | 0.546 | 0.811 | 4654 | 12278 |
C | CFI | WLSMV | 30 | 5 | 0.675 | 0.558 | 0.680 | 0.936 | 0.455 | 0.807 | 1065 | 2886 |
C | CFI | WLSMV | 30 | 10 | 0.763 | 0.588 | 0.776 | 0.981 | 0.624 | 0.804 | 1524 | 4131 |
C | CFI | WLSMV | 30 | 30 | 0.700 | 0.537 | 0.564 | 0.987 | 0.397 | 0.977 | 2065 | 5261 |
C | CFI | WLSMV | 50 | ALL | 0.802 | 0.625 | 0.830 | 0.980 | 0.647 | 0.848 | 5850 | 15246 |
C | CFI | WLSMV | 50 | 5 | 0.747 | 0.596 | 0.751 | 0.964 | 0.618 | 0.769 | 1410 | 3851 |
C | CFI | WLSMV | 50 | 10 | 0.843 | 0.663 | 0.841 | 0.976 | 0.688 | 0.880 | 1981 | 5218 |
C | CFI | WLSMV | 50 | 30 | 0.828 | 0.612 | 0.771 | 0.992 | 0.630 | 0.966 | 2459 | 6177 |
C | CFI | WLSMV | 100 | ALL | 0.876 | 0.703 | 0.891 | 0.979 | 0.708 | 0.936 | 7200 | 18372 |
C | CFI | WLSMV | 100 | 5 | 0.859 | 0.690 | 0.862 | 0.972 | 0.711 | 0.880 | 1994 | 5241 |
C | CFI | WLSMV | 100 | 10 | 0.893 | 0.721 | 0.882 | 0.983 | 0.746 | 0.947 | 2473 | 6279 |
C | CFI | WLSMV | 100 | 30 | 0.889 | 0.706 | 0.863 | 0.994 | 0.735 | 0.977 | 2733 | 6852 |
C | CFI | WLSMV | 200 | ALL | 0.910 | 0.761 | 0.898 | 0.986 | 0.756 | 0.960 | 8273 | 20741 |
C | CFI | WLSMV | 200 | 5 | 0.904 | 0.742 | 0.897 | 0.979 | 0.769 | 0.962 | 2546 | 6545 |
C | CFI | WLSMV | 200 | 10 | 0.917 | 0.772 | 0.907 | 0.988 | 0.783 | 0.981 | 2807 | 7036 |
C | CFI | WLSMV | 200 | 30 | 0.930 | 0.806 | 0.919 | 0.997 | 0.808 | 0.969 | 2920 | 7160 |
C | TLI | ALL | ALL | ALL | 0.815 | 0.637 | 0.845 | 0.972 | 0.702 | 0.855 | 83510 | 223868 |
C | TLI | ALL | ALL | 5 | 0.784 | 0.649 | 0.799 | 0.965 | 0.749 | 0.752 | 23460 | 63082 |
C | TLI | ALL | ALL | 10 | 0.841 | 0.672 | 0.859 | 0.966 | 0.717 | 0.873 | 28208 | 75749 |
C | TLI | ALL | ALL | 30 | 0.828 | 0.612 | 0.810 | 0.983 | 0.643 | 0.945 | 31842 | 85037 |
C | TLI | ALL | 30 | ALL | 0.678 | 0.544 | 0.713 | 0.961 | 0.587 | 0.739 | 16157 | 43767 |
C | TLI | ALL | 30 | 5 | 0.635 | 0.546 | 0.639 | 0.878 | 0.487 | 0.720 | 3994 | 10825 |
C | TLI | ALL | 30 | 10 | 0.707 | 0.560 | 0.721 | 0.951 | 0.597 | 0.728 | 5297 | 14595 |
C | TLI | ALL | 30 | 30 | 0.706 | 0.535 | 0.640 | 0.965 | 0.467 | 0.943 | 6866 | 18347 |
C | TLI | ALL | 50 | ALL | 0.773 | 0.597 | 0.802 | 0.964 | 0.641 | 0.826 | 19330 | 52168 |
C | TLI | ALL | 50 | 5 | 0.719 | 0.585 | 0.727 | 0.948 | 0.653 | 0.681 | 5037 | 13894 |
C | TLI | ALL | 50 | 10 | 0.818 | 0.642 | 0.830 | 0.958 | 0.682 | 0.843 | 6490 | 17559 |
C | TLI | ALL | 50 | 30 | 0.795 | 0.580 | 0.764 | 0.980 | 0.588 | 0.969 | 7803 | 20715 |
C | TLI | ALL | 100 | ALL | 0.864 | 0.684 | 0.884 | 0.972 | 0.722 | 0.905 | 22743 | 60844 |
C | TLI | ALL | 100 | 5 | 0.849 | 0.687 | 0.859 | 0.961 | 0.723 | 0.845 | 6487 | 17448 |
C | TLI | ALL | 100 | 10 | 0.889 | 0.724 | 0.901 | 0.968 | 0.739 | 0.948 | 7852 | 20843 |
C | TLI | ALL | 100 | 30 | 0.865 | 0.659 | 0.842 | 0.989 | 0.701 | 0.971 | 8404 | 22553 |
C | TLI | ALL | 200 | ALL | 0.912 | 0.767 | 0.922 | 0.976 | 0.763 | 0.965 | 25280 | 67089 |
C | TLI | ALL | 200 | 5 | 0.904 | 0.747 | 0.914 | 0.972 | 0.786 | 0.941 | 7942 | 20915 |
C | TLI | ALL | 200 | 10 | 0.916 | 0.772 | 0.913 | 0.980 | 0.789 | 0.963 | 8569 | 22752 |
C | TLI | ALL | 200 | 30 | 0.931 | 0.811 | 0.923 | 0.993 | 0.797 | 0.965 | 8769 | 23422 |
C | TLI | MLR | ALL | ALL | 0.840 | 0.710 | 0.840 | 0.961 | 0.750 | 0.830 | 30018 | 85647 |
C | TLI | MLR | ALL | 5 | 0.772 | 0.678 | 0.776 | 0.965 | 0.814 | 0.663 | 8945 | 24572 |
C | TLI | MLR | ALL | 10 | 0.853 | 0.717 | 0.855 | 0.960 | 0.772 | 0.816 | 10090 | 28785 |
C | TLI | MLR | ALL | 30 | 0.897 | 0.742 | 0.891 | 0.972 | 0.733 | 0.933 | 10983 | 32290 |
C | TLI | MLR | 30 | ALL | 0.746 | 0.639 | 0.738 | 0.928 | 0.725 | 0.698 | 6295 | 17854 |
C | TLI | MLR | 30 | 5 | 0.664 | 0.569 | 0.663 | 0.867 | 0.678 | 0.582 | 1726 | 4739 |
C | TLI | MLR | 30 | 10 | 0.773 | 0.622 | 0.772 | 0.902 | 0.610 | 0.815 | 2054 | 5832 |
C | TLI | MLR | 30 | 30 | 0.873 | 0.686 | 0.876 | 0.949 | 0.693 | 0.966 | 2515 | 7283 |
C | TLI | MLR | 50 | ALL | 0.827 | 0.674 | 0.827 | 0.947 | 0.713 | 0.835 | 7124 | 20417 |
C | TLI | MLR | 50 | 5 | 0.746 | 0.607 | 0.747 | 0.915 | 0.610 | 0.763 | 2032 | 5724 |
C | TLI | MLR | 50 | 10 | 0.859 | 0.690 | 0.859 | 0.947 | 0.734 | 0.867 | 2387 | 6790 |
C | TLI | MLR | 50 | 30 | 0.894 | 0.719 | 0.889 | 0.975 | 0.739 | 0.969 | 2705 | 7903 |
C | TLI | MLR | 100 | ALL | 0.893 | 0.735 | 0.898 | 0.968 | 0.750 | 0.918 | 8014 | 22901 |
C | TLI | MLR | 100 | 5 | 0.865 | 0.705 | 0.867 | 0.951 | 0.699 | 0.897 | 2417 | 6637 |
C | TLI | MLR | 100 | 10 | 0.906 | 0.748 | 0.901 | 0.969 | 0.768 | 0.967 | 2760 | 7823 |
C | TLI | MLR | 100 | 30 | 0.918 | 0.775 | 0.912 | 0.989 | 0.792 | 0.970 | 2837 | 8441 |
C | TLI | MLR | 200 | ALL | 0.917 | 0.778 | 0.911 | 0.977 | 0.767 | 0.973 | 8585 | 24475 |
C | TLI | MLR | 200 | 5 | 0.911 | 0.761 | 0.906 | 0.972 | 0.790 | 0.955 | 2770 | 7472 |
C | TLI | MLR | 200 | 10 | 0.923 | 0.788 | 0.915 | 0.984 | 0.809 | 0.975 | 2889 | 8340 |
C | TLI | MLR | 200 | 30 | 0.938 | 0.827 | 0.932 | 0.994 | 0.824 | 0.986 | 2926 | 8663 |
C | TLI | ULSMV | ALL | ALL | 0.780 | 0.587 | 0.841 | 0.968 | 0.627 | 0.888 | 27515 | 71584 |
C | TLI | ULSMV | ALL | 5 | 0.775 | 0.618 | 0.806 | 0.960 | 0.696 | 0.794 | 7500 | 19987 |
C | TLI | ULSMV | ALL | 10 | 0.818 | 0.625 | 0.854 | 0.964 | 0.686 | 0.888 | 9333 | 24300 |
C | TLI | ULSMV | ALL | 30 | 0.762 | 0.561 | 0.727 | 0.985 | 0.531 | 0.975 | 10682 | 27297 |
C | TLI | ULSMV | 30 | ALL | 0.628 | 0.524 | 0.720 | 0.979 | 0.430 | 0.821 | 5208 | 13635 |
C | TLI | ULSMV | 30 | 5 | 0.616 | 0.531 | 0.638 | 0.977 | 0.632 | 0.575 | 1203 | 3200 |
C | TLI | ULSMV | 30 | 10 | 0.665 | 0.535 | 0.725 | 0.973 | 0.498 | 0.795 | 1719 | 4632 |
C | TLI | ULSMV | 30 | 30 | 0.614 | 0.516 | 0.482 | 0.985 | 0.268 | 0.975 | 2286 | 5803 |
C | TLI | ULSMV | 50 | ALL | 0.712 | 0.554 | 0.770 | 0.968 | 0.552 | 0.826 | 6356 | 16505 |
C | TLI | ULSMV | 50 | 5 | 0.685 | 0.564 | 0.699 | 0.959 | 0.638 | 0.647 | 1595 | 4319 |
C | TLI | ULSMV | 50 | 10 | 0.774 | 0.603 | 0.801 | 0.966 | 0.663 | 0.799 | 2122 | 5551 |
C | TLI | ULSMV | 50 | 30 | 0.694 | 0.535 | 0.645 | 0.986 | 0.417 | 0.974 | 2639 | 6635 |
C | TLI | ULSMV | 100 | ALL | 0.827 | 0.634 | 0.855 | 0.965 | 0.666 | 0.906 | 7529 | 19571 |
C | TLI | ULSMV | 100 | 5 | 0.829 | 0.670 | 0.840 | 0.958 | 0.708 | 0.823 | 2076 | 5570 |
C | TLI | ULSMV | 100 | 10 | 0.874 | 0.711 | 0.886 | 0.965 | 0.743 | 0.907 | 2619 | 6741 |
C | TLI | ULSMV | 100 | 30 | 0.798 | 0.584 | 0.740 | 0.987 | 0.583 | 0.967 | 2834 | 7260 |
C | TLI | ULSMV | 200 | ALL | 0.911 | 0.764 | 0.919 | 0.970 | 0.785 | 0.956 | 8422 | 21873 |
C | TLI | ULSMV | 200 | 5 | 0.898 | 0.738 | 0.908 | 0.960 | 0.766 | 0.950 | 2626 | 6898 |
C | TLI | ULSMV | 200 | 10 | 0.912 | 0.761 | 0.907 | 0.965 | 0.797 | 0.969 | 2873 | 7376 |
C | TLI | ULSMV | 200 | 30 | 0.929 | 0.805 | 0.921 | 0.985 | 0.794 | 0.975 | 2923 | 7599 |
C | TLI | WLSMV | ALL | ALL | 0.836 | 0.649 | 0.871 | 0.979 | 0.682 | 0.896 | 25977 | 66637 |
C | TLI | WLSMV | ALL | 5 | 0.818 | 0.656 | 0.835 | 0.966 | 0.703 | 0.838 | 7015 | 18523 |
C | TLI | WLSMV | ALL | 10 | 0.866 | 0.686 | 0.880 | 0.979 | 0.724 | 0.902 | 8785 | 22664 |
C | TLI | WLSMV | ALL | 30 | 0.841 | 0.625 | 0.797 | 0.994 | 0.669 | 0.951 | 10177 | 25450 |
C | TLI | WLSMV | 30 | ALL | 0.705 | 0.552 | 0.758 | 0.979 | 0.547 | 0.809 | 4654 | 12278 |
C | TLI | WLSMV | 30 | 5 | 0.674 | 0.558 | 0.680 | 0.924 | 0.453 | 0.807 | 1065 | 2886 |
C | TLI | WLSMV | 30 | 10 | 0.762 | 0.588 | 0.776 | 0.978 | 0.627 | 0.801 | 1524 | 4131 |
C | TLI | WLSMV | 30 | 30 | 0.700 | 0.537 | 0.565 | 0.984 | 0.397 | 0.977 | 2065 | 5261 |
C | TLI | WLSMV | 50 | ALL | 0.801 | 0.625 | 0.830 | 0.976 | 0.648 | 0.846 | 5850 | 15246 |
C | TLI | WLSMV | 50 | 5 | 0.747 | 0.596 | 0.751 | 0.956 | 0.617 | 0.769 | 1410 | 3851 |
C | TLI | WLSMV | 50 | 10 | 0.843 | 0.663 | 0.841 | 0.971 | 0.687 | 0.880 | 1981 | 5218 |
C | TLI | WLSMV | 50 | 30 | 0.828 | 0.612 | 0.771 | 0.991 | 0.629 | 0.967 | 2459 | 6177 |
C | TLI | WLSMV | 100 | ALL | 0.876 | 0.703 | 0.892 | 0.975 | 0.708 | 0.936 | 7200 | 18372 |
C | TLI | WLSMV | 100 | 5 | 0.858 | 0.690 | 0.862 | 0.966 | 0.711 | 0.880 | 1994 | 5241 |
C | TLI | WLSMV | 100 | 10 | 0.893 | 0.721 | 0.882 | 0.980 | 0.746 | 0.947 | 2473 | 6279 |
C | TLI | WLSMV | 100 | 30 | 0.889 | 0.706 | 0.863 | 0.993 | 0.735 | 0.977 | 2733 | 6852 |
C | TLI | WLSMV | 200 | ALL | 0.910 | 0.761 | 0.898 | 0.984 | 0.756 | 0.960 | 8273 | 20741 |
C | TLI | WLSMV | 200 | 5 | 0.904 | 0.742 | 0.897 | 0.974 | 0.769 | 0.962 | 2546 | 6545 |
C | TLI | WLSMV | 200 | 10 | 0.917 | 0.772 | 0.907 | 0.986 | 0.783 | 0.981 | 2807 | 7036 |
C | TLI | WLSMV | 200 | 30 | 0.930 | 0.806 | 0.919 | 0.997 | 0.808 | 0.969 | 2920 | 7160 |
C | RMSEA | ALL | ALL | ALL | 0.803 | 0.635 | 0.830 | 0.015 | 0.685 | 0.829 | 83510 | 223868 |
C | RMSEA | ALL | ALL | 5 | 0.776 | 0.644 | 0.790 | 0.019 | 0.722 | 0.757 | 23460 | 63082 |
C | RMSEA | ALL | ALL | 10 | 0.832 | 0.668 | 0.847 | 0.016 | 0.725 | 0.836 | 28208 | 75749 |
C | RMSEA | ALL | ALL | 30 | 0.816 | 0.612 | 0.798 | 0.009 | 0.665 | 0.869 | 31842 | 85037 |
C | RMSEA | ALL | 30 | ALL | 0.664 | 0.544 | 0.688 | 0.020 | 0.549 | 0.734 | 16157 | 43767 |
C | RMSEA | ALL | 30 | 5 | 0.614 | 0.546 | 0.614 | 0.021 | 0.695 | 0.477 | 3994 | 10825 |
C | RMSEA | ALL | 30 | 10 | 0.681 | 0.560 | 0.680 | 0.018 | 0.623 | 0.657 | 5297 | 14595 |
C | RMSEA | ALL | 30 | 30 | 0.691 | 0.535 | 0.615 | 0.022 | 0.398 | 0.958 | 6866 | 18347 |
C | RMSEA | ALL | 50 | ALL | 0.758 | 0.596 | 0.778 | 0.016 | 0.636 | 0.776 | 19330 | 52168 |
C | RMSEA | ALL | 50 | 5 | 0.702 | 0.582 | 0.704 | 0.023 | 0.635 | 0.670 | 5037 | 13894 |
C | RMSEA | ALL | 50 | 10 | 0.801 | 0.635 | 0.802 | 0.020 | 0.653 | 0.819 | 6490 | 17559 |
C | RMSEA | ALL | 50 | 30 | 0.781 | 0.580 | 0.734 | 0.013 | 0.551 | 0.933 | 7803 | 20715 |
C | RMSEA | ALL | 100 | ALL | 0.854 | 0.678 | 0.862 | 0.016 | 0.698 | 0.892 | 22743 | 60844 |
C | RMSEA | ALL | 100 | 5 | 0.842 | 0.680 | 0.843 | 0.021 | 0.676 | 0.870 | 6487 | 17448 |
C | RMSEA | ALL | 100 | 10 | 0.886 | 0.716 | 0.877 | 0.017 | 0.720 | 0.943 | 7852 | 20843 |
C | RMSEA | ALL | 100 | 30 | 0.859 | 0.656 | 0.825 | 0.010 | 0.687 | 0.961 | 8404 | 22553 |
C | RMSEA | ALL | 200 | ALL | 0.905 | 0.758 | 0.897 | 0.014 | 0.736 | 0.955 | 25280 | 67089 |
C | RMSEA | ALL | 200 | 5 | 0.902 | 0.742 | 0.896 | 0.017 | 0.764 | 0.953 | 7942 | 20915 |
C | RMSEA | ALL | 200 | 10 | 0.918 | 0.776 | 0.909 | 0.013 | 0.790 | 0.971 | 8569 | 22752 |
C | RMSEA | ALL | 200 | 30 | 0.929 | 0.808 | 0.922 | 0.007 | 0.806 | 0.951 | 8769 | 23422 |
C | RMSEA | MLR | ALL | ALL | 0.830 | 0.706 | 0.829 | 0.024 | 0.735 | 0.843 | 30018 | 85647 |
C | RMSEA | MLR | ALL | 5 | 0.758 | 0.671 | 0.762 | 0.023 | 0.782 | 0.684 | 8945 | 24572 |
C | RMSEA | MLR | ALL | 10 | 0.843 | 0.711 | 0.844 | 0.025 | 0.745 | 0.840 | 10090 | 28785 |
C | RMSEA | MLR | ALL | 30 | 0.896 | 0.738 | 0.894 | 0.019 | 0.729 | 0.944 | 10983 | 32290 |
C | RMSEA | MLR | 30 | ALL | 0.725 | 0.634 | 0.720 | 0.029 | 0.741 | 0.660 | 6295 | 17854 |
C | RMSEA | MLR | 30 | 5 | 0.653 | 0.562 | 0.655 | 0.051 | 0.540 | 0.678 | 1726 | 4739 |
C | RMSEA | MLR | 30 | 10 | 0.755 | 0.612 | 0.756 | 0.035 | 0.642 | 0.744 | 2054 | 5832 |
C | RMSEA | MLR | 30 | 30 | 0.870 | 0.679 | 0.873 | 0.026 | 0.700 | 0.961 | 2515 | 7283 |
C | RMSEA | MLR | 50 | ALL | 0.814 | 0.669 | 0.813 | 0.026 | 0.716 | 0.814 | 7124 | 20417 |
C | RMSEA | MLR | 50 | 5 | 0.730 | 0.599 | 0.731 | 0.034 | 0.593 | 0.752 | 2032 | 5724 |
C | RMSEA | MLR | 50 | 10 | 0.850 | 0.680 | 0.851 | 0.026 | 0.725 | 0.849 | 2387 | 6790 |
C | RMSEA | MLR | 50 | 30 | 0.892 | 0.715 | 0.887 | 0.018 | 0.736 | 0.979 | 2705 | 7903 |
C | RMSEA | MLR | 100 | ALL | 0.889 | 0.729 | 0.892 | 0.020 | 0.747 | 0.916 | 8014 | 22901 |
C | RMSEA | MLR | 100 | 5 | 0.859 | 0.695 | 0.859 | 0.024 | 0.717 | 0.871 | 2417 | 6637 |
C | RMSEA | MLR | 100 | 10 | 0.903 | 0.740 | 0.897 | 0.020 | 0.762 | 0.968 | 2760 | 7823 |
C | RMSEA | MLR | 100 | 30 | 0.917 | 0.772 | 0.911 | 0.012 | 0.779 | 0.982 | 2837 | 8441 |
C | RMSEA | MLR | 200 | ALL | 0.915 | 0.772 | 0.908 | 0.017 | 0.759 | 0.979 | 8585 | 24475 |
C | RMSEA | MLR | 200 | 5 | 0.908 | 0.751 | 0.900 | 0.019 | 0.782 | 0.964 | 2770 | 7472 |
C | RMSEA | MLR | 200 | 10 | 0.921 | 0.781 | 0.912 | 0.014 | 0.801 | 0.981 | 2889 | 8340 |
C | RMSEA | MLR | 200 | 30 | 0.937 | 0.825 | 0.930 | 0.008 | 0.832 | 0.975 | 2926 | 8663 |
C | RMSEA | ULSMV | ALL | ALL | 0.770 | 0.587 | 0.807 | 0.012 | 0.596 | 0.855 | 27515 | 71584 |
C | RMSEA | ULSMV | ALL | 5 | 0.784 | 0.617 | 0.807 | 0.017 | 0.656 | 0.815 | 7500 | 19987 |
C | RMSEA | ULSMV | ALL | 10 | 0.817 | 0.624 | 0.828 | 0.012 | 0.692 | 0.843 | 9333 | 24300 |
C | RMSEA | ULSMV | ALL | 30 | 0.754 | 0.561 | 0.708 | 0.006 | 0.552 | 0.905 | 10682 | 27297 |
C | RMSEA | ULSMV | 30 | ALL | 0.628 | 0.524 | 0.675 | 0.008 | 0.448 | 0.771 | 5208 | 13635 |
C | RMSEA | ULSMV | 30 | 5 | 0.621 | 0.531 | 0.635 | 0.011 | 0.619 | 0.587 | 1203 | 3200 |
C | RMSEA | ULSMV | 30 | 10 | 0.663 | 0.535 | 0.666 | 0.014 | 0.428 | 0.838 | 1719 | 4632 |
C | RMSEA | ULSMV | 30 | 30 | 0.391 | NA | 0.564 | -Inf | 0.000 | 1.000 | 2286 | 5803 |
C | RMSEA | ULSMV | 50 | ALL | 0.706 | 0.554 | 0.728 | 0.009 | 0.590 | 0.749 | 6356 | 16505 |
C | RMSEA | ULSMV | 50 | 5 | 0.686 | 0.564 | 0.690 | 0.016 | 0.614 | 0.661 | 1595 | 4319 |
C | RMSEA | ULSMV | 50 | 10 | 0.770 | 0.603 | 0.761 | 0.014 | 0.614 | 0.802 | 2122 | 5551 |
C | RMSEA | ULSMV | 50 | 30 | 0.688 | 0.535 | 0.587 | 0.007 | 0.430 | 0.907 | 2639 | 6635 |
C | RMSEA | ULSMV | 100 | ALL | 0.813 | 0.632 | 0.810 | 0.012 | 0.671 | 0.839 | 7529 | 19571 |
C | RMSEA | ULSMV | 100 | 5 | 0.829 | 0.667 | 0.830 | 0.017 | 0.700 | 0.826 | 2076 | 5570 |
C | RMSEA | ULSMV | 100 | 10 | 0.870 | 0.706 | 0.863 | 0.014 | 0.707 | 0.900 | 2619 | 6741 |
C | RMSEA | ULSMV | 100 | 30 | 0.789 | 0.584 | 0.715 | 0.006 | 0.574 | 0.924 | 2834 | 7260 |
C | RMSEA | ULSMV | 200 | ALL | 0.893 | 0.752 | 0.889 | 0.013 | 0.689 | 0.947 | 8422 | 21873 |
C | RMSEA | ULSMV | 200 | 5 | 0.896 | 0.737 | 0.895 | 0.015 | 0.784 | 0.907 | 2626 | 6898 |
C | RMSEA | ULSMV | 200 | 10 | 0.916 | 0.774 | 0.909 | 0.012 | 0.800 | 0.944 | 2873 | 7376 |
C | RMSEA | ULSMV | 200 | 30 | 0.926 | 0.807 | 0.925 | 0.006 | 0.805 | 0.929 | 2923 | 7599 |
C | RMSEA | WLSMV | ALL | ALL | 0.832 | 0.648 | 0.864 | 0.014 | 0.689 | 0.872 | 25977 | 66637 |
C | RMSEA | WLSMV | ALL | 5 | 0.820 | 0.655 | 0.837 | 0.019 | 0.719 | 0.819 | 7015 | 18523 |
C | RMSEA | WLSMV | ALL | 10 | 0.866 | 0.685 | 0.876 | 0.016 | 0.713 | 0.915 | 8785 | 22664 |
C | RMSEA | WLSMV | ALL | 30 | 0.839 | 0.625 | 0.804 | 0.008 | 0.672 | 0.936 | 10177 | 25450 |
C | RMSEA | WLSMV | 30 | ALL | 0.700 | 0.552 | 0.743 | 0.013 | 0.545 | 0.786 | 4654 | 12278 |
C | RMSEA | WLSMV | 30 | 5 | 0.674 | 0.558 | 0.679 | 0.021 | 0.614 | 0.652 | 1065 | 2886 |
C | RMSEA | WLSMV | 30 | 10 | 0.759 | 0.588 | 0.767 | 0.018 | 0.552 | 0.863 | 1524 | 4131 |
C | RMSEA | WLSMV | 30 | 30 | 0.694 | 0.537 | 0.573 | 0.008 | 0.446 | 0.895 | 2065 | 5261 |
C | RMSEA | WLSMV | 50 | ALL | 0.790 | 0.625 | 0.811 | 0.011 | 0.718 | 0.736 | 5850 | 15246 |
C | RMSEA | WLSMV | 50 | 5 | 0.743 | 0.595 | 0.747 | 0.020 | 0.644 | 0.727 | 1410 | 3851 |
C | RMSEA | WLSMV | 50 | 10 | 0.842 | 0.663 | 0.838 | 0.018 | 0.664 | 0.897 | 1981 | 5218 |
C | RMSEA | WLSMV | 50 | 30 | 0.821 | 0.612 | 0.782 | 0.009 | 0.617 | 0.934 | 2459 | 6177 |
C | RMSEA | WLSMV | 100 | ALL | 0.873 | 0.703 | 0.886 | 0.015 | 0.723 | 0.910 | 7200 | 18372 |
C | RMSEA | WLSMV | 100 | 5 | 0.858 | 0.690 | 0.863 | 0.021 | 0.673 | 0.914 | 1994 | 5241 |
C | RMSEA | WLSMV | 100 | 10 | 0.893 | 0.722 | 0.882 | 0.017 | 0.728 | 0.965 | 2473 | 6279 |
C | RMSEA | WLSMV | 100 | 30 | 0.889 | 0.706 | 0.859 | 0.009 | 0.737 | 0.972 | 2733 | 6852 |
C | RMSEA | WLSMV | 200 | ALL | 0.910 | 0.761 | 0.898 | 0.014 | 0.752 | 0.963 | 8273 | 20741 |
C | RMSEA | WLSMV | 200 | 5 | 0.904 | 0.742 | 0.895 | 0.017 | 0.771 | 0.961 | 2546 | 6545 |
C | RMSEA | WLSMV | 200 | 10 | 0.918 | 0.775 | 0.908 | 0.013 | 0.786 | 0.979 | 2807 | 7036 |
C | RMSEA | WLSMV | 200 | 30 | 0.930 | 0.806 | 0.919 | 0.006 | 0.811 | 0.965 | 2920 | 7160 |
C | SRMRW | ALL | ALL | ALL | 0.742 | 0.608 | 0.717 | 0.038 | 0.728 | 0.723 | 83510 | 223868 |
C | SRMRW | ALL | ALL | 5 | 0.685 | 0.606 | 0.673 | 0.046 | 0.741 | 0.581 | 23460 | 63082 |
C | SRMRW | ALL | ALL | 10 | 0.762 | 0.610 | 0.741 | 0.041 | 0.696 | 0.754 | 28208 | 75749 |
C | SRMRW | ALL | ALL | 30 | 0.812 | 0.605 | 0.792 | 0.035 | 0.661 | 0.940 | 31842 | 85037 |
C | SRMRW | ALL | 30 | ALL | 0.656 | 0.590 | 0.647 | 0.044 | 0.770 | 0.498 | 16157 | 43767 |
C | SRMRW | ALL | 30 | 5 | 0.620 | 0.554 | 0.617 | 0.072 | 0.702 | 0.479 | 3994 | 10825 |
C | SRMRW | ALL | 30 | 10 | 0.706 | 0.585 | 0.693 | 0.055 | 0.628 | 0.701 | 5297 | 14595 |
C | SRMRW | ALL | 30 | 30 | 0.779 | 0.593 | 0.754 | 0.039 | 0.661 | 0.872 | 6866 | 18347 |
C | SRMRW | ALL | 50 | ALL | 0.715 | 0.601 | 0.700 | 0.042 | 0.725 | 0.639 | 19330 | 52168 |
C | SRMRW | ALL | 50 | 5 | 0.685 | 0.578 | 0.681 | 0.062 | 0.642 | 0.635 | 5037 | 13894 |
C | SRMRW | ALL | 50 | 10 | 0.770 | 0.599 | 0.753 | 0.047 | 0.633 | 0.834 | 6490 | 17559 |
C | SRMRW | ALL | 50 | 30 | 0.805 | 0.596 | 0.790 | 0.035 | 0.668 | 0.926 | 7803 | 20715 |
C | SRMRW | ALL | 100 | ALL | 0.791 | 0.605 | 0.777 | 0.038 | 0.698 | 0.806 | 22743 | 60844 |
C | SRMRW | ALL | 100 | 5 | 0.782 | 0.608 | 0.775 | 0.048 | 0.655 | 0.809 | 6487 | 17448 |
C | SRMRW | ALL | 100 | 10 | 0.817 | 0.604 | 0.816 | 0.038 | 0.662 | 0.932 | 7852 | 20843 |
C | SRMRW | ALL | 100 | 30 | 0.822 | 0.601 | 0.832 | 0.032 | 0.664 | 0.973 | 8404 | 22553 |
C | SRMRW | ALL | 200 | ALL | 0.828 | 0.610 | 0.835 | 0.036 | 0.654 | 0.963 | 25280 | 67089 |
C | SRMRW | ALL | 200 | 5 | 0.830 | 0.620 | 0.841 | 0.040 | 0.649 | 0.950 | 7942 | 20915 |
C | SRMRW | ALL | 200 | 10 | 0.833 | 0.612 | 0.856 | 0.033 | 0.663 | 0.986 | 8569 | 22752 |
C | SRMRW | ALL | 200 | 30 | 0.830 | 0.608 | 0.849 | 0.024 | 0.679 | 0.982 | 8769 | 23422 |
C | SRMRW | MLR | ALL | ALL | 0.754 | 0.607 | 0.728 | 0.036 | 0.720 | 0.773 | 30018 | 85647 |
C | SRMRW | MLR | ALL | 5 | 0.698 | 0.613 | 0.694 | 0.040 | 0.779 | 0.564 | 8945 | 24572 |
C | SRMRW | MLR | ALL | 10 | 0.795 | 0.611 | 0.789 | 0.038 | 0.687 | 0.822 | 10090 | 28785 |
C | SRMRW | MLR | ALL | 30 | 0.832 | 0.611 | 0.840 | 0.031 | 0.661 | 0.998 | 10983 | 32290 |
C | SRMRW | MLR | 30 | ALL | 0.674 | 0.596 | 0.671 | 0.042 | 0.738 | 0.568 | 6295 | 17854 |
C | SRMRW | MLR | 30 | 5 | 0.704 | 0.569 | 0.707 | 0.071 | 0.486 | 0.827 | 1726 | 4739 |
C | SRMRW | MLR | 30 | 10 | 0.795 | 0.597 | 0.799 | 0.048 | 0.634 | 0.870 | 2054 | 5832 |
C | SRMRW | MLR | 30 | 30 | 0.826 | 0.604 | 0.834 | 0.033 | 0.652 | 0.999 | 2515 | 7283 |
C | SRMRW | MLR | 50 | ALL | 0.737 | 0.606 | 0.730 | 0.037 | 0.744 | 0.682 | 7124 | 20417 |
C | SRMRW | MLR | 50 | 5 | 0.768 | 0.597 | 0.774 | 0.056 | 0.571 | 0.855 | 2032 | 5724 |
C | SRMRW | MLR | 50 | 10 | 0.825 | 0.610 | 0.844 | 0.041 | 0.629 | 0.965 | 2387 | 6790 |
C | SRMRW | MLR | 50 | 30 | 0.831 | 0.609 | 0.833 | 0.029 | 0.660 | 1.000 | 2705 | 7903 |
C | SRMRW | MLR | 100 | ALL | 0.816 | 0.606 | 0.821 | 0.037 | 0.672 | 0.903 | 8014 | 22901 |
C | SRMRW | MLR | 100 | 5 | 0.831 | 0.625 | 0.846 | 0.043 | 0.632 | 0.956 | 2417 | 6637 |
C | SRMRW | MLR | 100 | 10 | 0.834 | 0.616 | 0.839 | 0.032 | 0.651 | 1.000 | 2760 | 7823 |
C | SRMRW | MLR | 100 | 30 | 0.835 | 0.615 | 0.837 | 0.025 | 0.664 | 1.000 | 2837 | 8441 |
C | SRMRW | MLR | 200 | ALL | 0.832 | 0.610 | 0.861 | 0.032 | 0.661 | 0.993 | 8585 | 24475 |
C | SRMRW | MLR | 200 | 5 | 0.850 | 0.640 | 0.868 | 0.032 | 0.667 | 0.980 | 2770 | 7472 |
C | SRMRW | MLR | 200 | 10 | 0.844 | 0.631 | 0.848 | 0.024 | 0.655 | 1.000 | 2889 | 8340 |
C | SRMRW | MLR | 200 | 30 | 0.840 | 0.623 | 0.842 | 0.013 | 0.664 | 1.000 | 2926 | 8663 |
C | SRMRW | ULSMV | ALL | ALL | 0.740 | 0.633 | 0.715 | 0.045 | 0.741 | 0.715 | 27515 | 71584 |
C | SRMRW | ULSMV | ALL | 5 | 0.672 | 0.615 | 0.660 | 0.050 | 0.788 | 0.539 | 7500 | 19987 |
C | SRMRW | ULSMV | ALL | 10 | 0.752 | 0.634 | 0.729 | 0.045 | 0.737 | 0.710 | 9333 | 24300 |
C | SRMRW | ULSMV | ALL | 30 | 0.819 | 0.644 | 0.789 | 0.042 | 0.675 | 0.904 | 10682 | 27297 |
C | SRMRW | ULSMV | 30 | ALL | 0.642 | 0.590 | 0.636 | 0.052 | 0.789 | 0.459 | 5208 | 13635 |
C | SRMRW | ULSMV | 30 | 5 | 0.607 | 0.537 | 0.604 | 0.096 | 0.586 | 0.578 | 1203 | 3200 |
C | SRMRW | ULSMV | 30 | 10 | 0.691 | 0.581 | 0.681 | 0.069 | 0.593 | 0.713 | 1719 | 4632 |
C | SRMRW | ULSMV | 30 | 30 | 0.758 | 0.595 | 0.734 | 0.047 | 0.697 | 0.773 | 2286 | 5803 |
C | SRMRW | ULSMV | 50 | ALL | 0.709 | 0.614 | 0.697 | 0.048 | 0.770 | 0.595 | 6356 | 16505 |
C | SRMRW | ULSMV | 50 | 5 | 0.690 | 0.573 | 0.686 | 0.075 | 0.620 | 0.666 | 1595 | 4319 |
C | SRMRW | ULSMV | 50 | 10 | 0.764 | 0.604 | 0.746 | 0.054 | 0.682 | 0.770 | 2122 | 5551 |
C | SRMRW | ULSMV | 50 | 30 | 0.812 | 0.606 | 0.791 | 0.042 | 0.702 | 0.879 | 2639 | 6635 |
C | SRMRW | ULSMV | 100 | ALL | 0.803 | 0.633 | 0.785 | 0.046 | 0.689 | 0.835 | 7529 | 19571 |
C | SRMRW | ULSMV | 100 | 5 | 0.791 | 0.609 | 0.783 | 0.056 | 0.666 | 0.818 | 2076 | 5570 |
C | SRMRW | ULSMV | 100 | 10 | 0.834 | 0.616 | 0.828 | 0.043 | 0.699 | 0.913 | 2619 | 6741 |
C | SRMRW | ULSMV | 100 | 30 | 0.846 | 0.614 | 0.849 | 0.035 | 0.706 | 0.942 | 2834 | 7260 |
C | SRMRW | ULSMV | 200 | ALL | 0.855 | 0.655 | 0.857 | 0.042 | 0.664 | 0.971 | 8422 | 21873 |
C | SRMRW | ULSMV | 200 | 5 | 0.843 | 0.619 | 0.852 | 0.043 | 0.709 | 0.935 | 2626 | 6898 |
C | SRMRW | ULSMV | 200 | 10 | 0.856 | 0.622 | 0.869 | 0.033 | 0.738 | 0.957 | 2873 | 7376 |
C | SRMRW | ULSMV | 200 | 30 | 0.860 | 0.622 | 0.877 | 0.024 | 0.778 | 0.947 | 2923 | 7599 |
C | SRMRW | WLSMV | ALL | ALL | 0.750 | 0.594 | 0.727 | 0.044 | 0.671 | 0.813 | 25977 | 66637 |
C | SRMRW | WLSMV | ALL | 5 | 0.696 | 0.604 | 0.687 | 0.048 | 0.747 | 0.610 | 7015 | 18523 |
C | SRMRW | WLSMV | ALL | 10 | 0.776 | 0.604 | 0.771 | 0.045 | 0.664 | 0.816 | 8785 | 22664 |
C | SRMRW | WLSMV | ALL | 30 | 0.806 | 0.598 | 0.821 | 0.039 | 0.600 | 0.997 | 10177 | 25450 |
C | SRMRW | WLSMV | 30 | ALL | 0.682 | 0.590 | 0.673 | 0.050 | 0.738 | 0.585 | 4654 | 12278 |
C | SRMRW | WLSMV | 30 | 5 | 0.679 | 0.556 | 0.680 | 0.085 | 0.562 | 0.714 | 1065 | 2886 |
C | SRMRW | WLSMV | 30 | 10 | 0.777 | 0.585 | 0.781 | 0.060 | 0.598 | 0.871 | 1524 | 4131 |
C | SRMRW | WLSMV | 30 | 30 | 0.805 | 0.590 | 0.814 | 0.042 | 0.597 | 0.999 | 2065 | 5261 |
C | SRMRW | WLSMV | 50 | ALL | 0.733 | 0.594 | 0.723 | 0.047 | 0.689 | 0.738 | 5850 | 15246 |
C | SRMRW | WLSMV | 50 | 5 | 0.745 | 0.581 | 0.748 | 0.069 | 0.557 | 0.834 | 1410 | 3851 |
C | SRMRW | WLSMV | 50 | 10 | 0.808 | 0.597 | 0.828 | 0.049 | 0.609 | 0.954 | 1981 | 5218 |
C | SRMRW | WLSMV | 50 | 30 | 0.811 | 0.597 | 0.814 | 0.037 | 0.603 | 1.000 | 2459 | 6177 |
C | SRMRW | WLSMV | 100 | ALL | 0.797 | 0.594 | 0.802 | 0.045 | 0.627 | 0.910 | 7200 | 18372 |
C | SRMRW | WLSMV | 100 | 5 | 0.812 | 0.606 | 0.824 | 0.052 | 0.590 | 0.951 | 1994 | 5241 |
C | SRMRW | WLSMV | 100 | 10 | 0.818 | 0.607 | 0.825 | 0.039 | 0.599 | 0.998 | 2473 | 6279 |
C | SRMRW | WLSMV | 100 | 30 | 0.818 | 0.608 | 0.821 | 0.024 | 0.600 | 1.000 | 2733 | 6852 |
C | SRMRW | WLSMV | 200 | ALL | 0.813 | 0.601 | 0.844 | 0.038 | 0.607 | 0.992 | 8273 | 20741 |
C | SRMRW | WLSMV | 200 | 5 | 0.833 | 0.621 | 0.851 | 0.038 | 0.635 | 0.974 | 2546 | 6545 |
C | SRMRW | WLSMV | 200 | 10 | 0.838 | 0.630 | 0.846 | 0.025 | 0.628 | 0.980 | 2807 | 7036 |
C | SRMRW | WLSMV | 200 | 30 | 0.833 | 0.628 | 0.838 | 0.015 | 0.604 | 0.992 | 2920 | 7160 |
C | SRMRB | ALL | ALL | ALL | 0.598 | 0.572 | 0.604 | 0.067 | 0.804 | 0.352 | 83510 | 223868 |
C | SRMRB | ALL | ALL | 5 | 0.567 | 0.550 | 0.570 | 0.074 | 0.808 | 0.307 | 23460 | 63082 |
C | SRMRB | ALL | ALL | 10 | 0.596 | 0.571 | 0.603 | 0.069 | 0.792 | 0.358 | 28208 | 75749 |
C | SRMRB | ALL | ALL | 30 | 0.630 | 0.592 | 0.640 | 0.063 | 0.793 | 0.404 | 31842 | 85037 |
C | SRMRB | ALL | 30 | ALL | 0.565 | 0.542 | 0.567 | 0.119 | 0.773 | 0.326 | 16157 | 43767 |
C | SRMRB | ALL | 30 | 5 | 0.541 | 0.516 | 0.538 | 0.151 | 0.644 | 0.426 | 3994 | 10825 |
C | SRMRB | ALL | 30 | 10 | 0.558 | 0.532 | 0.557 | 0.127 | 0.709 | 0.388 | 5297 | 14595 |
C | SRMRB | ALL | 30 | 30 | 0.598 | 0.564 | 0.603 | 0.110 | 0.798 | 0.353 | 6866 | 18347 |
C | SRMRB | ALL | 50 | ALL | 0.597 | 0.563 | 0.600 | 0.096 | 0.761 | 0.383 | 19330 | 52168 |
C | SRMRB | ALL | 50 | 5 | 0.562 | 0.526 | 0.559 | 0.123 | 0.589 | 0.511 | 5037 | 13894 |
C | SRMRB | ALL | 50 | 10 | 0.588 | 0.556 | 0.588 | 0.098 | 0.763 | 0.383 | 6490 | 17559 |
C | SRMRB | ALL | 50 | 30 | 0.645 | 0.595 | 0.654 | 0.086 | 0.799 | 0.406 | 7803 | 20715 |
C | SRMRB | ALL | 100 | ALL | 0.648 | 0.598 | 0.651 | 0.074 | 0.721 | 0.497 | 22743 | 60844 |
C | SRMRB | ALL | 100 | 5 | 0.596 | 0.556 | 0.592 | 0.088 | 0.663 | 0.494 | 6487 | 17448 |
C | SRMRB | ALL | 100 | 10 | 0.648 | 0.603 | 0.651 | 0.074 | 0.744 | 0.491 | 7852 | 20843 |
C | SRMRB | ALL | 100 | 30 | 0.715 | 0.639 | 0.734 | 0.067 | 0.757 | 0.530 | 8404 | 22553 |
C | SRMRB | ALL | 200 | ALL | 0.701 | 0.630 | 0.704 | 0.057 | 0.692 | 0.603 | 25280 | 67089 |
C | SRMRB | ALL | 200 | 5 | 0.644 | 0.590 | 0.640 | 0.066 | 0.693 | 0.546 | 7942 | 20915 |
C | SRMRB | ALL | 200 | 10 | 0.711 | 0.645 | 0.723 | 0.054 | 0.782 | 0.530 | 8569 | 22752 |
C | SRMRB | ALL | 200 | 30 | 0.778 | 0.676 | 0.805 | 0.054 | 0.634 | 0.742 | 8769 | 23422 |
C | SRMRB | MLR | ALL | ALL | 0.600 | 0.577 | 0.605 | 0.083 | 0.800 | 0.366 | 30018 | 85647 |
C | SRMRB | MLR | ALL | 5 | 0.573 | 0.563 | 0.579 | 0.093 | 0.808 | 0.325 | 8945 | 24572 |
C | SRMRB | MLR | ALL | 10 | 0.600 | 0.576 | 0.606 | 0.083 | 0.799 | 0.363 | 10090 | 28785 |
C | SRMRB | MLR | ALL | 30 | 0.636 | 0.597 | 0.645 | 0.082 | 0.746 | 0.460 | 10983 | 32290 |
C | SRMRB | MLR | 30 | ALL | 0.565 | 0.550 | 0.567 | 0.143 | 0.793 | 0.325 | 6295 | 17854 |
C | SRMRB | MLR | 30 | 5 | 0.541 | 0.526 | 0.540 | 0.171 | 0.717 | 0.371 | 1726 | 4739 |
C | SRMRB | MLR | 30 | 10 | 0.564 | 0.545 | 0.564 | 0.149 | 0.753 | 0.365 | 2054 | 5832 |
C | SRMRB | MLR | 30 | 30 | 0.608 | 0.579 | 0.612 | 0.135 | 0.799 | 0.378 | 2515 | 7283 |
C | SRMRB | MLR | 50 | ALL | 0.610 | 0.575 | 0.610 | 0.119 | 0.744 | 0.435 | 7124 | 20417 |
C | SRMRB | MLR | 50 | 5 | 0.579 | 0.548 | 0.577 | 0.140 | 0.678 | 0.464 | 2032 | 5724 |
C | SRMRB | MLR | 50 | 10 | 0.611 | 0.581 | 0.610 | 0.121 | 0.747 | 0.454 | 2387 | 6790 |
C | SRMRB | MLR | 50 | 30 | 0.664 | 0.608 | 0.669 | 0.110 | 0.757 | 0.487 | 2705 | 7903 |
C | SRMRB | MLR | 100 | ALL | 0.673 | 0.617 | 0.671 | 0.093 | 0.681 | 0.583 | 8014 | 22901 |
C | SRMRB | MLR | 100 | 5 | 0.633 | 0.594 | 0.629 | 0.102 | 0.726 | 0.523 | 2417 | 6637 |
C | SRMRB | MLR | 100 | 10 | 0.678 | 0.631 | 0.675 | 0.086 | 0.806 | 0.491 | 2760 | 7823 |
C | SRMRB | MLR | 100 | 30 | 0.746 | 0.656 | 0.766 | 0.084 | 0.723 | 0.612 | 2837 | 8441 |
C | SRMRB | MLR | 200 | ALL | 0.732 | 0.657 | 0.732 | 0.069 | 0.708 | 0.646 | 8585 | 24475 |
C | SRMRB | MLR | 200 | 5 | 0.686 | 0.643 | 0.682 | 0.074 | 0.779 | 0.543 | 2770 | 7472 |
C | SRMRB | MLR | 200 | 10 | 0.741 | 0.675 | 0.755 | 0.066 | 0.782 | 0.580 | 2889 | 8340 |
C | SRMRB | MLR | 200 | 30 | 0.819 | 0.709 | 0.841 | 0.064 | 0.678 | 0.762 | 2926 | 8663 |
C | SRMRB | ULSMV | ALL | ALL | 0.595 | 0.580 | 0.606 | 0.056 | 0.838 | 0.324 | 27515 | 71584 |
C | SRMRB | ULSMV | ALL | 5 | 0.563 | 0.555 | 0.570 | 0.064 | 0.817 | 0.300 | 7500 | 19987 |
C | SRMRB | ULSMV | ALL | 10 | 0.594 | 0.580 | 0.605 | 0.055 | 0.852 | 0.309 | 9333 | 24300 |
C | SRMRB | ULSMV | ALL | 30 | 0.626 | 0.601 | 0.637 | 0.054 | 0.800 | 0.403 | 10682 | 27297 |
C | SRMRB | ULSMV | 30 | ALL | 0.567 | 0.549 | 0.573 | 0.106 | 0.734 | 0.381 | 5208 | 13635 |
C | SRMRB | ULSMV | 30 | 5 | 0.545 | 0.517 | 0.544 | 0.141 | 0.474 | 0.603 | 1203 | 3200 |
C | SRMRB | ULSMV | 30 | 10 | 0.562 | 0.535 | 0.561 | 0.108 | 0.716 | 0.403 | 1719 | 4632 |
C | SRMRB | ULSMV | 30 | 30 | 0.593 | 0.578 | 0.601 | 0.096 | 0.772 | 0.400 | 2286 | 5803 |
C | SRMRB | ULSMV | 50 | ALL | 0.596 | 0.576 | 0.604 | 0.081 | 0.795 | 0.366 | 6356 | 16505 |
C | SRMRB | ULSMV | 50 | 5 | 0.557 | 0.531 | 0.555 | 0.104 | 0.593 | 0.507 | 1595 | 4319 |
C | SRMRB | ULSMV | 50 | 10 | 0.591 | 0.566 | 0.593 | 0.086 | 0.747 | 0.425 | 2122 | 5551 |
C | SRMRB | ULSMV | 50 | 30 | 0.640 | 0.620 | 0.653 | 0.072 | 0.848 | 0.394 | 2639 | 6635 |
C | SRMRB | ULSMV | 100 | ALL | 0.649 | 0.620 | 0.655 | 0.060 | 0.843 | 0.398 | 7529 | 19571 |
C | SRMRB | ULSMV | 100 | 5 | 0.597 | 0.569 | 0.595 | 0.074 | 0.715 | 0.464 | 2076 | 5570 |
C | SRMRB | ULSMV | 100 | 10 | 0.652 | 0.634 | 0.656 | 0.063 | 0.796 | 0.489 | 2619 | 6741 |
C | SRMRB | ULSMV | 100 | 30 | 0.710 | 0.673 | 0.731 | 0.053 | 0.895 | 0.441 | 2834 | 7260 |
C | SRMRB | ULSMV | 200 | ALL | 0.701 | 0.656 | 0.707 | 0.047 | 0.793 | 0.516 | 8422 | 21873 |
C | SRMRB | ULSMV | 200 | 5 | 0.646 | 0.614 | 0.644 | 0.053 | 0.797 | 0.462 | 2626 | 6898 |
C | SRMRB | ULSMV | 200 | 10 | 0.714 | 0.685 | 0.727 | 0.044 | 0.876 | 0.492 | 2873 | 7376 |
C | SRMRB | ULSMV | 200 | 30 | 0.779 | 0.713 | 0.808 | 0.038 | 0.935 | 0.467 | 2923 | 7599 |
C | SRMRB | WLSMV | ALL | ALL | 0.601 | 0.578 | 0.609 | 0.062 | 0.822 | 0.345 | 25977 | 66637 |
C | SRMRB | WLSMV | ALL | 5 | 0.570 | 0.558 | 0.576 | 0.069 | 0.823 | 0.302 | 7015 | 18523 |
C | SRMRB | WLSMV | ALL | 10 | 0.598 | 0.577 | 0.606 | 0.063 | 0.818 | 0.342 | 8785 | 22664 |
C | SRMRB | WLSMV | ALL | 30 | 0.631 | 0.596 | 0.640 | 0.060 | 0.798 | 0.407 | 10177 | 25450 |
C | SRMRB | WLSMV | 30 | ALL | 0.576 | 0.551 | 0.579 | 0.117 | 0.793 | 0.325 | 4654 | 12278 |
C | SRMRB | WLSMV | 30 | 5 | 0.551 | 0.518 | 0.548 | 0.152 | 0.538 | 0.555 | 1065 | 2886 |
C | SRMRB | WLSMV | 30 | 10 | 0.573 | 0.541 | 0.570 | 0.122 | 0.736 | 0.391 | 1524 | 4131 |
C | SRMRB | WLSMV | 30 | 30 | 0.608 | 0.577 | 0.614 | 0.109 | 0.822 | 0.356 | 2065 | 5261 |
C | SRMRB | WLSMV | 50 | ALL | 0.613 | 0.579 | 0.618 | 0.096 | 0.730 | 0.450 | 5850 | 15246 |
C | SRMRB | WLSMV | 50 | 5 | 0.576 | 0.534 | 0.573 | 0.112 | 0.642 | 0.483 | 1410 | 3851 |
C | SRMRB | WLSMV | 50 | 10 | 0.598 | 0.567 | 0.598 | 0.096 | 0.774 | 0.409 | 1981 | 5218 |
C | SRMRB | WLSMV | 50 | 30 | 0.671 | 0.620 | 0.681 | 0.086 | 0.819 | 0.438 | 2459 | 6177 |
C | SRMRB | WLSMV | 100 | ALL | 0.670 | 0.621 | 0.670 | 0.071 | 0.728 | 0.534 | 7200 | 18372 |
C | SRMRB | WLSMV | 100 | 5 | 0.608 | 0.573 | 0.603 | 0.080 | 0.736 | 0.462 | 1994 | 5241 |
C | SRMRB | WLSMV | 100 | 10 | 0.668 | 0.627 | 0.667 | 0.072 | 0.755 | 0.530 | 2473 | 6279 |
C | SRMRB | WLSMV | 100 | 30 | 0.754 | 0.674 | 0.774 | 0.064 | 0.795 | 0.558 | 2733 | 6852 |
C | SRMRB | WLSMV | 200 | ALL | 0.723 | 0.651 | 0.722 | 0.054 | 0.699 | 0.643 | 8273 | 20741 |
C | SRMRB | WLSMV | 200 | 5 | 0.661 | 0.616 | 0.657 | 0.061 | 0.727 | 0.548 | 2546 | 6545 |
C | SRMRB | WLSMV | 200 | 10 | 0.736 | 0.673 | 0.745 | 0.052 | 0.795 | 0.577 | 2807 | 7036 |
C | SRMRB | WLSMV | 200 | 30 | 0.814 | 0.707 | 0.838 | 0.048 | 0.735 | 0.698 | 2920 | 7160 |
j <- 2 ## Which class?
for(index in INDEX){
## Print out which iteration so we know what we am looking at
cat('\n\nROC Analysis in')
cat('\nIndex:\t', index)
cat('\nClassification:\t', CLASS[j])
## Set up iteration key
key <- paste0(index,'.',CLASS[j])
## Create formula
model <- as.formula(paste0(CLASS[j], '~', index))
## Fit ROC curve
fit_roc[[key]] <- roc(model, data=sim_results, quiet=T,
plot =TRUE, ci=TRUE, print.auc=TRUE)
## Create a plot of "smoothed" curve for plotting
fit_roc_smooth[[key]] <- smooth(roc(model, data=sim_results))
## Compute partial AUC for specificity .8-1
p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
partial.auc.focus = 'sp', partial.auc.correct = T)
## get summary info
roc_summary_gen[ig, 2] <- index
roc_summary_gen[ig, 1] <- CLASS[j]
roc_summary_gen[ig, 3] <- fit_roc[[key]]$auc ## total AUC
roc_summary_gen[ig, 4] <- p.auc ## corrected partial AUC (.5 is no discrimination)
roc_summary_gen[ig, 5] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
roc_summary_gen[ig, 6:8] <- coords(fit_roc[[key]], "best",
ret=c("threshold", "specificity", 'sensitivity'),
transpose=TRUE)
## print summary
cat('\n\nSummary of ROC:\n')
print(roc_summary_gen[ig, ])
## add to summary iterator
ig <- ig + 1
} ## End loop round index
ROC Analysis in
Index: CFI
Classification: CvM1
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
6 CvM1 CFI 0.8942411 0.7896568 0.9008448
Optimal-Threshold Specificity Sensitivity
6 0.9707385 0.8682327 0.883183
ROC Analysis in
Index: TLI
Classification: CvM1
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
7 CvM1 TLI 0.8942411 0.7896568 0.9008143
Optimal-Threshold Specificity Sensitivity
7 0.9648862 0.8682327 0.883183
ROC Analysis in
Index: RMSEA
Classification: CvM1
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
8 CvM1 RMSEA 0.8776767 0.7534801 0.8844573
Optimal-Threshold Specificity Sensitivity
8 0.0169548 0.8114027 0.8589859
ROC Analysis in
Index: SRMRW
Classification: CvM1
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
9 CvM1 SRMRW 0.8725866 0.869644 0.8879885
Optimal-Threshold Specificity Sensitivity
9 0.03824319 0.9745978 0.7240689
ROC Analysis in
Index: SRMRB
Classification: CvM1
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
10 CvM1 SRMRB 0.5373652 0.5405211 0.5473238
Optimal-Threshold Specificity Sensitivity
10 0.05688385 0.8393742 0.2433847
kable(roc_summary_gen[1:5,], format = 'html', digits=3) %>%
kable_styling(full_width = T)
Classification | Index | AUC | partial-AUC | Smoothed-AUC | Optimal-Threshold | Specificity | Sensitivity |
---|---|---|---|---|---|---|---|
C | CFI | 0.816 | 0.637 | 0.846 | 0.977 | 0.702 | 0.855 |
C | TLI | 0.815 | 0.637 | 0.845 | 0.972 | 0.702 | 0.855 |
C | RMSEA | 0.803 | 0.635 | 0.830 | 0.015 | 0.685 | 0.829 |
C | SRMRW | 0.742 | 0.608 | 0.717 | 0.038 | 0.728 | 0.723 |
C | SRMRB | 0.598 | 0.572 | 0.604 | 0.067 | 0.804 | 0.352 |
print(xtable(roc_summary_gen[1:5,c(2:3,6:8)], digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:34:55 2019
\begin{table}[ht]
\centering
\begin{tabular}{lrrrr}
\toprule
Index & AUC & Optimal-Threshold & Specificity & Sensitivity \\
\midrule
CFI & 0.816 & 0.977 & 0.702 & 0.855 \\
TLI & 0.815 & 0.972 & 0.702 & 0.855 \\
RMSEA & 0.803 & 0.015 & 0.685 & 0.829 \\
SRMRW & 0.742 & 0.038 & 0.728 & 0.723 \\
SRMRB & 0.598 & 0.067 & 0.804 & 0.352 \\
\bottomrule
\end{tabular}
\end{table}
i <- 401
j <- 2 ## Which class?
for(index in INDEX){
for(est in EST){
for(s2 in SS_L2){
for(s1 in SS_L1){
## Print out which iteration so we know what we are looking at
#cat('\n\nROC Analysis in')
#cat('\nIndex:\t', index)
#cat('\nClassification:\t', CLASS[j])
#cat('\nEstimation Method:\t', est)
#cat('\nLevel-2 Sample Size:\t', s2)
#cat('\nLevel-1 Sample Size:\t', s1)
## Set up iteration key
key <- paste0(index,'.',CLASS[j],'.',est,'.', s2,'.',s1)
# Subset data as needed
if(est == 'ALL' & s2 == 'ALL' & s1 == 'ALL') mydata <- sim_results
if(est != 'ALL' & s2 == 'ALL' & s1 == 'ALL'){
mydata <- filter(sim_results, Estimator == est)
}
if(est == 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
mydata <- filter(sim_results, ss_l2 == s2)
}
if(est == 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, ss_l1 == s1)
}
if(est != 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
mydata <- filter(sim_results, Estimator == est, ss_l2 == s2)
}
if(est != 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, Estimator == est, ss_l1 == s1)
}
if(est == 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, ss_l2 == s2, ss_l1 == s1)
}
if(est != 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, Estimator == est, ss_l2 == s2, ss_l1 == s1)
}
## Create formula
model <- as.formula(paste0(CLASS[j], '~', index))
## Fit ROC curve
fit_roc[[key]] <- roc(model, data=mydata,quiet=T,
plot =F, ci=TRUE, print.auc=TRUE)
## Create a plot of "smoothed" curve for plotting
fit_roc_smooth[[key]] <- tryCatch(smooth(roc(model, data=mydata)),
error = function(e) NA)
## Compute partial AUC for specificity .8-1
p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
partial.auc.focus = 'sp', partial.auc.correct = T)
## get summary info
roc_summary[i, 2] <- index
roc_summary[i, 1] <- CLASS[j]
roc_summary[i, 3] <- est ##estimator
roc_summary[i, 4] <- s2 ## level-2 sample size
roc_summary[i, 5] <- s1 ## level-1 sample size
roc_summary[i, 6] <- fit_roc[[key]]$auc ## total AUC
roc_summary[i, 7] <- p.auc ## corrected partial AUC (.5 is no discrimination)
if(is.na(fit_roc_smooth[[key]]) == T){
roc_summary[i, 8] <- NA
} else {
roc_summary[i, 8] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
}
roc_summary[i, 9:11] <- coords(fit_roc[[key]], "best",
ret=c("threshold", "specificity", 'sensitivity'),
transpose=TRUE)
## add number of C and number of miss models in analysis
n.C <- nrow(mydata[ mydata[, CLASS[j]] == 1, ])
n.M <- nrow(mydata[ mydata[, CLASS[j]] == 0, ])
roc_summary[i, 12] <- n.C
roc_summary[i, 13] <- n.M
## print summary
#cat('\n\nSummary of ROC:\n')
#print(roc_summary[i, ])
## add to summary iterator
i <- i + 1
} ## end loop around ss l1
} ## End loop around ss l2
} ## End loop around estimator
} ## End loop round index
kable(roc_summary[401:800, ], format = 'html', digits=3) %>%
kable_styling(full_width = T)
Classification | Index | Estimator | Level-2 SS | Level-1 SS | AUC | partial-AUC | Smoothed-AUC | Threshold | Specificity | Sensitivity | Num-C | Num-Mis | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401 | CvM1 | CFI | ALL | ALL | ALL | 0.894 | 0.790 | 0.901 | 0.971 | 0.868 | 0.883 | 241960 | 223868 |
402 | CvM1 | CFI | ALL | ALL | 5 | 0.846 | 0.769 | 0.846 | 0.968 | 0.868 | 0.766 | 68483 | 63082 |
403 | CvM1 | CFI | ALL | ALL | 10 | 0.927 | 0.855 | 0.922 | 0.968 | 0.902 | 0.889 | 81868 | 75749 |
404 | CvM1 | CFI | ALL | ALL | 30 | 0.908 | 0.745 | 0.912 | 0.976 | 0.836 | 0.976 | 91609 | 85037 |
405 | CvM1 | CFI | ALL | 30 | ALL | 0.739 | 0.572 | 0.770 | 0.963 | 0.692 | 0.761 | 47053 | 43767 |
406 | CvM1 | CFI | ALL | 30 | 5 | 0.661 | 0.561 | 0.666 | 0.921 | 0.619 | 0.633 | 11584 | 10825 |
407 | CvM1 | CFI | ALL | 30 | 10 | 0.773 | 0.612 | 0.787 | 0.952 | 0.675 | 0.769 | 15551 | 14595 |
408 | CvM1 | CFI | ALL | 30 | 30 | 0.783 | 0.558 | 0.742 | 0.965 | 0.627 | 0.969 | 19918 | 18347 |
409 | CvM1 | CFI | ALL | 50 | ALL | 0.851 | 0.702 | 0.867 | 0.970 | 0.808 | 0.826 | 56136 | 52168 |
410 | CvM1 | CFI | ALL | 50 | 5 | 0.770 | 0.636 | 0.775 | 0.961 | 0.763 | 0.654 | 14818 | 13894 |
411 | CvM1 | CFI | ALL | 50 | 10 | 0.905 | 0.795 | 0.903 | 0.959 | 0.817 | 0.887 | 18954 | 17559 |
412 | CvM1 | CFI | ALL | 50 | 30 | 0.878 | 0.663 | 0.874 | 0.980 | 0.784 | 0.981 | 22364 | 20715 |
413 | CvM1 | CFI | ALL | 100 | ALL | 0.950 | 0.878 | 0.950 | 0.971 | 0.909 | 0.933 | 65882 | 60844 |
414 | CvM1 | CFI | ALL | 100 | 5 | 0.926 | 0.842 | 0.923 | 0.967 | 0.867 | 0.847 | 18983 | 17448 |
415 | CvM1 | CFI | ALL | 100 | 10 | 0.982 | 0.961 | 0.973 | 0.971 | 0.956 | 0.959 | 22711 | 20843 |
416 | CvM1 | CFI | ALL | 100 | 30 | 0.938 | 0.827 | 0.930 | 0.982 | 0.894 | 0.995 | 24188 | 22553 |
417 | CvM1 | CFI | ALL | 200 | ALL | 0.997 | 0.993 | 0.994 | 0.975 | 0.982 | 0.979 | 72889 | 67089 |
418 | CvM1 | CFI | ALL | 200 | 5 | 0.993 | 0.985 | 0.989 | 0.971 | 0.970 | 0.967 | 23098 | 20915 |
419 | CvM1 | CFI | ALL | 200 | 10 | 0.999 | 0.998 | 0.999 | 0.970 | 0.992 | 0.990 | 24652 | 22752 |
420 | CvM1 | CFI | ALL | 200 | 30 | 0.998 | 0.995 | 0.998 | 0.987 | 0.991 | 0.992 | 25139 | 23422 |
421 | CvM1 | CFI | MLR | ALL | ALL | 0.932 | 0.922 | 0.919 | 0.956 | 0.948 | 0.873 | 89822 | 85647 |
422 | CvM1 | CFI | MLR | ALL | 5 | 0.832 | 0.799 | 0.832 | 0.963 | 0.907 | 0.704 | 26722 | 24572 |
423 | CvM1 | CFI | MLR | ALL | 10 | 0.947 | 0.929 | 0.940 | 0.956 | 0.955 | 0.866 | 30195 | 28785 |
424 | CvM1 | CFI | MLR | ALL | 30 | 1.000 | 0.999 | 1.000 | 0.956 | 0.995 | 0.993 | 32905 | 32290 |
425 | CvM1 | CFI | MLR | 30 | ALL | 0.829 | 0.798 | 0.822 | 0.944 | 0.918 | 0.684 | 18778 | 17854 |
426 | CvM1 | CFI | MLR | 30 | 5 | 0.699 | 0.597 | 0.698 | 0.889 | 0.722 | 0.582 | 5086 | 4739 |
427 | CvM1 | CFI | MLR | 30 | 10 | 0.860 | 0.751 | 0.858 | 0.919 | 0.751 | 0.811 | 6138 | 5832 |
428 | CvM1 | CFI | MLR | 30 | 30 | 0.998 | 0.995 | 0.998 | 0.949 | 0.973 | 0.987 | 7554 | 7283 |
429 | CvM1 | CFI | MLR | 50 | ALL | 0.926 | 0.882 | 0.914 | 0.955 | 0.921 | 0.842 | 21335 | 20417 |
430 | CvM1 | CFI | MLR | 50 | 5 | 0.795 | 0.669 | 0.795 | 0.929 | 0.681 | 0.762 | 6083 | 5724 |
431 | CvM1 | CFI | MLR | 50 | 10 | 0.961 | 0.910 | 0.959 | 0.953 | 0.907 | 0.886 | 7170 | 6790 |
432 | CvM1 | CFI | MLR | 50 | 30 | 1.000 | 1.000 | 1.000 | 0.966 | 0.998 | 1.000 | 8082 | 7903 |
433 | CvM1 | CFI | MLR | 100 | ALL | 0.990 | 0.977 | 0.984 | 0.962 | 0.959 | 0.960 | 24013 | 22901 |
434 | CvM1 | CFI | MLR | 100 | 5 | 0.946 | 0.877 | 0.946 | 0.959 | 0.847 | 0.903 | 7258 | 6637 |
435 | CvM1 | CFI | MLR | 100 | 10 | 0.999 | 0.998 | 0.999 | 0.966 | 0.988 | 0.991 | 8237 | 7823 |
436 | CvM1 | CFI | MLR | 100 | 30 | 1.000 | 1.000 | NA | 0.967 | 1.000 | 1.000 | 8518 | 8441 |
437 | CvM1 | CFI | MLR | 200 | ALL | 1.000 | 0.999 | 1.000 | 0.969 | 0.994 | 0.995 | 25696 | 24475 |
438 | CvM1 | CFI | MLR | 200 | 5 | 0.998 | 0.995 | 0.998 | 0.971 | 0.985 | 0.981 | 8295 | 7472 |
439 | CvM1 | CFI | MLR | 200 | 10 | 1.000 | 1.000 | NA | 0.968 | 1.000 | 1.000 | 8650 | 8340 |
440 | CvM1 | CFI | MLR | 200 | 30 | 1.000 | 1.000 | NA | 0.969 | 1.000 | 1.000 | 8751 | 8663 |
441 | CvM1 | CFI | ULSMV | ALL | ALL | 0.822 | 0.620 | 0.871 | 0.977 | 0.750 | 0.874 | 77713 | 71584 |
442 | CvM1 | CFI | ULSMV | ALL | 5 | 0.819 | 0.697 | 0.835 | 0.967 | 0.789 | 0.793 | 21448 | 19987 |
443 | CvM1 | CFI | ULSMV | ALL | 10 | 0.873 | 0.723 | 0.892 | 0.970 | 0.810 | 0.888 | 26416 | 24300 |
444 | CvM1 | CFI | ULSMV | ALL | 30 | 0.792 | 0.572 | 0.793 | 0.987 | 0.643 | 0.975 | 29849 | 27297 |
445 | CvM1 | CFI | ULSMV | 30 | ALL | 0.649 | 0.529 | 0.751 | 0.979 | 0.482 | 0.830 | 14727 | 13635 |
446 | CvM1 | CFI | ULSMV | 30 | 5 | 0.627 | 0.536 | 0.649 | 0.967 | 0.606 | 0.622 | 3399 | 3200 |
447 | CvM1 | CFI | ULSMV | 30 | 10 | 0.691 | 0.543 | 0.760 | 0.978 | 0.559 | 0.795 | 4926 | 4632 |
448 | CvM1 | CFI | ULSMV | 30 | 30 | 0.631 | 0.519 | 0.515 | 0.987 | 0.337 | 0.976 | 6402 | 5803 |
449 | CvM1 | CFI | ULSMV | 50 | ALL | 0.735 | 0.562 | 0.799 | 0.972 | 0.613 | 0.834 | 17918 | 16505 |
450 | CvM1 | CFI | ULSMV | 50 | 5 | 0.713 | 0.586 | 0.727 | 0.962 | 0.667 | 0.670 | 4573 | 4319 |
451 | CvM1 | CFI | ULSMV | 50 | 10 | 0.813 | 0.644 | 0.837 | 0.971 | 0.748 | 0.803 | 6038 | 5551 |
452 | CvM1 | CFI | ULSMV | 50 | 30 | 0.701 | 0.535 | 0.674 | 0.988 | 0.482 | 0.977 | 7307 | 6635 |
453 | CvM1 | CFI | ULSMV | 100 | ALL | 0.875 | 0.711 | 0.901 | 0.971 | 0.781 | 0.905 | 21277 | 19571 |
454 | CvM1 | CFI | ULSMV | 100 | 5 | 0.880 | 0.768 | 0.884 | 0.967 | 0.809 | 0.813 | 5969 | 5570 |
455 | CvM1 | CFI | ULSMV | 100 | 10 | 0.946 | 0.885 | 0.943 | 0.970 | 0.885 | 0.908 | 7390 | 6741 |
456 | CvM1 | CFI | ULSMV | 100 | 30 | 0.823 | 0.596 | 0.789 | 0.984 | 0.674 | 0.982 | 7918 | 7260 |
457 | CvM1 | CFI | ULSMV | 200 | ALL | 0.989 | 0.973 | 0.986 | 0.975 | 0.954 | 0.956 | 23791 | 21873 |
458 | CvM1 | CFI | ULSMV | 200 | 5 | 0.983 | 0.961 | 0.979 | 0.968 | 0.934 | 0.944 | 7507 | 6898 |
459 | CvM1 | CFI | ULSMV | 200 | 10 | 0.996 | 0.991 | 0.996 | 0.970 | 0.977 | 0.971 | 8062 | 7376 |
460 | CvM1 | CFI | ULSMV | 200 | 30 | 0.993 | 0.981 | 0.993 | 0.987 | 0.972 | 0.975 | 8222 | 7599 |
461 | CvM1 | CFI | WLSMV | ALL | ALL | 0.945 | 0.877 | 0.947 | 0.977 | 0.906 | 0.923 | 74425 | 66637 |
462 | CvM1 | CFI | WLSMV | ALL | 5 | 0.910 | 0.831 | 0.906 | 0.970 | 0.882 | 0.850 | 20313 | 18523 |
463 | CvM1 | CFI | WLSMV | ALL | 10 | 0.977 | 0.943 | 0.970 | 0.973 | 0.934 | 0.953 | 25257 | 22664 |
464 | CvM1 | CFI | WLSMV | ALL | 30 | 0.950 | 0.862 | 0.939 | 0.988 | 0.898 | 0.992 | 28855 | 25450 |
465 | CvM1 | CFI | WLSMV | 30 | ALL | 0.804 | 0.632 | 0.844 | 0.983 | 0.732 | 0.811 | 13548 | 12278 |
466 | CvM1 | CFI | WLSMV | 30 | 5 | 0.734 | 0.600 | 0.738 | 0.930 | 0.513 | 0.839 | 3099 | 2886 |
467 | CvM1 | CFI | WLSMV | 30 | 10 | 0.886 | 0.765 | 0.894 | 0.981 | 0.835 | 0.804 | 4487 | 4131 |
468 | CvM1 | CFI | WLSMV | 30 | 30 | 0.801 | 0.584 | 0.723 | 0.986 | 0.612 | 0.979 | 5962 | 5261 |
469 | CvM1 | CFI | WLSMV | 50 | ALL | 0.926 | 0.851 | 0.930 | 0.980 | 0.884 | 0.849 | 16883 | 15246 |
470 | CvM1 | CFI | WLSMV | 50 | 5 | 0.836 | 0.698 | 0.840 | 0.964 | 0.767 | 0.769 | 4162 | 3851 |
471 | CvM1 | CFI | WLSMV | 50 | 10 | 0.972 | 0.930 | 0.971 | 0.972 | 0.914 | 0.916 | 5746 | 5218 |
472 | CvM1 | CFI | WLSMV | 50 | 30 | 0.972 | 0.922 | 0.969 | 0.991 | 0.920 | 0.977 | 6975 | 6177 |
473 | CvM1 | CFI | WLSMV | 100 | ALL | 0.992 | 0.981 | 0.988 | 0.972 | 0.965 | 0.965 | 20592 | 18372 |
474 | CvM1 | CFI | WLSMV | 100 | 5 | 0.960 | 0.905 | 0.960 | 0.969 | 0.890 | 0.904 | 5756 | 5241 |
475 | CvM1 | CFI | WLSMV | 100 | 10 | 0.999 | 0.998 | 0.999 | 0.973 | 0.987 | 0.994 | 7084 | 6279 |
476 | CvM1 | CFI | WLSMV | 100 | 30 | 1.000 | 1.000 | NA | 0.984 | 1.000 | 1.000 | 7752 | 6852 |
477 | CvM1 | CFI | WLSMV | 200 | ALL | 1.000 | 1.000 | 1.000 | 0.971 | 0.994 | 0.996 | 23402 | 20741 |
478 | CvM1 | CFI | WLSMV | 200 | 5 | 0.999 | 0.997 | 0.999 | 0.971 | 0.983 | 0.988 | 7296 | 6545 |
479 | CvM1 | CFI | WLSMV | 200 | 10 | 1.000 | 1.000 | NA | 0.977 | 1.000 | 1.000 | 7940 | 7036 |
480 | CvM1 | CFI | WLSMV | 200 | 30 | 1.000 | 1.000 | NA | 0.979 | 1.000 | 1.000 | 8166 | 7160 |
481 | CvM1 | TLI | ALL | ALL | ALL | 0.894 | 0.790 | 0.901 | 0.965 | 0.868 | 0.883 | 241960 | 223868 |
482 | CvM1 | TLI | ALL | ALL | 5 | 0.846 | 0.769 | 0.846 | 0.962 | 0.868 | 0.766 | 68483 | 63082 |
483 | CvM1 | TLI | ALL | ALL | 10 | 0.927 | 0.855 | 0.922 | 0.961 | 0.902 | 0.889 | 81868 | 75749 |
484 | CvM1 | TLI | ALL | ALL | 30 | 0.908 | 0.745 | 0.912 | 0.972 | 0.836 | 0.976 | 91609 | 85037 |
485 | CvM1 | TLI | ALL | 30 | ALL | 0.739 | 0.572 | 0.770 | 0.955 | 0.692 | 0.761 | 47053 | 43767 |
486 | CvM1 | TLI | ALL | 30 | 5 | 0.661 | 0.561 | 0.666 | 0.906 | 0.619 | 0.633 | 11584 | 10825 |
487 | CvM1 | TLI | ALL | 30 | 10 | 0.773 | 0.612 | 0.787 | 0.942 | 0.675 | 0.769 | 15551 | 14595 |
488 | CvM1 | TLI | ALL | 30 | 30 | 0.783 | 0.558 | 0.742 | 0.958 | 0.627 | 0.969 | 19918 | 18347 |
489 | CvM1 | TLI | ALL | 50 | ALL | 0.851 | 0.702 | 0.867 | 0.964 | 0.808 | 0.826 | 56136 | 52168 |
490 | CvM1 | TLI | ALL | 50 | 5 | 0.770 | 0.636 | 0.775 | 0.953 | 0.763 | 0.654 | 14818 | 13894 |
491 | CvM1 | TLI | ALL | 50 | 10 | 0.905 | 0.795 | 0.903 | 0.951 | 0.817 | 0.887 | 18954 | 17559 |
492 | CvM1 | TLI | ALL | 50 | 30 | 0.878 | 0.663 | 0.874 | 0.976 | 0.784 | 0.981 | 22364 | 20715 |
493 | CvM1 | TLI | ALL | 100 | ALL | 0.950 | 0.878 | 0.950 | 0.965 | 0.909 | 0.933 | 65882 | 60844 |
494 | CvM1 | TLI | ALL | 100 | 5 | 0.926 | 0.842 | 0.923 | 0.960 | 0.867 | 0.847 | 18983 | 17448 |
495 | CvM1 | TLI | ALL | 100 | 10 | 0.982 | 0.961 | 0.973 | 0.965 | 0.956 | 0.959 | 22711 | 20843 |
496 | CvM1 | TLI | ALL | 100 | 30 | 0.938 | 0.827 | 0.930 | 0.978 | 0.894 | 0.995 | 24188 | 22553 |
497 | CvM1 | TLI | ALL | 200 | ALL | 0.997 | 0.993 | 0.994 | 0.970 | 0.982 | 0.979 | 72889 | 67089 |
498 | CvM1 | TLI | ALL | 200 | 5 | 0.993 | 0.985 | 0.989 | 0.965 | 0.970 | 0.967 | 23098 | 20915 |
499 | CvM1 | TLI | ALL | 200 | 10 | 0.999 | 0.998 | 0.999 | 0.964 | 0.992 | 0.990 | 24652 | 22752 |
500 | CvM1 | TLI | ALL | 200 | 30 | 0.998 | 0.995 | 0.998 | 0.985 | 0.991 | 0.992 | 25139 | 23422 |
501 | CvM1 | TLI | MLR | ALL | ALL | 0.932 | 0.922 | 0.919 | 0.948 | 0.948 | 0.873 | 89822 | 85647 |
502 | CvM1 | TLI | MLR | ALL | 5 | 0.832 | 0.799 | 0.832 | 0.955 | 0.907 | 0.704 | 26722 | 24572 |
503 | CvM1 | TLI | MLR | ALL | 10 | 0.947 | 0.929 | 0.940 | 0.947 | 0.955 | 0.866 | 30195 | 28785 |
504 | CvM1 | TLI | MLR | ALL | 30 | 1.000 | 0.999 | 1.000 | 0.947 | 0.995 | 0.993 | 32905 | 32290 |
505 | CvM1 | TLI | MLR | 30 | ALL | 0.829 | 0.798 | 0.822 | 0.932 | 0.918 | 0.684 | 18778 | 17854 |
506 | CvM1 | TLI | MLR | 30 | 5 | 0.699 | 0.597 | 0.698 | 0.867 | 0.722 | 0.582 | 5086 | 4739 |
507 | CvM1 | TLI | MLR | 30 | 10 | 0.860 | 0.751 | 0.858 | 0.903 | 0.751 | 0.811 | 6138 | 5832 |
508 | CvM1 | TLI | MLR | 30 | 30 | 0.998 | 0.995 | 0.998 | 0.939 | 0.973 | 0.987 | 7554 | 7283 |
509 | CvM1 | TLI | MLR | 50 | ALL | 0.926 | 0.882 | 0.914 | 0.945 | 0.921 | 0.842 | 21335 | 20417 |
510 | CvM1 | TLI | MLR | 50 | 5 | 0.795 | 0.669 | 0.795 | 0.915 | 0.681 | 0.762 | 6083 | 5724 |
511 | CvM1 | TLI | MLR | 50 | 10 | 0.961 | 0.910 | 0.959 | 0.944 | 0.907 | 0.886 | 7170 | 6790 |
512 | CvM1 | TLI | MLR | 50 | 30 | 1.000 | 1.000 | 1.000 | 0.959 | 0.998 | 1.000 | 8082 | 7903 |
513 | CvM1 | TLI | MLR | 100 | ALL | 0.990 | 0.977 | 0.984 | 0.954 | 0.959 | 0.960 | 24013 | 22901 |
514 | CvM1 | TLI | MLR | 100 | 5 | 0.946 | 0.877 | 0.946 | 0.951 | 0.847 | 0.903 | 7258 | 6637 |
515 | CvM1 | TLI | MLR | 100 | 10 | 0.999 | 0.998 | 0.999 | 0.959 | 0.988 | 0.991 | 8237 | 7823 |
516 | CvM1 | TLI | MLR | 100 | 30 | 1.000 | 1.000 | NA | 0.961 | 1.000 | 1.000 | 8518 | 8441 |
517 | CvM1 | TLI | MLR | 200 | ALL | 1.000 | 0.999 | 1.000 | 0.962 | 0.994 | 0.995 | 25696 | 24475 |
518 | CvM1 | TLI | MLR | 200 | 5 | 0.998 | 0.995 | 0.998 | 0.965 | 0.985 | 0.981 | 8295 | 7472 |
519 | CvM1 | TLI | MLR | 200 | 10 | 1.000 | 1.000 | NA | 0.962 | 1.000 | 1.000 | 8650 | 8340 |
520 | CvM1 | TLI | MLR | 200 | 30 | 1.000 | 1.000 | NA | 0.963 | 1.000 | 1.000 | 8751 | 8663 |
521 | CvM1 | TLI | ULSMV | ALL | ALL | 0.822 | 0.620 | 0.871 | 0.973 | 0.750 | 0.874 | 77713 | 71584 |
522 | CvM1 | TLI | ULSMV | ALL | 5 | 0.819 | 0.697 | 0.835 | 0.960 | 0.789 | 0.793 | 21448 | 19987 |
523 | CvM1 | TLI | ULSMV | ALL | 10 | 0.873 | 0.723 | 0.892 | 0.964 | 0.810 | 0.888 | 26416 | 24300 |
524 | CvM1 | TLI | ULSMV | ALL | 30 | 0.792 | 0.572 | 0.793 | 0.985 | 0.643 | 0.975 | 29849 | 27297 |
525 | CvM1 | TLI | ULSMV | 30 | ALL | 0.649 | 0.529 | 0.751 | 0.975 | 0.482 | 0.830 | 14727 | 13635 |
526 | CvM1 | TLI | ULSMV | 30 | 5 | 0.627 | 0.536 | 0.649 | 0.960 | 0.606 | 0.622 | 3399 | 3200 |
527 | CvM1 | TLI | ULSMV | 30 | 10 | 0.691 | 0.543 | 0.760 | 0.973 | 0.559 | 0.795 | 4926 | 4632 |
528 | CvM1 | TLI | ULSMV | 30 | 30 | 0.631 | 0.519 | 0.515 | 0.985 | 0.337 | 0.976 | 6402 | 5803 |
529 | CvM1 | TLI | ULSMV | 50 | ALL | 0.735 | 0.562 | 0.799 | 0.966 | 0.613 | 0.834 | 17918 | 16505 |
530 | CvM1 | TLI | ULSMV | 50 | 5 | 0.713 | 0.586 | 0.727 | 0.954 | 0.667 | 0.670 | 4573 | 4319 |
531 | CvM1 | TLI | ULSMV | 50 | 10 | 0.813 | 0.644 | 0.837 | 0.965 | 0.748 | 0.803 | 6038 | 5551 |
532 | CvM1 | TLI | ULSMV | 50 | 30 | 0.701 | 0.535 | 0.674 | 0.986 | 0.482 | 0.977 | 7307 | 6635 |
533 | CvM1 | TLI | ULSMV | 100 | ALL | 0.875 | 0.711 | 0.901 | 0.965 | 0.781 | 0.905 | 21277 | 19571 |
534 | CvM1 | TLI | ULSMV | 100 | 5 | 0.880 | 0.768 | 0.884 | 0.960 | 0.809 | 0.813 | 5969 | 5570 |
535 | CvM1 | TLI | ULSMV | 100 | 10 | 0.946 | 0.885 | 0.943 | 0.964 | 0.885 | 0.908 | 7390 | 6741 |
536 | CvM1 | TLI | ULSMV | 100 | 30 | 0.823 | 0.596 | 0.789 | 0.980 | 0.674 | 0.982 | 7918 | 7260 |
537 | CvM1 | TLI | ULSMV | 200 | ALL | 0.989 | 0.973 | 0.986 | 0.970 | 0.954 | 0.956 | 23791 | 21873 |
538 | CvM1 | TLI | ULSMV | 200 | 5 | 0.983 | 0.961 | 0.979 | 0.962 | 0.934 | 0.944 | 7507 | 6898 |
539 | CvM1 | TLI | ULSMV | 200 | 10 | 0.996 | 0.991 | 0.996 | 0.964 | 0.977 | 0.971 | 8062 | 7376 |
540 | CvM1 | TLI | ULSMV | 200 | 30 | 0.993 | 0.981 | 0.993 | 0.985 | 0.972 | 0.975 | 8222 | 7599 |
541 | CvM1 | TLI | WLSMV | ALL | ALL | 0.945 | 0.877 | 0.947 | 0.972 | 0.906 | 0.923 | 74425 | 66637 |
542 | CvM1 | TLI | WLSMV | ALL | 5 | 0.910 | 0.831 | 0.906 | 0.964 | 0.882 | 0.850 | 20313 | 18523 |
543 | CvM1 | TLI | WLSMV | ALL | 10 | 0.977 | 0.943 | 0.970 | 0.968 | 0.934 | 0.953 | 25257 | 22664 |
544 | CvM1 | TLI | WLSMV | ALL | 30 | 0.950 | 0.862 | 0.939 | 0.985 | 0.898 | 0.992 | 28855 | 25450 |
545 | CvM1 | TLI | WLSMV | 30 | ALL | 0.804 | 0.632 | 0.844 | 0.979 | 0.732 | 0.811 | 13548 | 12278 |
546 | CvM1 | TLI | WLSMV | 30 | 5 | 0.734 | 0.600 | 0.738 | 0.916 | 0.513 | 0.839 | 3099 | 2886 |
547 | CvM1 | TLI | WLSMV | 30 | 10 | 0.886 | 0.765 | 0.894 | 0.977 | 0.835 | 0.804 | 4487 | 4131 |
548 | CvM1 | TLI | WLSMV | 30 | 30 | 0.801 | 0.584 | 0.723 | 0.984 | 0.612 | 0.979 | 5962 | 5261 |
549 | CvM1 | TLI | WLSMV | 50 | ALL | 0.926 | 0.851 | 0.930 | 0.976 | 0.884 | 0.849 | 16883 | 15246 |
550 | CvM1 | TLI | WLSMV | 50 | 5 | 0.836 | 0.698 | 0.840 | 0.956 | 0.767 | 0.769 | 4162 | 3851 |
551 | CvM1 | TLI | WLSMV | 50 | 10 | 0.972 | 0.930 | 0.971 | 0.966 | 0.914 | 0.916 | 5746 | 5218 |
552 | CvM1 | TLI | WLSMV | 50 | 30 | 0.972 | 0.922 | 0.969 | 0.989 | 0.920 | 0.977 | 6975 | 6177 |
553 | CvM1 | TLI | WLSMV | 100 | ALL | 0.992 | 0.981 | 0.988 | 0.966 | 0.965 | 0.965 | 20592 | 18372 |
554 | CvM1 | TLI | WLSMV | 100 | 5 | 0.960 | 0.905 | 0.960 | 0.962 | 0.890 | 0.904 | 5756 | 5241 |
555 | CvM1 | TLI | WLSMV | 100 | 10 | 0.999 | 0.998 | 0.999 | 0.967 | 0.987 | 0.994 | 7084 | 6279 |
556 | CvM1 | TLI | WLSMV | 100 | 30 | 1.000 | 1.000 | NA | 0.981 | 1.000 | 1.000 | 7752 | 6852 |
557 | CvM1 | TLI | WLSMV | 200 | ALL | 1.000 | 1.000 | 1.000 | 0.966 | 0.994 | 0.996 | 23402 | 20741 |
558 | CvM1 | TLI | WLSMV | 200 | 5 | 0.999 | 0.997 | 0.999 | 0.966 | 0.983 | 0.988 | 7296 | 6545 |
559 | CvM1 | TLI | WLSMV | 200 | 10 | 1.000 | 1.000 | NA | 0.972 | 1.000 | 1.000 | 7940 | 7036 |
560 | CvM1 | TLI | WLSMV | 200 | 30 | 1.000 | 1.000 | NA | 0.975 | 1.000 | 1.000 | 8166 | 7160 |
561 | CvM1 | RMSEA | ALL | ALL | ALL | 0.878 | 0.753 | 0.884 | 0.017 | 0.811 | 0.859 | 241960 | 223868 |
562 | CvM1 | RMSEA | ALL | ALL | 5 | 0.833 | 0.749 | 0.833 | 0.020 | 0.824 | 0.767 | 68483 | 63082 |
563 | CvM1 | RMSEA | ALL | ALL | 10 | 0.910 | 0.820 | 0.907 | 0.017 | 0.855 | 0.861 | 81868 | 75749 |
564 | CvM1 | RMSEA | ALL | ALL | 30 | 0.891 | 0.714 | 0.893 | 0.014 | 0.771 | 0.943 | 91609 | 85037 |
565 | CvM1 | RMSEA | ALL | 30 | ALL | 0.720 | 0.572 | 0.745 | 0.023 | 0.632 | 0.768 | 47053 | 43767 |
566 | CvM1 | RMSEA | ALL | 30 | 5 | 0.632 | 0.559 | 0.635 | 0.023 | 0.703 | 0.501 | 11584 | 10825 |
567 | CvM1 | RMSEA | ALL | 30 | 10 | 0.740 | 0.605 | 0.745 | 0.020 | 0.695 | 0.682 | 15551 | 14595 |
568 | CvM1 | RMSEA | ALL | 30 | 30 | 0.765 | 0.558 | 0.714 | 0.023 | 0.571 | 0.963 | 19918 | 18347 |
569 | CvM1 | RMSEA | ALL | 50 | ALL | 0.832 | 0.675 | 0.845 | 0.020 | 0.718 | 0.839 | 56136 | 52168 |
570 | CvM1 | RMSEA | ALL | 50 | 5 | 0.746 | 0.625 | 0.749 | 0.023 | 0.695 | 0.681 | 14818 | 13894 |
571 | CvM1 | RMSEA | ALL | 50 | 10 | 0.882 | 0.746 | 0.883 | 0.020 | 0.795 | 0.828 | 18954 | 17559 |
572 | CvM1 | RMSEA | ALL | 50 | 30 | 0.860 | 0.650 | 0.835 | 0.015 | 0.700 | 0.959 | 22364 | 20715 |
573 | CvM1 | RMSEA | ALL | 100 | ALL | 0.936 | 0.838 | 0.939 | 0.017 | 0.855 | 0.911 | 65882 | 60844 |
574 | CvM1 | RMSEA | ALL | 100 | 5 | 0.913 | 0.813 | 0.915 | 0.021 | 0.805 | 0.870 | 18983 | 17448 |
575 | CvM1 | RMSEA | ALL | 100 | 10 | 0.972 | 0.923 | 0.973 | 0.017 | 0.898 | 0.950 | 22711 | 20843 |
576 | CvM1 | RMSEA | ALL | 100 | 30 | 0.928 | 0.801 | 0.906 | 0.012 | 0.850 | 0.991 | 24188 | 22553 |
577 | CvM1 | RMSEA | ALL | 200 | ALL | 0.984 | 0.955 | 0.986 | 0.015 | 0.927 | 0.960 | 72889 | 67089 |
578 | CvM1 | RMSEA | ALL | 200 | 5 | 0.989 | 0.969 | 0.990 | 0.018 | 0.938 | 0.958 | 23098 | 20915 |
579 | CvM1 | RMSEA | ALL | 200 | 10 | 0.997 | 0.992 | 0.998 | 0.013 | 0.970 | 0.976 | 24652 | 22752 |
580 | CvM1 | RMSEA | ALL | 200 | 30 | 0.990 | 0.973 | 0.991 | 0.007 | 0.930 | 0.976 | 25139 | 23422 |
581 | CvM1 | RMSEA | MLR | ALL | ALL | 0.918 | 0.913 | 0.905 | 0.025 | 0.950 | 0.856 | 89822 | 85647 |
582 | CvM1 | RMSEA | MLR | ALL | 5 | 0.809 | 0.788 | 0.812 | 0.024 | 0.895 | 0.695 | 26722 | 24572 |
583 | CvM1 | RMSEA | MLR | ALL | 10 | 0.932 | 0.917 | 0.928 | 0.025 | 0.955 | 0.843 | 30195 | 28785 |
584 | CvM1 | RMSEA | MLR | ALL | 30 | 0.999 | 0.999 | 0.999 | 0.025 | 0.994 | 0.989 | 32905 | 32290 |
585 | CvM1 | RMSEA | MLR | 30 | ALL | 0.799 | 0.779 | 0.797 | 0.030 | 0.903 | 0.663 | 18778 | 17854 |
586 | CvM1 | RMSEA | MLR | 30 | 5 | 0.678 | 0.585 | 0.680 | 0.048 | 0.652 | 0.605 | 5086 | 4739 |
587 | CvM1 | RMSEA | MLR | 30 | 10 | 0.834 | 0.723 | 0.836 | 0.034 | 0.799 | 0.704 | 6138 | 5832 |
588 | CvM1 | RMSEA | MLR | 30 | 30 | 0.997 | 0.991 | 0.996 | 0.027 | 0.967 | 0.981 | 7554 | 7283 |
589 | CvM1 | RMSEA | MLR | 50 | ALL | 0.908 | 0.869 | 0.897 | 0.026 | 0.912 | 0.823 | 21335 | 20417 |
590 | CvM1 | RMSEA | MLR | 50 | 5 | 0.771 | 0.655 | 0.772 | 0.034 | 0.657 | 0.752 | 6083 | 5724 |
591 | CvM1 | RMSEA | MLR | 50 | 10 | 0.949 | 0.889 | 0.949 | 0.027 | 0.877 | 0.877 | 7170 | 6790 |
592 | CvM1 | RMSEA | MLR | 50 | 30 | 1.000 | 1.000 | 1.000 | 0.022 | 0.997 | 1.000 | 8082 | 7903 |
593 | CvM1 | RMSEA | MLR | 100 | ALL | 0.988 | 0.973 | 0.982 | 0.024 | 0.953 | 0.958 | 24013 | 22901 |
594 | CvM1 | RMSEA | MLR | 100 | 5 | 0.937 | 0.861 | 0.938 | 0.024 | 0.857 | 0.871 | 7258 | 6637 |
595 | CvM1 | RMSEA | MLR | 100 | 10 | 0.999 | 0.998 | 0.999 | 0.022 | 0.982 | 0.991 | 8237 | 7823 |
596 | CvM1 | RMSEA | MLR | 100 | 30 | 1.000 | 1.000 | NA | 0.020 | 1.000 | 1.000 | 8518 | 8441 |
597 | CvM1 | RMSEA | MLR | 200 | ALL | 1.000 | 0.999 | 1.000 | 0.020 | 0.996 | 0.993 | 25696 | 24475 |
598 | CvM1 | RMSEA | MLR | 200 | 5 | 0.998 | 0.994 | 0.998 | 0.020 | 0.985 | 0.979 | 8295 | 7472 |
599 | CvM1 | RMSEA | MLR | 200 | 10 | 1.000 | 1.000 | NA | 0.020 | 1.000 | 1.000 | 8650 | 8340 |
600 | CvM1 | RMSEA | MLR | 200 | 30 | 1.000 | 1.000 | NA | 0.018 | 1.000 | 1.000 | 8751 | 8663 |
601 | CvM1 | RMSEA | ULSMV | ALL | ALL | 0.809 | 0.619 | 0.841 | 0.012 | 0.677 | 0.857 | 77713 | 71584 |
602 | CvM1 | RMSEA | ULSMV | ALL | 5 | 0.827 | 0.685 | 0.841 | 0.015 | 0.770 | 0.778 | 21448 | 19987 |
603 | CvM1 | RMSEA | ULSMV | ALL | 10 | 0.867 | 0.702 | 0.878 | 0.013 | 0.759 | 0.870 | 26416 | 24300 |
604 | CvM1 | RMSEA | ULSMV | ALL | 30 | 0.778 | 0.572 | 0.745 | 0.006 | 0.587 | 0.924 | 29849 | 27297 |
605 | CvM1 | RMSEA | ULSMV | 30 | ALL | 0.651 | 0.529 | 0.705 | 0.010 | 0.460 | 0.803 | 14727 | 13635 |
606 | CvM1 | RMSEA | ULSMV | 30 | 5 | 0.633 | 0.536 | 0.647 | 0.012 | 0.629 | 0.596 | 3399 | 3200 |
607 | CvM1 | RMSEA | ULSMV | 30 | 10 | 0.688 | 0.543 | 0.693 | 0.014 | 0.469 | 0.838 | 4926 | 4632 |
608 | CvM1 | RMSEA | ULSMV | 30 | 30 | 0.375 | NA | 0.564 | -Inf | 0.000 | 1.000 | 6402 | 5803 |
609 | CvM1 | RMSEA | ULSMV | 50 | ALL | 0.729 | 0.562 | 0.755 | 0.012 | 0.589 | 0.800 | 17918 | 16505 |
610 | CvM1 | RMSEA | ULSMV | 50 | 5 | 0.712 | 0.586 | 0.718 | 0.016 | 0.650 | 0.666 | 4573 | 4319 |
611 | CvM1 | RMSEA | ULSMV | 50 | 10 | 0.803 | 0.635 | 0.799 | 0.014 | 0.668 | 0.803 | 6038 | 5551 |
612 | CvM1 | RMSEA | ULSMV | 50 | 30 | 0.693 | 0.535 | 0.584 | 0.009 | 0.422 | 0.957 | 7307 | 6635 |
613 | CvM1 | RMSEA | ULSMV | 100 | ALL | 0.854 | 0.687 | 0.858 | 0.011 | 0.765 | 0.827 | 21277 | 19571 |
614 | CvM1 | RMSEA | ULSMV | 100 | 5 | 0.876 | 0.750 | 0.878 | 0.017 | 0.772 | 0.826 | 5969 | 5570 |
615 | CvM1 | RMSEA | ULSMV | 100 | 10 | 0.933 | 0.838 | 0.934 | 0.014 | 0.818 | 0.892 | 7390 | 6741 |
616 | CvM1 | RMSEA | ULSMV | 100 | 30 | 0.809 | 0.596 | 0.738 | 0.009 | 0.594 | 0.984 | 7918 | 7260 |
617 | CvM1 | RMSEA | ULSMV | 200 | ALL | 0.958 | 0.895 | 0.962 | 0.013 | 0.821 | 0.947 | 23791 | 21873 |
618 | CvM1 | RMSEA | ULSMV | 200 | 5 | 0.976 | 0.939 | 0.978 | 0.015 | 0.926 | 0.907 | 7507 | 6898 |
619 | CvM1 | RMSEA | ULSMV | 200 | 10 | 0.993 | 0.980 | 0.994 | 0.011 | 0.973 | 0.935 | 8062 | 7376 |
620 | CvM1 | RMSEA | ULSMV | 200 | 30 | 0.976 | 0.937 | 0.978 | 0.006 | 0.903 | 0.929 | 8222 | 7599 |
621 | CvM1 | RMSEA | WLSMV | ALL | ALL | 0.940 | 0.861 | 0.944 | 0.017 | 0.879 | 0.914 | 74425 | 66637 |
622 | CvM1 | RMSEA | WLSMV | ALL | 5 | 0.912 | 0.829 | 0.909 | 0.021 | 0.858 | 0.870 | 20313 | 18523 |
623 | CvM1 | RMSEA | WLSMV | ALL | 10 | 0.977 | 0.940 | 0.973 | 0.020 | 0.921 | 0.961 | 25257 | 22664 |
624 | CvM1 | RMSEA | WLSMV | ALL | 30 | 0.947 | 0.853 | 0.945 | 0.011 | 0.873 | 0.979 | 28855 | 25450 |
625 | CvM1 | RMSEA | WLSMV | 30 | ALL | 0.796 | 0.631 | 0.831 | 0.014 | 0.707 | 0.794 | 13548 | 12278 |
626 | CvM1 | RMSEA | WLSMV | 30 | 5 | 0.732 | 0.601 | 0.737 | 0.021 | 0.700 | 0.652 | 3099 | 2886 |
627 | CvM1 | RMSEA | WLSMV | 30 | 10 | 0.880 | 0.757 | 0.887 | 0.018 | 0.754 | 0.863 | 4487 | 4131 |
628 | CvM1 | RMSEA | WLSMV | 30 | 30 | 0.793 | 0.584 | 0.728 | 0.008 | 0.617 | 0.904 | 5962 | 5261 |
629 | CvM1 | RMSEA | WLSMV | 50 | ALL | 0.908 | 0.817 | 0.912 | 0.014 | 0.850 | 0.806 | 16883 | 15246 |
630 | CvM1 | RMSEA | WLSMV | 50 | 5 | 0.831 | 0.694 | 0.835 | 0.020 | 0.789 | 0.724 | 4162 | 3851 |
631 | CvM1 | RMSEA | WLSMV | 50 | 10 | 0.970 | 0.926 | 0.971 | 0.020 | 0.904 | 0.925 | 5746 | 5218 |
632 | CvM1 | RMSEA | WLSMV | 50 | 30 | 0.961 | 0.894 | 0.960 | 0.009 | 0.878 | 0.935 | 6975 | 6177 |
633 | CvM1 | RMSEA | WLSMV | 100 | ALL | 0.988 | 0.970 | 0.987 | 0.017 | 0.967 | 0.931 | 20592 | 18372 |
634 | CvM1 | RMSEA | WLSMV | 100 | 5 | 0.960 | 0.903 | 0.959 | 0.021 | 0.880 | 0.916 | 5756 | 5241 |
635 | CvM1 | RMSEA | WLSMV | 100 | 10 | 0.999 | 0.999 | 0.999 | 0.020 | 0.986 | 0.994 | 7084 | 6279 |
636 | CvM1 | RMSEA | WLSMV | 100 | 30 | 1.000 | 1.000 | 1.000 | 0.012 | 0.999 | 0.999 | 7752 | 6852 |
637 | CvM1 | RMSEA | WLSMV | 200 | ALL | 1.000 | 1.000 | 1.000 | 0.020 | 0.995 | 0.996 | 23402 | 20741 |
638 | CvM1 | RMSEA | WLSMV | 200 | 5 | 0.999 | 0.997 | 0.999 | 0.020 | 0.984 | 0.985 | 7296 | 6545 |
639 | CvM1 | RMSEA | WLSMV | 200 | 10 | 1.000 | 1.000 | NA | 0.019 | 1.000 | 1.000 | 7940 | 7036 |
640 | CvM1 | RMSEA | WLSMV | 200 | 30 | 1.000 | 1.000 | NA | 0.014 | 1.000 | 1.000 | 8166 | 7160 |
641 | CvM1 | SRMRW | ALL | ALL | ALL | 0.873 | 0.870 | 0.888 | 0.038 | 0.975 | 0.724 | 241960 | 223868 |
642 | CvM1 | SRMRW | ALL | ALL | 5 | 0.789 | 0.771 | 0.810 | 0.047 | 0.920 | 0.588 | 68483 | 63082 |
643 | CvM1 | SRMRW | ALL | ALL | 10 | 0.904 | 0.881 | 0.912 | 0.042 | 0.936 | 0.770 | 81868 | 75749 |
644 | CvM1 | SRMRW | ALL | ALL | 30 | 0.978 | 0.977 | 0.978 | 0.035 | 0.993 | 0.941 | 91609 | 85037 |
645 | CvM1 | SRMRW | ALL | 30 | ALL | 0.748 | 0.726 | 0.778 | 0.044 | 0.921 | 0.500 | 47053 | 43767 |
646 | CvM1 | SRMRW | ALL | 30 | 5 | 0.690 | 0.621 | 0.689 | 0.072 | 0.803 | 0.483 | 11584 | 10825 |
647 | CvM1 | SRMRW | ALL | 30 | 10 | 0.828 | 0.757 | 0.822 | 0.056 | 0.802 | 0.722 | 15551 | 14595 |
648 | CvM1 | SRMRW | ALL | 30 | 30 | 0.943 | 0.938 | 0.943 | 0.039 | 0.967 | 0.872 | 19918 | 18347 |
649 | CvM1 | SRMRW | ALL | 50 | ALL | 0.835 | 0.805 | 0.853 | 0.042 | 0.926 | 0.639 | 56136 | 52168 |
650 | CvM1 | SRMRW | ALL | 50 | 5 | 0.791 | 0.700 | 0.792 | 0.063 | 0.767 | 0.671 | 14818 | 13894 |
651 | CvM1 | SRMRW | ALL | 50 | 10 | 0.923 | 0.883 | 0.916 | 0.047 | 0.897 | 0.834 | 18954 | 17559 |
652 | CvM1 | SRMRW | ALL | 50 | 30 | 0.977 | 0.972 | 0.978 | 0.035 | 0.991 | 0.927 | 22364 | 20715 |
653 | CvM1 | SRMRW | ALL | 100 | ALL | 0.948 | 0.918 | 0.955 | 0.039 | 0.958 | 0.819 | 65882 | 60844 |
654 | CvM1 | SRMRW | ALL | 100 | 5 | 0.932 | 0.875 | 0.930 | 0.050 | 0.863 | 0.859 | 18983 | 17448 |
655 | CvM1 | SRMRW | ALL | 100 | 10 | 0.988 | 0.978 | 0.989 | 0.038 | 0.981 | 0.936 | 22711 | 20843 |
656 | CvM1 | SRMRW | ALL | 100 | 30 | 0.997 | 0.995 | 0.997 | 0.035 | 0.996 | 0.981 | 24188 | 22553 |
657 | CvM1 | SRMRW | ALL | 200 | ALL | 0.996 | 0.991 | 0.996 | 0.036 | 0.991 | 0.964 | 72889 | 67089 |
658 | CvM1 | SRMRW | ALL | 200 | 5 | 0.994 | 0.985 | 0.994 | 0.040 | 0.978 | 0.950 | 23098 | 20915 |
659 | CvM1 | SRMRW | ALL | 200 | 10 | 1.000 | 0.999 | 1.000 | 0.034 | 0.997 | 0.989 | 24652 | 22752 |
660 | CvM1 | SRMRW | ALL | 200 | 30 | 1.000 | 1.000 | 1.000 | 0.034 | 1.000 | 1.000 | 25139 | 23422 |
661 | CvM1 | SRMRW | MLR | ALL | ALL | 0.887 | 0.892 | 0.902 | 0.036 | 0.979 | 0.776 | 89822 | 85647 |
662 | CvM1 | SRMRW | MLR | ALL | 5 | 0.808 | 0.784 | 0.838 | 0.042 | 0.935 | 0.599 | 26722 | 24572 |
663 | CvM1 | SRMRW | MLR | ALL | 10 | 0.951 | 0.919 | 0.960 | 0.038 | 0.955 | 0.829 | 30195 | 28785 |
664 | CvM1 | SRMRW | MLR | ALL | 30 | 1.000 | 1.000 | 1.000 | 0.031 | 1.000 | 0.998 | 32905 | 32290 |
665 | CvM1 | SRMRW | MLR | 30 | ALL | 0.769 | 0.755 | 0.798 | 0.042 | 0.907 | 0.567 | 18778 | 17854 |
666 | CvM1 | SRMRW | MLR | 30 | 5 | 0.813 | 0.681 | 0.812 | 0.071 | 0.660 | 0.820 | 5086 | 4739 |
667 | CvM1 | SRMRW | MLR | 30 | 10 | 0.955 | 0.893 | 0.949 | 0.048 | 0.903 | 0.870 | 6138 | 5832 |
668 | CvM1 | SRMRW | MLR | 30 | 30 | 1.000 | 1.000 | 1.000 | 0.033 | 0.996 | 0.999 | 7554 | 7283 |
669 | CvM1 | SRMRW | MLR | 50 | ALL | 0.861 | 0.840 | 0.889 | 0.038 | 0.960 | 0.692 | 21335 | 20417 |
670 | CvM1 | SRMRW | MLR | 50 | 5 | 0.905 | 0.802 | 0.907 | 0.056 | 0.796 | 0.855 | 6083 | 5724 |
671 | CvM1 | SRMRW | MLR | 50 | 10 | 0.993 | 0.981 | 0.992 | 0.041 | 0.952 | 0.965 | 7170 | 6790 |
672 | CvM1 | SRMRW | MLR | 50 | 30 | 1.000 | 1.000 | NA | 0.029 | 1.000 | 1.000 | 8082 | 7903 |
673 | CvM1 | SRMRW | MLR | 100 | ALL | 0.981 | 0.961 | 0.984 | 0.037 | 0.967 | 0.905 | 24013 | 22901 |
674 | CvM1 | SRMRW | MLR | 100 | 5 | 0.987 | 0.966 | 0.987 | 0.043 | 0.939 | 0.956 | 7258 | 6637 |
675 | CvM1 | SRMRW | MLR | 100 | 10 | 1.000 | 1.000 | 1.000 | 0.032 | 0.999 | 1.000 | 8237 | 7823 |
676 | CvM1 | SRMRW | MLR | 100 | 30 | 1.000 | 1.000 | NA | 0.025 | 1.000 | 1.000 | 8518 | 8441 |
677 | CvM1 | SRMRW | MLR | 200 | ALL | 1.000 | 1.000 | 1.000 | 0.033 | 0.998 | 0.998 | 25696 | 24475 |
678 | CvM1 | SRMRW | MLR | 200 | 5 | 1.000 | 1.000 | 1.000 | 0.035 | 0.994 | 0.999 | 8295 | 7472 |
679 | CvM1 | SRMRW | MLR | 200 | 10 | 1.000 | 1.000 | NA | 0.027 | 1.000 | 1.000 | 8650 | 8340 |
680 | CvM1 | SRMRW | MLR | 200 | 30 | 1.000 | 1.000 | NA | 0.022 | 1.000 | 1.000 | 8751 | 8663 |
681 | CvM1 | SRMRW | ULSMV | ALL | ALL | 0.854 | 0.864 | 0.871 | 0.045 | 0.976 | 0.723 | 77713 | 71584 |
682 | CvM1 | SRMRW | ULSMV | ALL | 5 | 0.760 | 0.760 | 0.787 | 0.050 | 0.951 | 0.542 | 21448 | 19987 |
683 | CvM1 | SRMRW | ULSMV | ALL | 10 | 0.873 | 0.864 | 0.887 | 0.047 | 0.960 | 0.729 | 26416 | 24300 |
684 | CvM1 | SRMRW | ULSMV | ALL | 30 | 0.960 | 0.961 | 0.962 | 0.042 | 0.995 | 0.904 | 29849 | 27297 |
685 | CvM1 | SRMRW | ULSMV | 30 | ALL | 0.722 | 0.706 | 0.748 | 0.053 | 0.922 | 0.464 | 14727 | 13635 |
686 | CvM1 | SRMRW | ULSMV | 30 | 5 | 0.661 | 0.582 | 0.659 | 0.098 | 0.619 | 0.619 | 3399 | 3200 |
687 | CvM1 | SRMRW | ULSMV | 30 | 10 | 0.797 | 0.730 | 0.801 | 0.069 | 0.752 | 0.713 | 4926 | 4632 |
688 | CvM1 | SRMRW | ULSMV | 30 | 30 | 0.904 | 0.887 | 0.911 | 0.047 | 0.963 | 0.766 | 6402 | 5803 |
689 | CvM1 | SRMRW | ULSMV | 50 | ALL | 0.817 | 0.795 | 0.840 | 0.048 | 0.953 | 0.603 | 17918 | 16505 |
690 | CvM1 | SRMRW | ULSMV | 50 | 5 | 0.790 | 0.688 | 0.793 | 0.076 | 0.730 | 0.703 | 4573 | 4319 |
691 | CvM1 | SRMRW | ULSMV | 50 | 10 | 0.906 | 0.867 | 0.913 | 0.054 | 0.922 | 0.770 | 6038 | 5551 |
692 | CvM1 | SRMRW | ULSMV | 50 | 30 | 0.968 | 0.958 | 0.970 | 0.044 | 0.983 | 0.894 | 7307 | 6635 |
693 | CvM1 | SRMRW | ULSMV | 100 | ALL | 0.945 | 0.924 | 0.954 | 0.046 | 0.961 | 0.839 | 21277 | 19571 |
694 | CvM1 | SRMRW | ULSMV | 100 | 5 | 0.931 | 0.870 | 0.934 | 0.057 | 0.865 | 0.845 | 5969 | 5570 |
695 | CvM1 | SRMRW | ULSMV | 100 | 10 | 0.989 | 0.978 | 0.989 | 0.046 | 0.972 | 0.942 | 7390 | 6741 |
696 | CvM1 | SRMRW | ULSMV | 100 | 30 | 0.998 | 0.997 | 0.998 | 0.042 | 0.998 | 0.984 | 7918 | 7260 |
697 | CvM1 | SRMRW | ULSMV | 200 | ALL | 0.997 | 0.995 | 0.997 | 0.043 | 0.992 | 0.979 | 23791 | 21873 |
698 | CvM1 | SRMRW | ULSMV | 200 | 5 | 0.995 | 0.989 | 0.996 | 0.045 | 0.982 | 0.954 | 7507 | 6898 |
699 | CvM1 | SRMRW | ULSMV | 200 | 10 | 1.000 | 1.000 | 1.000 | 0.041 | 0.996 | 0.999 | 8062 | 7376 |
700 | CvM1 | SRMRW | ULSMV | 200 | 30 | 1.000 | 1.000 | NA | 0.039 | 1.000 | 1.000 | 8222 | 7599 |
701 | CvM1 | SRMRW | WLSMV | ALL | ALL | 0.905 | 0.911 | 0.915 | 0.044 | 0.979 | 0.815 | 74425 | 66637 |
702 | CvM1 | SRMRW | WLSMV | ALL | 5 | 0.811 | 0.802 | 0.840 | 0.049 | 0.954 | 0.621 | 20313 | 18523 |
703 | CvM1 | SRMRW | WLSMV | ALL | 10 | 0.944 | 0.919 | 0.953 | 0.045 | 0.966 | 0.824 | 25257 | 22664 |
704 | CvM1 | SRMRW | WLSMV | ALL | 30 | 1.000 | 1.000 | 1.000 | 0.039 | 0.999 | 0.997 | 28855 | 25450 |
705 | CvM1 | SRMRW | WLSMV | 30 | ALL | 0.801 | 0.786 | 0.822 | 0.053 | 0.896 | 0.634 | 13548 | 12278 |
706 | CvM1 | SRMRW | WLSMV | 30 | 5 | 0.778 | 0.641 | 0.775 | 0.085 | 0.718 | 0.714 | 3099 | 2886 |
707 | CvM1 | SRMRW | WLSMV | 30 | 10 | 0.949 | 0.883 | 0.944 | 0.061 | 0.868 | 0.893 | 4487 | 4131 |
708 | CvM1 | SRMRW | WLSMV | 30 | 30 | 1.000 | 0.999 | 1.000 | 0.042 | 0.993 | 0.998 | 5962 | 5261 |
709 | CvM1 | SRMRW | WLSMV | 50 | ALL | 0.877 | 0.862 | 0.897 | 0.047 | 0.962 | 0.731 | 16883 | 15246 |
710 | CvM1 | SRMRW | WLSMV | 50 | 5 | 0.892 | 0.787 | 0.891 | 0.069 | 0.797 | 0.834 | 4162 | 3851 |
711 | CvM1 | SRMRW | WLSMV | 50 | 10 | 0.992 | 0.980 | 0.992 | 0.049 | 0.965 | 0.954 | 5746 | 5218 |
712 | CvM1 | SRMRW | WLSMV | 50 | 30 | 1.000 | 1.000 | NA | 0.037 | 1.000 | 1.000 | 6975 | 6177 |
713 | CvM1 | SRMRW | WLSMV | 100 | ALL | 0.982 | 0.965 | 0.984 | 0.045 | 0.966 | 0.913 | 20592 | 18372 |
714 | CvM1 | SRMRW | WLSMV | 100 | 5 | 0.984 | 0.957 | 0.982 | 0.053 | 0.905 | 0.967 | 5756 | 5241 |
715 | CvM1 | SRMRW | WLSMV | 100 | 10 | 1.000 | 1.000 | 1.000 | 0.039 | 0.998 | 0.998 | 7084 | 6279 |
716 | CvM1 | SRMRW | WLSMV | 100 | 30 | 1.000 | 1.000 | NA | 0.031 | 1.000 | 1.000 | 7752 | 6852 |
717 | CvM1 | SRMRW | WLSMV | 200 | ALL | 1.000 | 1.000 | 1.000 | 0.040 | 0.999 | 0.998 | 23402 | 20741 |
718 | CvM1 | SRMRW | WLSMV | 200 | 5 | 1.000 | 1.000 | 1.000 | 0.041 | 0.996 | 0.996 | 7296 | 6545 |
719 | CvM1 | SRMRW | WLSMV | 200 | 10 | 1.000 | 1.000 | NA | 0.034 | 1.000 | 1.000 | 7940 | 7036 |
720 | CvM1 | SRMRW | WLSMV | 200 | 30 | 1.000 | 1.000 | NA | 0.028 | 1.000 | 1.000 | 8166 | 7160 |
721 | CvM1 | SRMRB | ALL | ALL | ALL | 0.537 | 0.541 | 0.547 | 0.057 | 0.839 | 0.243 | 241960 | 223868 |
722 | CvM1 | SRMRB | ALL | ALL | 5 | 0.511 | 0.519 | 0.516 | 0.064 | 0.839 | 0.205 | 68483 | 63082 |
723 | CvM1 | SRMRB | ALL | ALL | 10 | 0.536 | 0.539 | 0.546 | 0.057 | 0.844 | 0.236 | 81868 | 75749 |
724 | CvM1 | SRMRB | ALL | ALL | 30 | 0.564 | 0.559 | 0.577 | 0.057 | 0.792 | 0.330 | 91609 | 85037 |
725 | CvM1 | SRMRB | ALL | 30 | ALL | 0.517 | 0.521 | 0.522 | 0.109 | 0.814 | 0.232 | 47053 | 43767 |
726 | CvM1 | SRMRB | ALL | 30 | 5 | 0.495 | NA | 0.494 | 0.109 | 0.929 | 0.074 | 11584 | 10825 |
727 | CvM1 | SRMRB | ALL | 30 | 10 | 0.511 | 0.512 | 0.511 | 0.127 | 0.647 | 0.388 | 15551 | 14595 |
728 | CvM1 | SRMRB | ALL | 30 | 30 | 0.537 | 0.537 | 0.543 | 0.103 | 0.799 | 0.284 | 19918 | 18347 |
729 | CvM1 | SRMRB | ALL | 50 | ALL | 0.533 | 0.534 | 0.539 | 0.084 | 0.839 | 0.233 | 56136 | 52168 |
730 | CvM1 | SRMRB | ALL | 50 | 5 | 0.503 | 0.504 | 0.502 | 0.120 | 0.535 | 0.480 | 14818 | 13894 |
731 | CvM1 | SRMRB | ALL | 50 | 10 | 0.523 | 0.524 | 0.524 | 0.086 | 0.838 | 0.225 | 18954 | 17559 |
732 | CvM1 | SRMRB | ALL | 50 | 30 | 0.570 | 0.560 | 0.578 | 0.080 | 0.815 | 0.313 | 22364 | 20715 |
733 | CvM1 | SRMRB | ALL | 100 | ALL | 0.559 | 0.556 | 0.568 | 0.063 | 0.811 | 0.302 | 65882 | 60844 |
734 | CvM1 | SRMRB | ALL | 100 | 5 | 0.509 | 0.514 | 0.509 | 0.074 | 0.767 | 0.270 | 18983 | 17448 |
735 | CvM1 | SRMRB | ALL | 100 | 10 | 0.561 | 0.554 | 0.565 | 0.067 | 0.757 | 0.365 | 22711 | 20843 |
736 | CvM1 | SRMRB | ALL | 100 | 30 | 0.621 | 0.594 | 0.634 | 0.059 | 0.813 | 0.375 | 24188 | 22553 |
737 | CvM1 | SRMRB | ALL | 200 | ALL | 0.601 | 0.580 | 0.609 | 0.049 | 0.749 | 0.414 | 72889 | 67089 |
738 | CvM1 | SRMRB | ALL | 200 | 5 | 0.540 | 0.534 | 0.540 | 0.061 | 0.633 | 0.452 | 23098 | 20915 |
739 | CvM1 | SRMRB | ALL | 200 | 10 | 0.611 | 0.592 | 0.621 | 0.047 | 0.832 | 0.357 | 24652 | 22752 |
740 | CvM1 | SRMRB | ALL | 200 | 30 | 0.682 | 0.627 | 0.703 | 0.043 | 0.828 | 0.417 | 25139 | 23422 |
741 | CvM1 | SRMRB | MLR | ALL | ALL | 0.512 | 0.539 | 0.526 | 0.061 | 0.921 | 0.157 | 89822 | 85647 |
742 | CvM1 | SRMRB | MLR | ALL | 5 | 0.502 | 0.508 | 0.491 | 0.147 | 0.675 | 0.361 | 26722 | 24572 |
743 | CvM1 | SRMRB | MLR | ALL | 10 | 0.489 | 0.510 | 0.476 | 0.175 | 0.902 | 0.123 | 30195 | 28785 |
744 | CvM1 | SRMRB | MLR | ALL | 30 | 0.544 | 0.563 | 0.562 | 0.059 | 0.913 | 0.211 | 32905 | 32290 |
745 | CvM1 | SRMRB | MLR | 30 | ALL | 0.518 | 0.513 | 0.512 | 0.177 | 0.698 | 0.346 | 18778 | 17854 |
746 | CvM1 | SRMRB | MLR | 30 | 5 | 0.520 | 0.512 | 0.519 | 0.208 | 0.695 | 0.349 | 5086 | 4739 |
747 | CvM1 | SRMRB | MLR | 30 | 10 | 0.515 | 0.516 | 0.513 | 0.202 | 0.835 | 0.214 | 6138 | 5832 |
748 | CvM1 | SRMRB | MLR | 30 | 30 | 0.504 | 0.513 | 0.497 | 0.164 | 0.761 | 0.286 | 7554 | 7283 |
749 | CvM1 | SRMRB | MLR | 50 | ALL | 0.503 | 0.516 | 0.495 | 0.151 | 0.805 | 0.235 | 21335 | 20417 |
750 | CvM1 | SRMRB | MLR | 50 | 5 | 0.509 | 0.515 | 0.505 | 0.198 | 0.864 | 0.183 | 6083 | 5724 |
751 | CvM1 | SRMRB | MLR | 50 | 10 | 0.497 | 0.520 | 0.500 | 0.096 | 0.913 | 0.133 | 7170 | 6790 |
752 | CvM1 | SRMRB | MLR | 50 | 30 | 0.526 | 0.542 | 0.535 | 0.087 | 0.890 | 0.199 | 8082 | 7903 |
753 | CvM1 | SRMRB | MLR | 100 | ALL | 0.530 | 0.552 | 0.540 | 0.069 | 0.917 | 0.186 | 24013 | 22901 |
754 | CvM1 | SRMRB | MLR | 100 | 5 | 0.500 | 0.523 | 0.504 | 0.088 | 0.801 | 0.254 | 7258 | 6637 |
755 | CvM1 | SRMRB | MLR | 100 | 10 | 0.537 | 0.553 | 0.543 | 0.074 | 0.858 | 0.265 | 8237 | 7823 |
756 | CvM1 | SRMRB | MLR | 100 | 30 | 0.597 | 0.595 | 0.614 | 0.066 | 0.919 | 0.271 | 8518 | 8441 |
757 | CvM1 | SRMRB | MLR | 200 | ALL | 0.600 | 0.602 | 0.608 | 0.057 | 0.853 | 0.350 | 25696 | 24475 |
758 | CvM1 | SRMRB | MLR | 200 | 5 | 0.540 | 0.564 | 0.546 | 0.067 | 0.770 | 0.378 | 8295 | 7472 |
759 | CvM1 | SRMRB | MLR | 200 | 10 | 0.606 | 0.613 | 0.625 | 0.057 | 0.859 | 0.369 | 8650 | 8340 |
760 | CvM1 | SRMRB | MLR | 200 | 30 | 0.715 | 0.665 | 0.732 | 0.054 | 0.854 | 0.468 | 8751 | 8663 |
761 | CvM1 | SRMRB | ULSMV | ALL | ALL | 0.542 | 0.544 | 0.556 | 0.042 | 0.942 | 0.143 | 77713 | 71584 |
762 | CvM1 | SRMRB | ULSMV | ALL | 5 | 0.517 | 0.521 | 0.524 | 0.051 | 0.893 | 0.154 | 21448 | 19987 |
763 | CvM1 | SRMRB | ULSMV | ALL | 10 | 0.542 | 0.544 | 0.556 | 0.042 | 0.950 | 0.141 | 26416 | 24300 |
764 | CvM1 | SRMRB | ULSMV | ALL | 30 | 0.562 | 0.563 | 0.580 | 0.038 | 0.960 | 0.164 | 29849 | 27297 |
765 | CvM1 | SRMRB | ULSMV | 30 | ALL | 0.532 | 0.531 | 0.541 | 0.093 | 0.834 | 0.233 | 14727 | 13635 |
766 | CvM1 | SRMRB | ULSMV | 30 | 5 | 0.508 | 0.501 | 0.511 | 0.172 | 0.216 | 0.810 | 3399 | 3200 |
767 | CvM1 | SRMRB | ULSMV | 30 | 10 | 0.525 | 0.517 | 0.526 | 0.106 | 0.681 | 0.378 | 4926 | 4632 |
768 | CvM1 | SRMRB | ULSMV | 30 | 30 | 0.551 | 0.554 | 0.559 | 0.093 | 0.753 | 0.359 | 6402 | 5803 |
769 | CvM1 | SRMRB | ULSMV | 50 | ALL | 0.541 | 0.546 | 0.553 | 0.070 | 0.875 | 0.217 | 17918 | 16505 |
770 | CvM1 | SRMRB | ULSMV | 50 | 5 | 0.504 | 0.507 | 0.505 | 0.076 | 0.935 | 0.085 | 4573 | 4319 |
771 | CvM1 | SRMRB | ULSMV | 50 | 10 | 0.532 | 0.530 | 0.534 | 0.086 | 0.654 | 0.423 | 6038 | 5551 |
772 | CvM1 | SRMRB | ULSMV | 50 | 30 | 0.578 | 0.583 | 0.591 | 0.063 | 0.897 | 0.268 | 7307 | 6635 |
773 | CvM1 | SRMRB | ULSMV | 100 | ALL | 0.565 | 0.573 | 0.581 | 0.052 | 0.880 | 0.262 | 21277 | 19571 |
774 | CvM1 | SRMRB | ULSMV | 100 | 5 | 0.520 | 0.522 | 0.522 | 0.064 | 0.798 | 0.262 | 5969 | 5570 |
775 | CvM1 | SRMRB | ULSMV | 100 | 10 | 0.573 | 0.578 | 0.582 | 0.054 | 0.866 | 0.307 | 7390 | 6741 |
776 | CvM1 | SRMRB | ULSMV | 100 | 30 | 0.612 | 0.626 | 0.636 | 0.047 | 0.915 | 0.331 | 7918 | 7260 |
777 | CvM1 | SRMRB | ULSMV | 200 | ALL | 0.595 | 0.601 | 0.614 | 0.038 | 0.924 | 0.272 | 23791 | 21873 |
778 | CvM1 | SRMRB | ULSMV | 200 | 5 | 0.549 | 0.548 | 0.553 | 0.046 | 0.854 | 0.263 | 7507 | 6898 |
779 | CvM1 | SRMRB | ULSMV | 200 | 10 | 0.615 | 0.627 | 0.633 | 0.041 | 0.870 | 0.390 | 8062 | 7376 |
780 | CvM1 | SRMRB | ULSMV | 200 | 30 | 0.657 | 0.668 | 0.688 | 0.036 | 0.930 | 0.395 | 8222 | 7599 |
781 | CvM1 | SRMRB | WLSMV | ALL | ALL | 0.551 | 0.547 | 0.563 | 0.052 | 0.877 | 0.216 | 74425 | 66637 |
782 | CvM1 | SRMRB | WLSMV | ALL | 5 | 0.528 | 0.526 | 0.534 | 0.055 | 0.908 | 0.148 | 20313 | 18523 |
783 | CvM1 | SRMRB | WLSMV | ALL | 10 | 0.552 | 0.545 | 0.564 | 0.049 | 0.919 | 0.172 | 25257 | 22664 |
784 | CvM1 | SRMRB | WLSMV | ALL | 30 | 0.566 | 0.563 | 0.581 | 0.049 | 0.864 | 0.258 | 28855 | 25450 |
785 | CvM1 | SRMRB | WLSMV | 30 | ALL | 0.530 | 0.526 | 0.536 | 0.109 | 0.842 | 0.218 | 13548 | 12278 |
786 | CvM1 | SRMRB | WLSMV | 30 | 5 | 0.503 | NA | 0.503 | 0.143 | 0.421 | 0.604 | 3099 | 2886 |
787 | CvM1 | SRMRB | WLSMV | 30 | 10 | 0.523 | 0.513 | 0.523 | 0.127 | 0.588 | 0.463 | 4487 | 4131 |
788 | CvM1 | SRMRB | WLSMV | 30 | 30 | 0.545 | 0.541 | 0.551 | 0.109 | 0.738 | 0.356 | 5962 | 5261 |
789 | CvM1 | SRMRB | WLSMV | 50 | ALL | 0.552 | 0.545 | 0.562 | 0.086 | 0.827 | 0.266 | 16883 | 15246 |
790 | CvM1 | SRMRB | WLSMV | 50 | 5 | 0.514 | 0.507 | 0.514 | 0.111 | 0.570 | 0.462 | 4162 | 3851 |
791 | CvM1 | SRMRB | WLSMV | 50 | 10 | 0.538 | 0.528 | 0.542 | 0.096 | 0.672 | 0.409 | 5746 | 5218 |
792 | CvM1 | SRMRB | WLSMV | 50 | 30 | 0.592 | 0.577 | 0.601 | 0.080 | 0.842 | 0.322 | 6975 | 6177 |
793 | CvM1 | SRMRB | WLSMV | 100 | ALL | 0.582 | 0.574 | 0.593 | 0.060 | 0.883 | 0.267 | 20592 | 18372 |
794 | CvM1 | SRMRB | WLSMV | 100 | 5 | 0.526 | 0.522 | 0.526 | 0.074 | 0.759 | 0.304 | 5756 | 5241 |
795 | CvM1 | SRMRB | WLSMV | 100 | 10 | 0.586 | 0.571 | 0.589 | 0.066 | 0.757 | 0.407 | 7084 | 6279 |
796 | CvM1 | SRMRB | WLSMV | 100 | 30 | 0.641 | 0.623 | 0.657 | 0.058 | 0.852 | 0.392 | 7752 | 6852 |
797 | CvM1 | SRMRB | WLSMV | 200 | ALL | 0.626 | 0.603 | 0.637 | 0.048 | 0.754 | 0.455 | 23402 | 20741 |
798 | CvM1 | SRMRB | WLSMV | 200 | 5 | 0.570 | 0.556 | 0.574 | 0.052 | 0.851 | 0.286 | 7296 | 6545 |
799 | CvM1 | SRMRB | WLSMV | 200 | 10 | 0.641 | 0.618 | 0.651 | 0.047 | 0.814 | 0.438 | 7940 | 7036 |
800 | CvM1 | SRMRB | WLSMV | 200 | 30 | 0.707 | 0.660 | 0.725 | 0.043 | 0.837 | 0.479 | 8166 | 7160 |
j <- 3 ## Which class?
for(index in INDEX){
## Print out which iteration so we know what we am looking at
cat('\n\nROC Analysis in')
cat('\nIndex:\t', index)
cat('\nClassification:\t', CLASS[j])
## Set up iteration key
key <- paste0(index,'.',CLASS[j])
## Create formula
model <- as.formula(paste0(CLASS[j], '~', index))
## Fit ROC curve
fit_roc[[key]] <- roc(model, data=sim_results,quiet=T,
plot =TRUE, ci=TRUE, print.auc=TRUE)
## Create a plot of "smoothed" curve for plotting
fit_roc_smooth[[key]] <- smooth(roc(model, data=sim_results))
## Compute partial AUC for specificity .8-1
p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
partial.auc.focus = 'sp', partial.auc.correct = T)
## get summary info
roc_summary_gen[ig, 2] <- index
roc_summary_gen[ig, 1] <- CLASS[j]
roc_summary_gen[ig, 3] <- fit_roc[[key]]$auc ## total AUC
roc_summary_gen[ig, 4] <- p.auc ## corrected partial AUC (.5 is no discrimination)
roc_summary_gen[ig, 5] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
roc_summary_gen[ig, 6:8] <- coords(fit_roc[[key]], "best",
ret=c("threshold", "specificity", 'sensitivity'),
transpose=TRUE)
## print summary
cat('\n\nSummary of ROC:\n')
print(roc_summary_gen[ig, ])
## add to summary iterator
ig <- ig + 1
} ## End loop round index
ROC Analysis in
Index: CFI
Classification: CvM2
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
11 CvM2 CFI 0.669498 0.5483643 0.6916255
Optimal-Threshold Specificity Sensitivity
11 0.9932424 0.5757261 0.694697
ROC Analysis in
Index: TLI
Classification: CvM2
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
12 CvM2 TLI 0.669498 0.5483643 0.6916017
Optimal-Threshold Specificity Sensitivity
12 0.9918909 0.5757261 0.694697
ROC Analysis in
Index: RMSEA
Classification: CvM2
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
13 CvM2 RMSEA 0.6644986 0.5483738 0.691537
Optimal-Threshold Specificity Sensitivity
13 0.008547063 0.587031 0.6791605
ROC Analysis in
Index: SRMRW
Classification: CvM2
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
14 CvM2 SRMRW 0.5270719 0.5050447 0.5241129
Optimal-Threshold Specificity Sensitivity
14 0.03089441 0.4519094 0.5970939
ROC Analysis in
Index: SRMRB
Classification: CvM2
Version | Author | Date |
---|---|---|
982c8f1 | noah-padgett | 2019-05-18 |
Summary of ROC:
Classification Index AUC partial-AUC Smoothed-AUC
15 CvM2 SRMRB 0.6343083 0.6012881 0.641562
Optimal-Threshold Specificity Sensitivity
15 0.07595733 0.7774833 0.4406392
kable(roc_summary_gen[11:15,], format = 'html', digits=3) %>%
kable_styling(full_width = T)
Classification | Index | AUC | partial-AUC | Smoothed-AUC | Optimal-Threshold | Specificity | Sensitivity | |
---|---|---|---|---|---|---|---|---|
11 | CvM2 | CFI | 0.669 | 0.548 | 0.692 | 0.993 | 0.576 | 0.695 |
12 | CvM2 | TLI | 0.669 | 0.548 | 0.692 | 0.992 | 0.576 | 0.695 |
13 | CvM2 | RMSEA | 0.664 | 0.548 | 0.692 | 0.009 | 0.587 | 0.679 |
14 | CvM2 | SRMRW | 0.527 | 0.505 | 0.524 | 0.031 | 0.452 | 0.597 |
15 | CvM2 | SRMRB | 0.634 | 0.601 | 0.642 | 0.076 | 0.777 | 0.441 |
print(xtable(roc_summary_gen[11:15,c(2:3,6:8)], digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:38:44 2019
\begin{table}[ht]
\centering
\begin{tabular}{lrrrr}
\toprule
Index & AUC & Optimal-Threshold & Specificity & Sensitivity \\
\midrule
CFI & 0.669 & 0.993 & 0.576 & 0.695 \\
TLI & 0.669 & 0.992 & 0.576 & 0.695 \\
RMSEA & 0.664 & 0.009 & 0.587 & 0.679 \\
SRMRW & 0.527 & 0.031 & 0.452 & 0.597 \\
SRMRB & 0.634 & 0.076 & 0.777 & 0.441 \\
\bottomrule
\end{tabular}
\end{table}
j <- 3 ## Which class?
for(index in INDEX){
for(est in EST){
for(s2 in SS_L2){
for(s1 in SS_L1){
## Print out which iteration so we know what we are looking at
#cat('\n\nROC Analysis in')
#cat('\nIndex:\t', index)
#cat('\nClassification:\t', CLASS[j])
#cat('\nEstimation Method:\t', est)
#cat('\nLevel-2 Sample Size:\t', s2)
#cat('\nLevel-1 Sample Size:\t', s1)
## Set up iteration key
key <- paste0(index,'.',CLASS[j],'.',est,'.', s2,'.',s1)
# Subset data as needed
if(est == 'ALL' & s2 == 'ALL' & s1 == 'ALL') mydata <- sim_results
if(est != 'ALL' & s2 == 'ALL' & s1 == 'ALL'){
mydata <- filter(sim_results, Estimator == est)
}
if(est == 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
mydata <- filter(sim_results, ss_l2 == s2)
}
if(est == 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, ss_l1 == s1)
}
if(est != 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
mydata <- filter(sim_results, Estimator == est, ss_l2 == s2)
}
if(est != 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, Estimator == est, ss_l1 == s1)
}
if(est == 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, ss_l2 == s2, ss_l1 == s1)
}
if(est != 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
mydata <- filter(sim_results, Estimator == est, ss_l2 == s2, ss_l1 == s1)
}
## Create formula
model <- as.formula(paste0(CLASS[j], '~', index))
## Fit ROC curve
fit_roc[[key]] <- roc(model, data=mydata, quiet=T,
plot =F, ci=TRUE, print.auc=TRUE)
## Create a plot of "smoothed" curve for plotting
fit_roc_smooth[[key]] <- smooth(roc(model, data=mydata))
## Compute partial AUC for specificity .8-1
p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
partial.auc.focus = 'sp', partial.auc.correct = T)
## get summary info
roc_summary[i, 2] <- index
roc_summary[i, 1] <- CLASS[j]
roc_summary[i, 3] <- est ##estimator
roc_summary[i, 4] <- s2 ## level-2 sample size
roc_summary[i, 5] <- s1 ## level-1 sample size
roc_summary[i, 6] <- fit_roc[[key]]$auc ## total AUC
roc_summary[i, 7] <- p.auc ## corrected partial AUC (.5 is no discrimination)
roc_summary[i, 8] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
roc_summary[i, 9:11] <- coords(fit_roc[[key]], "best",
ret=c("threshold", "specificity", 'sensitivity'),
transpose=TRUE)
## add number of C and number of miss models in analysis
n.C <- nrow(mydata[ mydata[, CLASS[j]] == 1, ])
n.M <- nrow(mydata[ mydata[, CLASS[j]] == 0, ])
roc_summary[i, 12] <- n.C
roc_summary[i, 13] <- n.M
## print summary
#cat('\n\nSummary of ROC:\n')
#print(roc_summary[i, ])
## add to summary iterator
i <- i + 1
} ## end loop around ss l1
} ## End loop around ss l2
} ## End loop around estimator
} ## End loop round index
kable(roc_summary[801:1200, ], format = 'html', digits=3) %>%
kable_styling(full_width = T)
Classification | Index | Estimator | Level-2 SS | Level-1 SS | AUC | partial-AUC | Smoothed-AUC | Threshold | Specificity | Sensitivity | Num-C | Num-Mis | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
801 | CvM2 | CFI | ALL | ALL | ALL | 0.669 | 0.548 | 0.692 | 0.993 | 0.576 | 0.695 | 223583 | 223868 |
802 | CvM2 | CFI | ALL | ALL | 5 | 0.654 | 0.549 | 0.672 | 0.981 | 0.593 | 0.675 | 62891 | 63082 |
803 | CvM2 | CFI | ALL | ALL | 10 | 0.687 | 0.556 | 0.699 | 0.990 | 0.588 | 0.714 | 75570 | 75749 |
804 | CvM2 | CFI | ALL | ALL | 30 | 0.686 | 0.543 | 0.682 | 0.998 | 0.556 | 0.752 | 85122 | 85037 |
805 | CvM2 | CFI | ALL | 30 | ALL | 0.557 | 0.512 | 0.570 | 0.982 | 0.455 | 0.644 | 43725 | 43767 |
806 | CvM2 | CFI | ALL | 30 | 5 | 0.556 | 0.516 | 0.559 | 0.971 | 0.670 | 0.420 | 10875 | 10825 |
807 | CvM2 | CFI | ALL | 30 | 10 | 0.569 | 0.515 | 0.572 | 0.990 | 0.589 | 0.516 | 14530 | 14595 |
808 | CvM2 | CFI | ALL | 30 | 30 | 0.565 | 0.510 | 0.535 | 0.986 | 0.292 | 0.818 | 18320 | 18347 |
809 | CvM2 | CFI | ALL | 50 | ALL | 0.620 | 0.530 | 0.631 | 0.990 | 0.538 | 0.655 | 52104 | 52168 |
810 | CvM2 | CFI | ALL | 50 | 5 | 0.595 | 0.527 | 0.600 | 0.971 | 0.566 | 0.586 | 13813 | 13894 |
811 | CvM2 | CFI | ALL | 50 | 10 | 0.649 | 0.545 | 0.652 | 0.980 | 0.515 | 0.704 | 17513 | 17559 |
812 | CvM2 | CFI | ALL | 50 | 30 | 0.637 | 0.525 | 0.599 | 0.995 | 0.431 | 0.788 | 20778 | 20715 |
813 | CvM2 | CFI | ALL | 100 | ALL | 0.707 | 0.563 | 0.706 | 0.994 | 0.599 | 0.720 | 60747 | 60844 |
814 | CvM2 | CFI | ALL | 100 | 5 | 0.695 | 0.561 | 0.701 | 0.977 | 0.548 | 0.757 | 17384 | 17448 |
815 | CvM2 | CFI | ALL | 100 | 10 | 0.731 | 0.572 | 0.731 | 0.986 | 0.530 | 0.835 | 20799 | 20843 |
816 | CvM2 | CFI | ALL | 100 | 30 | 0.731 | 0.559 | 0.718 | 0.997 | 0.543 | 0.829 | 22564 | 22553 |
817 | CvM2 | CFI | ALL | 200 | ALL | 0.771 | 0.605 | 0.762 | 0.995 | 0.619 | 0.788 | 67007 | 67089 |
818 | CvM2 | CFI | ALL | 200 | 5 | 0.757 | 0.577 | 0.756 | 0.985 | 0.567 | 0.859 | 20819 | 20915 |
819 | CvM2 | CFI | ALL | 200 | 10 | 0.778 | 0.600 | 0.770 | 0.990 | 0.535 | 0.911 | 22728 | 22752 |
820 | CvM2 | CFI | ALL | 200 | 30 | 0.816 | 0.637 | 0.811 | 0.998 | 0.694 | 0.817 | 23460 | 23422 |
821 | CvM2 | CFI | MLR | ALL | ALL | 0.656 | 0.567 | 0.666 | 0.991 | 0.652 | 0.612 | 85732 | 85647 |
822 | CvM2 | CFI | MLR | ALL | 5 | 0.630 | 0.557 | 0.639 | 0.981 | 0.669 | 0.582 | 24596 | 24572 |
823 | CvM2 | CFI | MLR | ALL | 10 | 0.664 | 0.563 | 0.674 | 0.988 | 0.662 | 0.627 | 28824 | 28785 |
824 | CvM2 | CFI | MLR | ALL | 30 | 0.697 | 0.579 | 0.705 | 0.995 | 0.642 | 0.669 | 32312 | 32290 |
825 | CvM2 | CFI | MLR | 30 | ALL | 0.574 | 0.533 | 0.575 | 0.972 | 0.638 | 0.494 | 17855 | 17854 |
826 | CvM2 | CFI | MLR | 30 | 5 | 0.563 | 0.525 | 0.562 | 0.896 | 0.573 | 0.551 | 4747 | 4739 |
827 | CvM2 | CFI | MLR | 30 | 10 | 0.587 | 0.527 | 0.586 | 0.940 | 0.477 | 0.657 | 5832 | 5832 |
828 | CvM2 | CFI | MLR | 30 | 30 | 0.638 | 0.543 | 0.637 | 0.982 | 0.576 | 0.630 | 7276 | 7283 |
829 | CvM2 | CFI | MLR | 50 | ALL | 0.624 | 0.544 | 0.629 | 0.986 | 0.623 | 0.586 | 20411 | 20417 |
830 | CvM2 | CFI | MLR | 50 | 5 | 0.598 | 0.530 | 0.601 | 0.971 | 0.685 | 0.475 | 5706 | 5724 |
831 | CvM2 | CFI | MLR | 50 | 10 | 0.657 | 0.548 | 0.658 | 0.967 | 0.489 | 0.753 | 6787 | 6790 |
832 | CvM2 | CFI | MLR | 50 | 30 | 0.688 | 0.551 | 0.685 | 0.988 | 0.477 | 0.824 | 7918 | 7903 |
833 | CvM2 | CFI | MLR | 100 | ALL | 0.704 | 0.568 | 0.714 | 0.991 | 0.595 | 0.728 | 22941 | 22901 |
834 | CvM2 | CFI | MLR | 100 | 5 | 0.691 | 0.561 | 0.699 | 0.977 | 0.580 | 0.727 | 6647 | 6637 |
835 | CvM2 | CFI | MLR | 100 | 10 | 0.732 | 0.562 | 0.729 | 0.985 | 0.532 | 0.854 | 7855 | 7823 |
836 | CvM2 | CFI | MLR | 100 | 30 | 0.757 | 0.581 | 0.748 | 0.995 | 0.551 | 0.857 | 8439 | 8441 |
837 | CvM2 | CFI | MLR | 200 | ALL | 0.764 | 0.594 | 0.767 | 0.995 | 0.626 | 0.789 | 24525 | 24475 |
838 | CvM2 | CFI | MLR | 200 | 5 | 0.761 | 0.576 | 0.759 | 0.986 | 0.592 | 0.845 | 7496 | 7472 |
839 | CvM2 | CFI | MLR | 200 | 10 | 0.778 | 0.587 | 0.763 | 0.991 | 0.555 | 0.903 | 8350 | 8340 |
840 | CvM2 | CFI | MLR | 200 | 30 | 0.815 | 0.621 | 0.804 | 0.997 | 0.620 | 0.898 | 8679 | 8663 |
841 | CvM2 | CFI | ULSMV | ALL | ALL | 0.691 | 0.546 | 0.719 | 0.978 | 0.435 | 0.871 | 71635 | 71584 |
842 | CvM2 | CFI | ULSMV | ALL | 5 | 0.677 | 0.547 | 0.706 | 0.971 | 0.535 | 0.767 | 19976 | 19987 |
843 | CvM2 | CFI | ULSMV | ALL | 10 | 0.711 | 0.555 | 0.722 | 0.970 | 0.455 | 0.888 | 24264 | 24300 |
844 | CvM2 | CFI | ULSMV | ALL | 30 | 0.696 | 0.540 | 0.596 | 0.999 | 0.522 | 0.812 | 27395 | 27297 |
845 | CvM2 | CFI | ULSMV | 30 | ALL | 0.570 | 0.512 | 0.622 | 0.999 | 0.409 | 0.720 | 13710 | 13635 |
846 | CvM2 | CFI | ULSMV | 30 | 5 | 0.565 | 0.514 | 0.584 | 0.972 | 0.521 | 0.604 | 3256 | 3200 |
847 | CvM2 | CFI | ULSMV | 30 | 10 | 0.589 | 0.516 | 0.611 | 0.999 | 0.487 | 0.664 | 4632 | 4632 |
848 | CvM2 | CFI | ULSMV | 30 | 30 | 0.571 | 0.510 | 0.422 | 0.999 | 0.250 | 0.881 | 5822 | 5803 |
849 | CvM2 | CFI | ULSMV | 50 | ALL | 0.641 | 0.531 | 0.665 | 0.996 | 0.545 | 0.685 | 16566 | 16505 |
850 | CvM2 | CFI | ULSMV | 50 | 5 | 0.606 | 0.527 | 0.615 | 0.991 | 0.644 | 0.521 | 4339 | 4319 |
851 | CvM2 | CFI | ULSMV | 50 | 10 | 0.675 | 0.548 | 0.682 | 0.971 | 0.466 | 0.800 | 5547 | 5551 |
852 | CvM2 | CFI | ULSMV | 50 | 30 | 0.647 | 0.525 | 0.537 | 0.998 | 0.399 | 0.861 | 6680 | 6635 |
853 | CvM2 | CFI | ULSMV | 100 | ALL | 0.729 | 0.565 | 0.712 | 0.970 | 0.447 | 0.906 | 19541 | 19571 |
854 | CvM2 | CFI | ULSMV | 100 | 5 | 0.715 | 0.565 | 0.718 | 0.975 | 0.584 | 0.752 | 5546 | 5570 |
855 | CvM2 | CFI | ULSMV | 100 | 10 | 0.750 | 0.582 | 0.737 | 0.964 | 0.470 | 0.932 | 6712 | 6741 |
856 | CvM2 | CFI | ULSMV | 100 | 30 | 0.733 | 0.556 | 0.658 | 0.999 | 0.586 | 0.806 | 7283 | 7260 |
857 | CvM2 | CFI | ULSMV | 200 | ALL | 0.784 | 0.610 | 0.750 | 0.978 | 0.511 | 0.946 | 21818 | 21873 |
858 | CvM2 | CFI | ULSMV | 200 | 5 | 0.763 | 0.576 | 0.745 | 0.975 | 0.536 | 0.914 | 6835 | 6898 |
859 | CvM2 | CFI | ULSMV | 200 | 10 | 0.780 | 0.604 | 0.744 | 0.968 | 0.505 | 0.974 | 7373 | 7376 |
860 | CvM2 | CFI | ULSMV | 200 | 30 | 0.822 | 0.651 | 0.781 | 0.999 | 0.766 | 0.742 | 7610 | 7599 |
861 | CvM2 | CFI | WLSMV | ALL | ALL | 0.665 | 0.542 | 0.700 | 0.997 | 0.563 | 0.707 | 66216 | 66637 |
862 | CvM2 | CFI | WLSMV | ALL | 5 | 0.663 | 0.547 | 0.683 | 0.987 | 0.585 | 0.692 | 18319 | 18523 |
863 | CvM2 | CFI | WLSMV | ALL | 10 | 0.694 | 0.553 | 0.710 | 0.992 | 0.535 | 0.781 | 22482 | 22664 |
864 | CvM2 | CFI | WLSMV | ALL | 30 | 0.675 | 0.534 | 0.658 | 0.998 | 0.458 | 0.847 | 25415 | 25450 |
865 | CvM2 | CFI | WLSMV | 30 | ALL | 0.541 | 0.507 | 0.559 | 1.000 | 0.441 | 0.635 | 12160 | 12278 |
866 | CvM2 | CFI | WLSMV | 30 | 5 | 0.553 | 0.514 | 0.557 | 0.968 | 0.475 | 0.615 | 2872 | 2886 |
867 | CvM2 | CFI | WLSMV | 30 | 10 | 0.561 | 0.512 | 0.577 | 0.991 | 0.424 | 0.688 | 4066 | 4131 |
868 | CvM2 | CFI | WLSMV | 30 | 30 | 0.531 | 0.504 | 0.535 | 1.000 | 0.235 | 0.825 | 5222 | 5261 |
869 | CvM2 | CFI | WLSMV | 50 | ALL | 0.601 | 0.523 | 0.622 | 0.999 | 0.590 | 0.586 | 15127 | 15246 |
870 | CvM2 | CFI | WLSMV | 50 | 5 | 0.590 | 0.523 | 0.594 | 0.970 | 0.434 | 0.708 | 3768 | 3851 |
871 | CvM2 | CFI | WLSMV | 50 | 10 | 0.635 | 0.539 | 0.639 | 0.993 | 0.613 | 0.592 | 5179 | 5218 |
872 | CvM2 | CFI | WLSMV | 50 | 30 | 0.607 | 0.517 | 0.556 | 0.999 | 0.393 | 0.797 | 6180 | 6177 |
873 | CvM2 | CFI | WLSMV | 100 | ALL | 0.699 | 0.559 | 0.712 | 0.996 | 0.603 | 0.708 | 18265 | 18372 |
874 | CvM2 | CFI | WLSMV | 100 | 5 | 0.689 | 0.558 | 0.694 | 0.985 | 0.583 | 0.711 | 5191 | 5241 |
875 | CvM2 | CFI | WLSMV | 100 | 10 | 0.733 | 0.573 | 0.722 | 0.990 | 0.535 | 0.836 | 6232 | 6279 |
876 | CvM2 | CFI | WLSMV | 100 | 30 | 0.723 | 0.552 | 0.691 | 0.998 | 0.492 | 0.881 | 6842 | 6852 |
877 | CvM2 | CFI | WLSMV | 200 | ALL | 0.776 | 0.611 | 0.767 | 0.997 | 0.644 | 0.771 | 20664 | 20741 |
878 | CvM2 | CFI | WLSMV | 200 | 5 | 0.760 | 0.578 | 0.749 | 0.986 | 0.547 | 0.883 | 6488 | 6545 |
879 | CvM2 | CFI | WLSMV | 200 | 10 | 0.794 | 0.611 | 0.776 | 0.993 | 0.581 | 0.890 | 7005 | 7036 |
880 | CvM2 | CFI | WLSMV | 200 | 30 | 0.827 | 0.638 | 0.812 | 0.999 | 0.663 | 0.873 | 7171 | 7160 |
881 | CvM2 | TLI | ALL | ALL | ALL | 0.669 | 0.548 | 0.692 | 0.992 | 0.576 | 0.695 | 223583 | 223868 |
882 | CvM2 | TLI | ALL | ALL | 5 | 0.654 | 0.549 | 0.672 | 0.977 | 0.593 | 0.675 | 62891 | 63082 |
883 | CvM2 | TLI | ALL | ALL | 10 | 0.687 | 0.556 | 0.699 | 0.988 | 0.588 | 0.714 | 75570 | 75749 |
884 | CvM2 | TLI | ALL | ALL | 30 | 0.686 | 0.543 | 0.682 | 0.997 | 0.556 | 0.752 | 85122 | 85037 |
885 | CvM2 | TLI | ALL | 30 | ALL | 0.557 | 0.512 | 0.570 | 0.979 | 0.455 | 0.644 | 43725 | 43767 |
886 | CvM2 | TLI | ALL | 30 | 5 | 0.556 | 0.516 | 0.559 | 0.966 | 0.670 | 0.420 | 10875 | 10825 |
887 | CvM2 | TLI | ALL | 30 | 10 | 0.569 | 0.515 | 0.572 | 0.988 | 0.589 | 0.516 | 14530 | 14595 |
888 | CvM2 | TLI | ALL | 30 | 30 | 0.565 | 0.510 | 0.535 | 0.983 | 0.292 | 0.818 | 18320 | 18347 |
889 | CvM2 | TLI | ALL | 50 | ALL | 0.620 | 0.530 | 0.631 | 0.988 | 0.538 | 0.655 | 52104 | 52168 |
890 | CvM2 | TLI | ALL | 50 | 5 | 0.595 | 0.527 | 0.600 | 0.965 | 0.566 | 0.586 | 13813 | 13894 |
891 | CvM2 | TLI | ALL | 50 | 10 | 0.649 | 0.545 | 0.652 | 0.976 | 0.515 | 0.704 | 17513 | 17559 |
892 | CvM2 | TLI | ALL | 50 | 30 | 0.637 | 0.525 | 0.599 | 0.994 | 0.431 | 0.788 | 20778 | 20715 |
893 | CvM2 | TLI | ALL | 100 | ALL | 0.707 | 0.563 | 0.706 | 0.992 | 0.599 | 0.720 | 60747 | 60844 |
894 | CvM2 | TLI | ALL | 100 | 5 | 0.695 | 0.561 | 0.701 | 0.972 | 0.548 | 0.757 | 17384 | 17448 |
895 | CvM2 | TLI | ALL | 100 | 10 | 0.731 | 0.572 | 0.731 | 0.983 | 0.530 | 0.835 | 20799 | 20843 |
896 | CvM2 | TLI | ALL | 100 | 30 | 0.731 | 0.559 | 0.718 | 0.996 | 0.543 | 0.829 | 22564 | 22553 |
897 | CvM2 | TLI | ALL | 200 | ALL | 0.771 | 0.605 | 0.762 | 0.994 | 0.619 | 0.788 | 67007 | 67089 |
898 | CvM2 | TLI | ALL | 200 | 5 | 0.757 | 0.577 | 0.756 | 0.982 | 0.567 | 0.859 | 20819 | 20915 |
899 | CvM2 | TLI | ALL | 200 | 10 | 0.778 | 0.600 | 0.770 | 0.988 | 0.535 | 0.911 | 22728 | 22752 |
900 | CvM2 | TLI | ALL | 200 | 30 | 0.816 | 0.637 | 0.811 | 0.998 | 0.694 | 0.817 | 23460 | 23422 |
901 | CvM2 | TLI | MLR | ALL | ALL | 0.656 | 0.567 | 0.666 | 0.989 | 0.652 | 0.612 | 85732 | 85647 |
902 | CvM2 | TLI | MLR | ALL | 5 | 0.630 | 0.557 | 0.639 | 0.977 | 0.669 | 0.582 | 24596 | 24572 |
903 | CvM2 | TLI | MLR | ALL | 10 | 0.664 | 0.563 | 0.674 | 0.986 | 0.662 | 0.627 | 28824 | 28785 |
904 | CvM2 | TLI | MLR | ALL | 30 | 0.697 | 0.579 | 0.705 | 0.994 | 0.642 | 0.669 | 32312 | 32290 |
905 | CvM2 | TLI | MLR | 30 | ALL | 0.574 | 0.533 | 0.575 | 0.967 | 0.638 | 0.494 | 17855 | 17854 |
906 | CvM2 | TLI | MLR | 30 | 5 | 0.563 | 0.525 | 0.562 | 0.875 | 0.573 | 0.551 | 4747 | 4739 |
907 | CvM2 | TLI | MLR | 30 | 10 | 0.587 | 0.527 | 0.586 | 0.928 | 0.477 | 0.657 | 5832 | 5832 |
908 | CvM2 | TLI | MLR | 30 | 30 | 0.638 | 0.543 | 0.637 | 0.978 | 0.576 | 0.630 | 7276 | 7283 |
909 | CvM2 | TLI | MLR | 50 | ALL | 0.624 | 0.544 | 0.629 | 0.983 | 0.623 | 0.586 | 20411 | 20417 |
910 | CvM2 | TLI | MLR | 50 | 5 | 0.598 | 0.530 | 0.601 | 0.965 | 0.685 | 0.475 | 5706 | 5724 |
911 | CvM2 | TLI | MLR | 50 | 10 | 0.657 | 0.548 | 0.658 | 0.960 | 0.489 | 0.753 | 6787 | 6790 |
912 | CvM2 | TLI | MLR | 50 | 30 | 0.688 | 0.551 | 0.685 | 0.985 | 0.477 | 0.824 | 7918 | 7903 |
913 | CvM2 | TLI | MLR | 100 | ALL | 0.704 | 0.568 | 0.714 | 0.989 | 0.595 | 0.728 | 22941 | 22901 |
914 | CvM2 | TLI | MLR | 100 | 5 | 0.691 | 0.561 | 0.699 | 0.972 | 0.580 | 0.727 | 6647 | 6637 |
915 | CvM2 | TLI | MLR | 100 | 10 | 0.732 | 0.562 | 0.729 | 0.981 | 0.532 | 0.854 | 7855 | 7823 |
916 | CvM2 | TLI | MLR | 100 | 30 | 0.757 | 0.581 | 0.748 | 0.993 | 0.551 | 0.857 | 8439 | 8441 |
917 | CvM2 | TLI | MLR | 200 | ALL | 0.764 | 0.594 | 0.767 | 0.994 | 0.626 | 0.789 | 24525 | 24475 |
918 | CvM2 | TLI | MLR | 200 | 5 | 0.761 | 0.576 | 0.759 | 0.983 | 0.592 | 0.845 | 7496 | 7472 |
919 | CvM2 | TLI | MLR | 200 | 10 | 0.778 | 0.587 | 0.763 | 0.989 | 0.555 | 0.903 | 8350 | 8340 |
920 | CvM2 | TLI | MLR | 200 | 30 | 0.815 | 0.621 | 0.804 | 0.997 | 0.620 | 0.898 | 8679 | 8663 |
921 | CvM2 | TLI | ULSMV | ALL | ALL | 0.691 | 0.546 | 0.719 | 0.974 | 0.435 | 0.871 | 71635 | 71584 |
922 | CvM2 | TLI | ULSMV | ALL | 5 | 0.677 | 0.547 | 0.706 | 0.966 | 0.535 | 0.767 | 19976 | 19987 |
923 | CvM2 | TLI | ULSMV | ALL | 10 | 0.711 | 0.555 | 0.722 | 0.964 | 0.455 | 0.888 | 24264 | 24300 |
924 | CvM2 | TLI | ULSMV | ALL | 30 | 0.696 | 0.540 | 0.596 | 0.999 | 0.522 | 0.812 | 27395 | 27297 |
925 | CvM2 | TLI | ULSMV | 30 | ALL | 0.570 | 0.512 | 0.622 | 0.999 | 0.409 | 0.720 | 13710 | 13635 |
926 | CvM2 | TLI | ULSMV | 30 | 5 | 0.565 | 0.514 | 0.584 | 0.966 | 0.521 | 0.604 | 3256 | 3200 |
927 | CvM2 | TLI | ULSMV | 30 | 10 | 0.589 | 0.516 | 0.611 | 0.999 | 0.487 | 0.664 | 4632 | 4632 |
928 | CvM2 | TLI | ULSMV | 30 | 30 | 0.571 | 0.510 | 0.422 | 0.999 | 0.250 | 0.881 | 5822 | 5803 |
929 | CvM2 | TLI | ULSMV | 50 | ALL | 0.641 | 0.531 | 0.665 | 0.995 | 0.545 | 0.685 | 16566 | 16505 |
930 | CvM2 | TLI | ULSMV | 50 | 5 | 0.606 | 0.527 | 0.615 | 0.989 | 0.644 | 0.521 | 4339 | 4319 |
931 | CvM2 | TLI | ULSMV | 50 | 10 | 0.675 | 0.548 | 0.682 | 0.966 | 0.466 | 0.800 | 5547 | 5551 |
932 | CvM2 | TLI | ULSMV | 50 | 30 | 0.647 | 0.525 | 0.537 | 0.997 | 0.399 | 0.861 | 6680 | 6635 |
933 | CvM2 | TLI | ULSMV | 100 | ALL | 0.729 | 0.565 | 0.712 | 0.964 | 0.447 | 0.906 | 19541 | 19571 |
934 | CvM2 | TLI | ULSMV | 100 | 5 | 0.715 | 0.565 | 0.718 | 0.969 | 0.584 | 0.752 | 5546 | 5570 |
935 | CvM2 | TLI | ULSMV | 100 | 10 | 0.750 | 0.582 | 0.737 | 0.957 | 0.470 | 0.932 | 6712 | 6741 |
936 | CvM2 | TLI | ULSMV | 100 | 30 | 0.733 | 0.556 | 0.658 | 0.999 | 0.586 | 0.806 | 7283 | 7260 |
937 | CvM2 | TLI | ULSMV | 200 | ALL | 0.784 | 0.610 | 0.750 | 0.973 | 0.511 | 0.946 | 21818 | 21873 |
938 | CvM2 | TLI | ULSMV | 200 | 5 | 0.763 | 0.576 | 0.745 | 0.970 | 0.536 | 0.914 | 6835 | 6898 |
939 | CvM2 | TLI | ULSMV | 200 | 10 | 0.780 | 0.604 | 0.744 | 0.962 | 0.505 | 0.974 | 7373 | 7376 |
940 | CvM2 | TLI | ULSMV | 200 | 30 | 0.822 | 0.651 | 0.781 | 0.999 | 0.766 | 0.742 | 7610 | 7599 |
941 | CvM2 | TLI | WLSMV | ALL | ALL | 0.665 | 0.542 | 0.700 | 0.996 | 0.563 | 0.707 | 66216 | 66637 |
942 | CvM2 | TLI | WLSMV | ALL | 5 | 0.663 | 0.547 | 0.683 | 0.984 | 0.585 | 0.692 | 18319 | 18523 |
943 | CvM2 | TLI | WLSMV | ALL | 10 | 0.694 | 0.553 | 0.710 | 0.990 | 0.535 | 0.781 | 22482 | 22664 |
944 | CvM2 | TLI | WLSMV | ALL | 30 | 0.675 | 0.534 | 0.658 | 0.998 | 0.458 | 0.847 | 25415 | 25450 |
945 | CvM2 | TLI | WLSMV | 30 | ALL | 0.541 | 0.507 | 0.559 | 1.000 | 0.441 | 0.635 | 12160 | 12278 |
946 | CvM2 | TLI | WLSMV | 30 | 5 | 0.553 | 0.514 | 0.557 | 0.962 | 0.475 | 0.615 | 2872 | 2886 |
947 | CvM2 | TLI | WLSMV | 30 | 10 | 0.561 | 0.512 | 0.577 | 0.989 | 0.424 | 0.688 | 4066 | 4131 |
948 | CvM2 | TLI | WLSMV | 30 | 30 | 0.531 | 0.504 | 0.535 | 1.000 | 0.235 | 0.825 | 5222 | 5261 |
949 | CvM2 | TLI | WLSMV | 50 | ALL | 0.601 | 0.523 | 0.622 | 0.999 | 0.590 | 0.586 | 15127 | 15246 |
950 | CvM2 | TLI | WLSMV | 50 | 5 | 0.590 | 0.523 | 0.594 | 0.965 | 0.434 | 0.708 | 3768 | 3851 |
951 | CvM2 | TLI | WLSMV | 50 | 10 | 0.635 | 0.539 | 0.639 | 0.992 | 0.613 | 0.592 | 5179 | 5218 |
952 | CvM2 | TLI | WLSMV | 50 | 30 | 0.607 | 0.517 | 0.556 | 0.999 | 0.393 | 0.797 | 6180 | 6177 |
953 | CvM2 | TLI | WLSMV | 100 | ALL | 0.699 | 0.559 | 0.712 | 0.995 | 0.603 | 0.708 | 18265 | 18372 |
954 | CvM2 | TLI | WLSMV | 100 | 5 | 0.689 | 0.558 | 0.694 | 0.982 | 0.583 | 0.711 | 5191 | 5241 |
955 | CvM2 | TLI | WLSMV | 100 | 10 | 0.733 | 0.573 | 0.722 | 0.988 | 0.535 | 0.836 | 6232 | 6279 |
956 | CvM2 | TLI | WLSMV | 100 | 30 | 0.723 | 0.552 | 0.691 | 0.997 | 0.492 | 0.881 | 6842 | 6852 |
957 | CvM2 | TLI | WLSMV | 200 | ALL | 0.776 | 0.611 | 0.767 | 0.996 | 0.644 | 0.771 | 20664 | 20741 |
958 | CvM2 | TLI | WLSMV | 200 | 5 | 0.760 | 0.578 | 0.749 | 0.984 | 0.547 | 0.883 | 6488 | 6545 |
959 | CvM2 | TLI | WLSMV | 200 | 10 | 0.794 | 0.611 | 0.776 | 0.992 | 0.581 | 0.890 | 7005 | 7036 |
960 | CvM2 | TLI | WLSMV | 200 | 30 | 0.827 | 0.638 | 0.812 | 0.998 | 0.663 | 0.873 | 7171 | 7160 |
961 | CvM2 | RMSEA | ALL | ALL | ALL | 0.664 | 0.548 | 0.692 | 0.009 | 0.587 | 0.679 | 223583 | 223868 |
962 | CvM2 | RMSEA | ALL | ALL | 5 | 0.654 | 0.549 | 0.671 | 0.016 | 0.578 | 0.687 | 62891 | 63082 |
963 | CvM2 | RMSEA | ALL | ALL | 10 | 0.686 | 0.556 | 0.704 | 0.012 | 0.573 | 0.734 | 75570 | 75749 |
964 | CvM2 | RMSEA | ALL | ALL | 30 | 0.681 | 0.543 | 0.709 | 0.005 | 0.544 | 0.763 | 85122 | 85037 |
965 | CvM2 | RMSEA | ALL | 30 | ALL | 0.551 | 0.512 | 0.558 | 0.004 | 0.607 | 0.479 | 43725 | 43767 |
966 | CvM2 | RMSEA | ALL | 30 | 5 | 0.549 | 0.516 | 0.549 | 0.019 | 0.636 | 0.444 | 10875 | 10825 |
967 | CvM2 | RMSEA | ALL | 30 | 10 | 0.558 | 0.515 | 0.555 | 0.008 | 0.619 | 0.477 | 14530 | 14595 |
968 | CvM2 | RMSEA | ALL | 30 | 30 | 0.443 | NA | 0.473 | -Inf | 0.000 | 1.000 | 18320 | 18347 |
969 | CvM2 | RMSEA | ALL | 50 | ALL | 0.612 | 0.530 | 0.625 | 0.009 | 0.582 | 0.598 | 52104 | 52168 |
970 | CvM2 | RMSEA | ALL | 50 | 5 | 0.590 | 0.527 | 0.590 | 0.021 | 0.489 | 0.647 | 13813 | 13894 |
971 | CvM2 | RMSEA | ALL | 50 | 10 | 0.642 | 0.545 | 0.640 | 0.014 | 0.559 | 0.648 | 17513 | 17559 |
972 | CvM2 | RMSEA | ALL | 50 | 30 | 0.629 | 0.525 | 0.591 | 0.005 | 0.522 | 0.679 | 20778 | 20715 |
973 | CvM2 | RMSEA | ALL | 100 | ALL | 0.705 | 0.563 | 0.710 | 0.009 | 0.596 | 0.720 | 60747 | 60844 |
974 | CvM2 | RMSEA | ALL | 100 | 5 | 0.696 | 0.561 | 0.696 | 0.016 | 0.585 | 0.713 | 17384 | 17448 |
975 | CvM2 | RMSEA | ALL | 100 | 10 | 0.736 | 0.572 | 0.722 | 0.014 | 0.498 | 0.868 | 20799 | 20843 |
976 | CvM2 | RMSEA | ALL | 100 | 30 | 0.731 | 0.559 | 0.700 | 0.006 | 0.535 | 0.837 | 22564 | 22553 |
977 | CvM2 | RMSEA | ALL | 200 | ALL | 0.771 | 0.605 | 0.760 | 0.006 | 0.679 | 0.729 | 67007 | 67089 |
978 | CvM2 | RMSEA | ALL | 200 | 5 | 0.759 | 0.577 | 0.742 | 0.015 | 0.536 | 0.892 | 20819 | 20915 |
979 | CvM2 | RMSEA | ALL | 200 | 10 | 0.787 | 0.601 | 0.766 | 0.010 | 0.582 | 0.883 | 22728 | 22752 |
980 | CvM2 | RMSEA | ALL | 200 | 30 | 0.822 | 0.637 | 0.804 | 0.005 | 0.636 | 0.882 | 23460 | 23422 |
981 | CvM2 | RMSEA | MLR | ALL | ALL | 0.653 | 0.566 | 0.662 | 0.010 | 0.672 | 0.576 | 85732 | 85647 |
982 | CvM2 | RMSEA | MLR | ALL | 5 | 0.630 | 0.556 | 0.637 | 0.016 | 0.686 | 0.548 | 24596 | 24572 |
983 | CvM2 | RMSEA | MLR | ALL | 10 | 0.662 | 0.562 | 0.669 | 0.013 | 0.637 | 0.634 | 28824 | 28785 |
984 | CvM2 | RMSEA | MLR | ALL | 30 | 0.694 | 0.579 | 0.701 | 0.008 | 0.667 | 0.635 | 32312 | 32290 |
985 | CvM2 | RMSEA | MLR | 30 | ALL | 0.570 | 0.532 | 0.572 | 0.019 | 0.665 | 0.456 | 17855 | 17854 |
986 | CvM2 | RMSEA | MLR | 30 | 5 | 0.566 | 0.523 | 0.566 | 0.045 | 0.551 | 0.546 | 4747 | 4739 |
987 | CvM2 | RMSEA | MLR | 30 | 10 | 0.583 | 0.525 | 0.584 | 0.035 | 0.379 | 0.744 | 5832 | 5832 |
988 | CvM2 | RMSEA | MLR | 30 | 30 | 0.631 | 0.541 | 0.632 | 0.020 | 0.389 | 0.810 | 7276 | 7283 |
989 | CvM2 | RMSEA | MLR | 50 | ALL | 0.620 | 0.543 | 0.624 | 0.013 | 0.646 | 0.549 | 20411 | 20417 |
990 | CvM2 | RMSEA | MLR | 50 | 5 | 0.599 | 0.529 | 0.598 | 0.035 | 0.372 | 0.773 | 5706 | 5724 |
991 | CvM2 | RMSEA | MLR | 50 | 10 | 0.652 | 0.546 | 0.650 | 0.026 | 0.382 | 0.841 | 6787 | 6790 |
992 | CvM2 | RMSEA | MLR | 50 | 30 | 0.684 | 0.550 | 0.677 | 0.013 | 0.465 | 0.827 | 7918 | 7903 |
993 | CvM2 | RMSEA | MLR | 100 | ALL | 0.699 | 0.568 | 0.703 | 0.010 | 0.621 | 0.685 | 22941 | 22901 |
994 | CvM2 | RMSEA | MLR | 100 | 5 | 0.691 | 0.560 | 0.690 | 0.020 | 0.530 | 0.756 | 6647 | 6637 |
995 | CvM2 | RMSEA | MLR | 100 | 10 | 0.724 | 0.562 | 0.714 | 0.016 | 0.492 | 0.877 | 7855 | 7823 |
996 | CvM2 | RMSEA | MLR | 100 | 30 | 0.752 | 0.581 | 0.743 | 0.009 | 0.517 | 0.879 | 8439 | 8441 |
997 | CvM2 | RMSEA | MLR | 200 | ALL | 0.758 | 0.594 | 0.753 | 0.008 | 0.640 | 0.755 | 24525 | 24475 |
998 | CvM2 | RMSEA | MLR | 200 | 5 | 0.752 | 0.576 | 0.738 | 0.016 | 0.523 | 0.893 | 7496 | 7472 |
999 | CvM2 | RMSEA | MLR | 200 | 10 | 0.771 | 0.587 | 0.754 | 0.012 | 0.530 | 0.911 | 8350 | 8340 |
1000 | CvM2 | RMSEA | MLR | 200 | 30 | 0.812 | 0.621 | 0.798 | 0.006 | 0.606 | 0.903 | 8679 | 8663 |
1001 | CvM2 | RMSEA | ULSMV | ALL | ALL | 0.687 | 0.546 | 0.711 | 0.007 | 0.567 | 0.730 | 71635 | 71584 |
1002 | CvM2 | RMSEA | ULSMV | ALL | 5 | 0.684 | 0.547 | 0.703 | 0.016 | 0.512 | 0.788 | 19976 | 19987 |
1003 | CvM2 | RMSEA | ULSMV | ALL | 10 | 0.715 | 0.555 | 0.710 | 0.012 | 0.515 | 0.833 | 24264 | 24300 |
1004 | CvM2 | RMSEA | ULSMV | ALL | 30 | 0.695 | 0.540 | 0.652 | 0.004 | 0.493 | 0.844 | 27395 | 27297 |
1005 | CvM2 | RMSEA | ULSMV | 30 | ALL | 0.433 | NA | 0.395 | -Inf | 0.000 | 1.000 | 13710 | 13635 |
1006 | CvM2 | RMSEA | ULSMV | 30 | 5 | 0.566 | 0.514 | 0.581 | 0.011 | 0.541 | 0.586 | 3256 | 3200 |
1007 | CvM2 | RMSEA | ULSMV | 30 | 10 | 0.412 | NA | 0.402 | -Inf | 0.000 | 1.000 | 4632 | 4632 |
1008 | CvM2 | RMSEA | ULSMV | 30 | 30 | 0.433 | NA | 0.444 | -Inf | 0.000 | 1.000 | 5822 | 5803 |
1009 | CvM2 | RMSEA | ULSMV | 50 | ALL | 0.635 | 0.531 | 0.659 | 0.005 | 0.564 | 0.661 | 16566 | 16505 |
1010 | CvM2 | RMSEA | ULSMV | 50 | 5 | 0.609 | 0.527 | 0.611 | 0.016 | 0.503 | 0.662 | 4339 | 4319 |
1011 | CvM2 | RMSEA | ULSMV | 50 | 10 | 0.676 | 0.548 | 0.666 | 0.011 | 0.545 | 0.722 | 5547 | 5551 |
1012 | CvM2 | RMSEA | ULSMV | 50 | 30 | 0.357 | NA | 0.451 | -Inf | 0.000 | 1.000 | 6680 | 6635 |
1013 | CvM2 | RMSEA | ULSMV | 100 | ALL | 0.724 | 0.565 | 0.714 | 0.007 | 0.627 | 0.719 | 19541 | 19571 |
1014 | CvM2 | RMSEA | ULSMV | 100 | 5 | 0.719 | 0.565 | 0.713 | 0.017 | 0.523 | 0.821 | 5546 | 5570 |
1015 | CvM2 | RMSEA | ULSMV | 100 | 10 | 0.756 | 0.582 | 0.736 | 0.012 | 0.576 | 0.830 | 6712 | 6741 |
1016 | CvM2 | RMSEA | ULSMV | 100 | 30 | 0.735 | 0.556 | 0.676 | 0.005 | 0.513 | 0.883 | 7283 | 7260 |
1017 | CvM2 | RMSEA | ULSMV | 200 | ALL | 0.782 | 0.610 | 0.760 | 0.006 | 0.663 | 0.758 | 21818 | 21873 |
1018 | CvM2 | RMSEA | ULSMV | 200 | 5 | 0.766 | 0.576 | 0.744 | 0.015 | 0.541 | 0.907 | 6835 | 6898 |
1019 | CvM2 | RMSEA | ULSMV | 200 | 10 | 0.794 | 0.604 | 0.769 | 0.012 | 0.538 | 0.944 | 7373 | 7376 |
1020 | CvM2 | RMSEA | ULSMV | 200 | 30 | 0.833 | 0.651 | 0.823 | 0.004 | 0.716 | 0.817 | 7610 | 7599 |
1021 | CvM2 | RMSEA | WLSMV | ALL | ALL | 0.664 | 0.542 | 0.697 | 0.006 | 0.583 | 0.685 | 66216 | 66637 |
1022 | CvM2 | RMSEA | WLSMV | ALL | 5 | 0.665 | 0.547 | 0.684 | 0.013 | 0.585 | 0.692 | 18319 | 18523 |
1023 | CvM2 | RMSEA | WLSMV | ALL | 10 | 0.696 | 0.553 | 0.711 | 0.011 | 0.547 | 0.767 | 22482 | 22664 |
1024 | CvM2 | RMSEA | WLSMV | ALL | 30 | 0.674 | 0.534 | 0.679 | 0.004 | 0.468 | 0.836 | 25415 | 25450 |
1025 | CvM2 | RMSEA | WLSMV | 30 | ALL | 0.459 | NA | 0.444 | 0.054 | 1.000 | 0.001 | 12160 | 12278 |
1026 | CvM2 | RMSEA | WLSMV | 30 | 5 | 0.553 | 0.514 | 0.557 | 0.017 | 0.542 | 0.545 | 2872 | 2886 |
1027 | CvM2 | RMSEA | WLSMV | 30 | 10 | 0.560 | 0.512 | 0.575 | 0.008 | 0.478 | 0.629 | 4066 | 4131 |
1028 | CvM2 | RMSEA | WLSMV | 30 | 30 | 0.470 | NA | 0.455 | 0.021 | 1.000 | 0.000 | 5222 | 5261 |
1029 | CvM2 | RMSEA | WLSMV | 50 | ALL | 0.599 | 0.523 | 0.617 | 0.003 | 0.589 | 0.587 | 15127 | 15246 |
1030 | CvM2 | RMSEA | WLSMV | 50 | 5 | 0.589 | 0.523 | 0.593 | 0.013 | 0.605 | 0.533 | 3768 | 3851 |
1031 | CvM2 | RMSEA | WLSMV | 50 | 10 | 0.634 | 0.539 | 0.638 | 0.009 | 0.637 | 0.569 | 5179 | 5218 |
1032 | CvM2 | RMSEA | WLSMV | 50 | 30 | 0.396 | NA | 0.420 | -Inf | 0.000 | 1.000 | 6180 | 6177 |
1033 | CvM2 | RMSEA | WLSMV | 100 | ALL | 0.696 | 0.559 | 0.708 | 0.007 | 0.613 | 0.698 | 18265 | 18372 |
1034 | CvM2 | RMSEA | WLSMV | 100 | 5 | 0.689 | 0.558 | 0.691 | 0.015 | 0.549 | 0.745 | 5191 | 5241 |
1035 | CvM2 | RMSEA | WLSMV | 100 | 10 | 0.733 | 0.573 | 0.722 | 0.012 | 0.540 | 0.826 | 6232 | 6279 |
1036 | CvM2 | RMSEA | WLSMV | 100 | 30 | 0.722 | 0.552 | 0.689 | 0.005 | 0.501 | 0.867 | 6842 | 6852 |
1037 | CvM2 | RMSEA | WLSMV | 200 | ALL | 0.775 | 0.611 | 0.768 | 0.006 | 0.675 | 0.743 | 20664 | 20741 |
1038 | CvM2 | RMSEA | WLSMV | 200 | 5 | 0.760 | 0.578 | 0.746 | 0.014 | 0.541 | 0.892 | 6488 | 6545 |
1039 | CvM2 | RMSEA | WLSMV | 200 | 10 | 0.797 | 0.611 | 0.778 | 0.010 | 0.602 | 0.879 | 7005 | 7036 |
1040 | CvM2 | RMSEA | WLSMV | 200 | 30 | 0.827 | 0.638 | 0.810 | 0.005 | 0.644 | 0.891 | 7171 | 7160 |
1041 | CvM2 | SRMRW | ALL | ALL | ALL | 0.527 | 0.505 | 0.524 | 0.031 | 0.452 | 0.597 | 223583 | 223868 |
1042 | CvM2 | SRMRW | ALL | ALL | 5 | 0.524 | 0.512 | 0.523 | 0.037 | 0.639 | 0.405 | 62891 | 63082 |
1043 | CvM2 | SRMRW | ALL | ALL | 10 | 0.530 | 0.508 | 0.528 | 0.031 | 0.498 | 0.553 | 75570 | 75749 |
1044 | CvM2 | SRMRW | ALL | ALL | 30 | 0.535 | 0.505 | 0.536 | 0.025 | 0.268 | 0.796 | 85122 | 85037 |
1045 | CvM2 | SRMRW | ALL | 30 | ALL | 0.505 | 0.500 | 0.505 | 0.041 | 0.572 | 0.440 | 43725 | 43767 |
1046 | CvM2 | SRMRW | ALL | 30 | 5 | 0.505 | 0.503 | 0.506 | 0.067 | 0.671 | 0.344 | 10875 | 10825 |
1047 | CvM2 | SRMRW | ALL | 30 | 10 | 0.504 | 0.500 | 0.506 | 0.069 | 0.112 | 0.904 | 14530 | 14595 |
1048 | CvM2 | SRMRW | ALL | 30 | 30 | 0.507 | 0.500 | 0.509 | 0.041 | 0.135 | 0.891 | 18320 | 18347 |
1049 | CvM2 | SRMRW | ALL | 50 | ALL | 0.517 | 0.502 | 0.517 | 0.037 | 0.483 | 0.547 | 52104 | 52168 |
1050 | CvM2 | SRMRW | ALL | 50 | 5 | 0.513 | 0.505 | 0.515 | 0.054 | 0.618 | 0.405 | 13813 | 13894 |
1051 | CvM2 | SRMRW | ALL | 50 | 10 | 0.516 | 0.504 | 0.519 | 0.047 | 0.198 | 0.834 | 17513 | 17559 |
1052 | CvM2 | SRMRW | ALL | 50 | 30 | 0.516 | 0.501 | 0.522 | 0.033 | 0.137 | 0.916 | 20778 | 20715 |
1053 | CvM2 | SRMRW | ALL | 100 | ALL | 0.532 | 0.503 | 0.534 | 0.033 | 0.359 | 0.697 | 60747 | 60844 |
1054 | CvM2 | SRMRW | ALL | 100 | 5 | 0.538 | 0.510 | 0.543 | 0.044 | 0.365 | 0.690 | 17384 | 17448 |
1055 | CvM2 | SRMRW | ALL | 100 | 10 | 0.536 | 0.506 | 0.545 | 0.038 | 0.138 | 0.932 | 20799 | 20843 |
1056 | CvM2 | SRMRW | ALL | 100 | 30 | 0.528 | 0.503 | 0.540 | 0.026 | 0.153 | 0.935 | 22564 | 22553 |
1057 | CvM2 | SRMRW | ALL | 200 | ALL | 0.554 | 0.506 | 0.561 | 0.028 | 0.275 | 0.822 | 67007 | 67089 |
1058 | CvM2 | SRMRW | ALL | 200 | 5 | 0.570 | 0.516 | 0.579 | 0.032 | 0.383 | 0.721 | 20819 | 20915 |
1059 | CvM2 | SRMRW | ALL | 200 | 10 | 0.558 | 0.510 | 0.573 | 0.028 | 0.161 | 0.948 | 22728 | 22752 |
1060 | CvM2 | SRMRW | ALL | 200 | 30 | 0.545 | 0.506 | 0.566 | 0.023 | 0.153 | 0.974 | 23460 | 23422 |
1061 | CvM2 | SRMRW | MLR | ALL | ALL | 0.507 | 0.501 | 0.508 | 0.028 | 0.386 | 0.630 | 85732 | 85647 |
1062 | CvM2 | SRMRW | MLR | ALL | 5 | 0.522 | 0.516 | 0.524 | 0.029 | 0.752 | 0.296 | 24596 | 24572 |
1063 | CvM2 | SRMRW | MLR | ALL | 10 | 0.509 | 0.508 | 0.510 | 0.018 | 0.782 | 0.240 | 28824 | 28785 |
1064 | CvM2 | SRMRW | MLR | ALL | 30 | 0.504 | 0.504 | 0.504 | 0.009 | 0.884 | 0.127 | 32312 | 32290 |
1065 | CvM2 | SRMRW | MLR | 30 | ALL | 0.499 | NA | 0.497 | 0.024 | 0.270 | 0.736 | 17855 | 17854 |
1066 | CvM2 | SRMRW | MLR | 30 | 5 | 0.521 | 0.505 | 0.523 | 0.071 | 0.204 | 0.836 | 4747 | 4739 |
1067 | CvM2 | SRMRW | MLR | 30 | 10 | 0.504 | NA | 0.503 | 0.044 | 0.329 | 0.693 | 5832 | 5832 |
1068 | CvM2 | SRMRW | MLR | 30 | 30 | 0.502 | 0.501 | 0.502 | 0.024 | 0.674 | 0.340 | 7276 | 7283 |
1069 | CvM2 | SRMRW | MLR | 50 | ALL | 0.506 | 0.501 | 0.508 | 0.048 | 0.181 | 0.834 | 20411 | 20417 |
1070 | CvM2 | SRMRW | MLR | 50 | 5 | 0.526 | 0.506 | 0.527 | 0.048 | 0.630 | 0.417 | 5706 | 5724 |
1071 | CvM2 | SRMRW | MLR | 50 | 10 | 0.516 | 0.503 | 0.515 | 0.031 | 0.624 | 0.408 | 6787 | 6790 |
1072 | CvM2 | SRMRW | MLR | 50 | 30 | 0.504 | 0.501 | 0.504 | 0.019 | 0.278 | 0.736 | 7918 | 7903 |
1073 | CvM2 | SRMRW | MLR | 100 | ALL | 0.509 | 0.502 | 0.513 | 0.036 | 0.134 | 0.892 | 22941 | 22901 |
1074 | CvM2 | SRMRW | MLR | 100 | 5 | 0.556 | 0.512 | 0.557 | 0.038 | 0.354 | 0.734 | 6647 | 6637 |
1075 | CvM2 | SRMRW | MLR | 100 | 10 | 0.523 | 0.507 | 0.524 | 0.024 | 0.399 | 0.641 | 7855 | 7823 |
1076 | CvM2 | SRMRW | MLR | 100 | 30 | 0.510 | 0.502 | 0.510 | 0.013 | 0.302 | 0.720 | 8439 | 8441 |
1077 | CvM2 | SRMRW | MLR | 200 | ALL | 0.518 | 0.504 | 0.527 | 0.029 | 0.081 | 0.964 | 24525 | 24475 |
1078 | CvM2 | SRMRW | MLR | 200 | 5 | 0.592 | 0.520 | 0.599 | 0.029 | 0.252 | 0.889 | 7496 | 7472 |
1079 | CvM2 | SRMRW | MLR | 200 | 10 | 0.548 | 0.511 | 0.548 | 0.016 | 0.555 | 0.518 | 8350 | 8340 |
1080 | CvM2 | SRMRW | MLR | 200 | 30 | 0.523 | 0.507 | 0.523 | 0.009 | 0.569 | 0.472 | 8679 | 8663 |
1081 | CvM2 | SRMRW | ULSMV | ALL | ALL | 0.562 | 0.521 | 0.553 | 0.032 | 0.608 | 0.503 | 71635 | 71584 |
1082 | CvM2 | SRMRW | ULSMV | ALL | 5 | 0.533 | 0.511 | 0.528 | 0.042 | 0.674 | 0.407 | 19976 | 19987 |
1083 | CvM2 | SRMRW | ULSMV | ALL | 10 | 0.563 | 0.516 | 0.555 | 0.032 | 0.660 | 0.469 | 24264 | 24300 |
1084 | CvM2 | SRMRW | ULSMV | ALL | 30 | 0.600 | 0.511 | 0.588 | 0.025 | 0.565 | 0.618 | 27395 | 27297 |
1085 | CvM2 | SRMRW | ULSMV | 30 | ALL | 0.513 | 0.502 | 0.512 | 0.041 | 0.722 | 0.313 | 13710 | 13635 |
1086 | CvM2 | SRMRW | ULSMV | 30 | 5 | 0.503 | NA | 0.503 | 0.102 | 0.320 | 0.704 | 3256 | 3200 |
1087 | CvM2 | SRMRW | ULSMV | 30 | 10 | 0.516 | NA | 0.517 | 0.069 | 0.338 | 0.712 | 4632 | 4632 |
1088 | CvM2 | SRMRW | ULSMV | 30 | 30 | 0.533 | 0.501 | 0.532 | 0.041 | 0.407 | 0.677 | 5822 | 5803 |
1089 | CvM2 | SRMRW | ULSMV | 50 | ALL | 0.539 | 0.508 | 0.536 | 0.034 | 0.716 | 0.353 | 16566 | 16505 |
1090 | CvM2 | SRMRW | ULSMV | 50 | 5 | 0.522 | 0.502 | 0.524 | 0.084 | 0.184 | 0.862 | 4339 | 4319 |
1091 | CvM2 | SRMRW | ULSMV | 50 | 10 | 0.544 | 0.501 | 0.543 | 0.056 | 0.278 | 0.808 | 5547 | 5551 |
1092 | CvM2 | SRMRW | ULSMV | 50 | 30 | 0.570 | 0.501 | 0.569 | 0.033 | 0.408 | 0.751 | 6680 | 6635 |
1093 | CvM2 | SRMRW | ULSMV | 100 | ALL | 0.580 | 0.511 | 0.576 | 0.035 | 0.520 | 0.613 | 19541 | 19571 |
1094 | CvM2 | SRMRW | ULSMV | 100 | 5 | 0.563 | 0.503 | 0.566 | 0.055 | 0.330 | 0.792 | 5546 | 5570 |
1095 | CvM2 | SRMRW | ULSMV | 100 | 10 | 0.595 | 0.505 | 0.597 | 0.038 | 0.402 | 0.801 | 6712 | 6741 |
1096 | CvM2 | SRMRW | ULSMV | 100 | 30 | 0.605 | 0.503 | 0.611 | 0.026 | 0.457 | 0.807 | 7283 | 7260 |
1097 | CvM2 | SRMRW | ULSMV | 200 | ALL | 0.630 | 0.514 | 0.628 | 0.028 | 0.527 | 0.695 | 21818 | 21873 |
1098 | CvM2 | SRMRW | ULSMV | 200 | 5 | 0.606 | 0.504 | 0.616 | 0.041 | 0.333 | 0.889 | 6835 | 6898 |
1099 | CvM2 | SRMRW | ULSMV | 200 | 10 | 0.630 | 0.504 | 0.644 | 0.029 | 0.427 | 0.893 | 7373 | 7376 |
1100 | CvM2 | SRMRW | ULSMV | 200 | 30 | 0.636 | 0.504 | 0.661 | 0.023 | 0.459 | 0.921 | 7610 | 7599 |
1101 | CvM2 | SRMRW | WLSMV | ALL | ALL | 0.515 | 0.507 | 0.516 | 0.021 | 0.700 | 0.325 | 66216 | 66637 |
1102 | CvM2 | SRMRW | WLSMV | ALL | 5 | 0.520 | 0.515 | 0.520 | 0.032 | 0.794 | 0.257 | 18319 | 18523 |
1103 | CvM2 | SRMRW | WLSMV | ALL | 10 | 0.522 | 0.518 | 0.523 | 0.021 | 0.834 | 0.220 | 22482 | 22664 |
1104 | CvM2 | SRMRW | WLSMV | ALL | 30 | 0.518 | 0.517 | 0.521 | 0.012 | 0.838 | 0.207 | 25415 | 25450 |
1105 | CvM2 | SRMRW | WLSMV | 30 | ALL | 0.504 | 0.503 | 0.504 | 0.026 | 0.885 | 0.126 | 12160 | 12278 |
1106 | CvM2 | SRMRW | WLSMV | 30 | 5 | 0.509 | 0.500 | 0.509 | 0.081 | 0.429 | 0.593 | 2872 | 2886 |
1107 | CvM2 | SRMRW | WLSMV | 30 | 10 | 0.504 | NA | 0.503 | 0.053 | 0.440 | 0.579 | 4066 | 4131 |
1108 | CvM2 | SRMRW | WLSMV | 30 | 30 | 0.512 | 0.503 | 0.513 | 0.026 | 0.741 | 0.283 | 5222 | 5261 |
1109 | CvM2 | SRMRW | WLSMV | 50 | ALL | 0.513 | 0.506 | 0.514 | 0.023 | 0.745 | 0.278 | 15127 | 15246 |
1110 | CvM2 | SRMRW | WLSMV | 50 | 5 | 0.516 | 0.502 | 0.514 | 0.062 | 0.470 | 0.567 | 3768 | 3851 |
1111 | CvM2 | SRMRW | WLSMV | 50 | 10 | 0.517 | 0.505 | 0.517 | 0.039 | 0.572 | 0.458 | 5179 | 5218 |
1112 | CvM2 | SRMRW | WLSMV | 50 | 30 | 0.524 | 0.507 | 0.523 | 0.023 | 0.380 | 0.660 | 6180 | 6177 |
1113 | CvM2 | SRMRW | WLSMV | 100 | ALL | 0.518 | 0.510 | 0.521 | 0.028 | 0.460 | 0.571 | 18265 | 18372 |
1114 | CvM2 | SRMRW | WLSMV | 100 | 5 | 0.542 | 0.508 | 0.540 | 0.044 | 0.438 | 0.640 | 5191 | 5241 |
1115 | CvM2 | SRMRW | WLSMV | 100 | 10 | 0.548 | 0.512 | 0.547 | 0.028 | 0.524 | 0.553 | 6232 | 6279 |
1116 | CvM2 | SRMRW | WLSMV | 100 | 30 | 0.544 | 0.513 | 0.544 | 0.017 | 0.343 | 0.729 | 6842 | 6852 |
1117 | CvM2 | SRMRW | WLSMV | 200 | ALL | 0.535 | 0.519 | 0.542 | 0.021 | 0.475 | 0.584 | 20664 | 20741 |
1118 | CvM2 | SRMRW | WLSMV | 200 | 5 | 0.580 | 0.513 | 0.581 | 0.032 | 0.447 | 0.687 | 6488 | 6545 |
1119 | CvM2 | SRMRW | WLSMV | 200 | 10 | 0.599 | 0.519 | 0.599 | 0.021 | 0.486 | 0.674 | 7005 | 7036 |
1120 | CvM2 | SRMRW | WLSMV | 200 | 30 | 0.589 | 0.523 | 0.588 | 0.011 | 0.463 | 0.684 | 7171 | 7160 |
1121 | CvM2 | SRMRB | ALL | ALL | ALL | 0.634 | 0.601 | 0.642 | 0.076 | 0.777 | 0.441 | 223583 | 223868 |
1122 | CvM2 | SRMRB | ALL | ALL | 5 | 0.596 | 0.576 | 0.602 | 0.078 | 0.821 | 0.344 | 62891 | 63082 |
1123 | CvM2 | SRMRB | ALL | ALL | 10 | 0.631 | 0.599 | 0.639 | 0.078 | 0.769 | 0.441 | 75570 | 75749 |
1124 | CvM2 | SRMRB | ALL | ALL | 30 | 0.675 | 0.625 | 0.683 | 0.071 | 0.773 | 0.497 | 85122 | 85037 |
1125 | CvM2 | SRMRB | ALL | 30 | ALL | 0.584 | 0.551 | 0.585 | 0.127 | 0.718 | 0.407 | 43725 | 43767 |
1126 | CvM2 | SRMRB | ALL | 30 | 5 | 0.560 | 0.526 | 0.557 | 0.162 | 0.578 | 0.522 | 10875 | 10825 |
1127 | CvM2 | SRMRB | ALL | 30 | 10 | 0.575 | 0.542 | 0.572 | 0.127 | 0.729 | 0.390 | 14530 | 14595 |
1128 | CvM2 | SRMRB | ALL | 30 | 30 | 0.623 | 0.576 | 0.627 | 0.115 | 0.762 | 0.416 | 18320 | 18347 |
1129 | CvM2 | SRMRB | ALL | 50 | ALL | 0.630 | 0.584 | 0.633 | 0.102 | 0.727 | 0.466 | 52104 | 52168 |
1130 | CvM2 | SRMRB | ALL | 50 | 5 | 0.588 | 0.542 | 0.584 | 0.123 | 0.626 | 0.513 | 13813 | 13894 |
1131 | CvM2 | SRMRB | ALL | 50 | 10 | 0.619 | 0.578 | 0.618 | 0.102 | 0.753 | 0.440 | 17513 | 17559 |
1132 | CvM2 | SRMRB | ALL | 50 | 30 | 0.687 | 0.621 | 0.699 | 0.092 | 0.773 | 0.488 | 20778 | 20715 |
1133 | CvM2 | SRMRB | ALL | 100 | ALL | 0.701 | 0.637 | 0.703 | 0.080 | 0.706 | 0.600 | 60747 | 60844 |
1134 | CvM2 | SRMRB | ALL | 100 | 5 | 0.641 | 0.591 | 0.636 | 0.088 | 0.731 | 0.495 | 17384 | 17448 |
1135 | CvM2 | SRMRB | ALL | 100 | 10 | 0.698 | 0.643 | 0.701 | 0.078 | 0.762 | 0.548 | 20799 | 20843 |
1136 | CvM2 | SRMRB | ALL | 100 | 30 | 0.781 | 0.683 | 0.808 | 0.076 | 0.666 | 0.717 | 22564 | 22553 |
1137 | CvM2 | SRMRB | ALL | 200 | ALL | 0.766 | 0.681 | 0.765 | 0.061 | 0.729 | 0.677 | 67007 | 67089 |
1138 | CvM2 | SRMRB | ALL | 200 | 5 | 0.701 | 0.642 | 0.698 | 0.069 | 0.742 | 0.593 | 20819 | 20915 |
1139 | CvM2 | SRMRB | ALL | 200 | 10 | 0.776 | 0.696 | 0.791 | 0.059 | 0.763 | 0.643 | 22728 | 22752 |
1140 | CvM2 | SRMRB | ALL | 200 | 30 | 0.848 | 0.729 | 0.876 | 0.058 | 0.674 | 0.825 | 23460 | 23422 |
1141 | CvM2 | SRMRB | MLR | ALL | ALL | 0.654 | 0.621 | 0.659 | 0.092 | 0.814 | 0.441 | 85732 | 85647 |
1142 | CvM2 | SRMRB | MLR | ALL | 5 | 0.617 | 0.599 | 0.626 | 0.097 | 0.848 | 0.356 | 24596 | 24572 |
1143 | CvM2 | SRMRB | MLR | ALL | 10 | 0.653 | 0.621 | 0.661 | 0.092 | 0.816 | 0.432 | 28824 | 28785 |
1144 | CvM2 | SRMRB | MLR | ALL | 30 | 0.699 | 0.642 | 0.703 | 0.087 | 0.808 | 0.505 | 32312 | 32290 |
1145 | CvM2 | SRMRB | MLR | 30 | ALL | 0.613 | 0.593 | 0.619 | 0.143 | 0.871 | 0.324 | 17855 | 17854 |
1146 | CvM2 | SRMRB | MLR | 30 | 5 | 0.575 | 0.552 | 0.576 | 0.172 | 0.771 | 0.376 | 4747 | 4739 |
1147 | CvM2 | SRMRB | MLR | 30 | 10 | 0.607 | 0.583 | 0.610 | 0.151 | 0.817 | 0.375 | 5832 | 5832 |
1148 | CvM2 | SRMRB | MLR | 30 | 30 | 0.676 | 0.644 | 0.687 | 0.143 | 0.805 | 0.486 | 7276 | 7283 |
1149 | CvM2 | SRMRB | MLR | 50 | ALL | 0.678 | 0.640 | 0.683 | 0.122 | 0.824 | 0.466 | 20411 | 20417 |
1150 | CvM2 | SRMRB | MLR | 50 | 5 | 0.629 | 0.590 | 0.628 | 0.143 | 0.719 | 0.511 | 5706 | 5724 |
1151 | CvM2 | SRMRB | MLR | 50 | 10 | 0.675 | 0.648 | 0.680 | 0.125 | 0.803 | 0.507 | 6787 | 6790 |
1152 | CvM2 | SRMRB | MLR | 50 | 30 | 0.756 | 0.694 | 0.768 | 0.119 | 0.758 | 0.624 | 7918 | 7903 |
1153 | CvM2 | SRMRB | MLR | 100 | ALL | 0.756 | 0.699 | 0.754 | 0.098 | 0.744 | 0.672 | 22941 | 22901 |
1154 | CvM2 | SRMRB | MLR | 100 | 5 | 0.703 | 0.673 | 0.704 | 0.104 | 0.822 | 0.549 | 6647 | 6637 |
1155 | CvM2 | SRMRB | MLR | 100 | 10 | 0.757 | 0.721 | 0.762 | 0.094 | 0.832 | 0.606 | 7855 | 7823 |
1156 | CvM2 | SRMRB | MLR | 100 | 30 | 0.846 | 0.746 | 0.866 | 0.087 | 0.809 | 0.692 | 8439 | 8441 |
1157 | CvM2 | SRMRB | MLR | 200 | ALL | 0.808 | 0.729 | 0.800 | 0.072 | 0.795 | 0.710 | 24525 | 24475 |
1158 | CvM2 | SRMRB | MLR | 200 | 5 | 0.757 | 0.723 | 0.760 | 0.079 | 0.828 | 0.623 | 7496 | 7472 |
1159 | CvM2 | SRMRB | MLR | 200 | 10 | 0.821 | 0.751 | 0.838 | 0.071 | 0.828 | 0.680 | 8350 | 8340 |
1160 | CvM2 | SRMRB | MLR | 200 | 30 | 0.889 | 0.767 | 0.908 | 0.071 | 0.685 | 0.906 | 8679 | 8663 |
1161 | CvM2 | SRMRB | ULSMV | ALL | ALL | 0.629 | 0.612 | 0.642 | 0.063 | 0.813 | 0.409 | 71635 | 71584 |
1162 | CvM2 | SRMRB | ULSMV | ALL | 5 | 0.589 | 0.581 | 0.601 | 0.065 | 0.855 | 0.311 | 19976 | 19987 |
1163 | CvM2 | SRMRB | ULSMV | ALL | 10 | 0.626 | 0.610 | 0.641 | 0.058 | 0.869 | 0.349 | 24264 | 24300 |
1164 | CvM2 | SRMRB | ULSMV | ALL | 30 | 0.670 | 0.638 | 0.682 | 0.059 | 0.812 | 0.464 | 27395 | 27297 |
1165 | CvM2 | SRMRB | ULSMV | 30 | ALL | 0.575 | 0.555 | 0.582 | 0.106 | 0.747 | 0.383 | 13710 | 13635 |
1166 | CvM2 | SRMRB | ULSMV | 30 | 5 | 0.559 | 0.529 | 0.559 | 0.116 | 0.811 | 0.289 | 3256 | 3200 |
1167 | CvM2 | SRMRB | ULSMV | 30 | 10 | 0.571 | 0.542 | 0.569 | 0.108 | 0.735 | 0.403 | 4632 | 4632 |
1168 | CvM2 | SRMRB | ULSMV | 30 | 30 | 0.605 | 0.587 | 0.615 | 0.096 | 0.796 | 0.395 | 5822 | 5803 |
1169 | CvM2 | SRMRB | ULSMV | 50 | ALL | 0.622 | 0.597 | 0.631 | 0.082 | 0.833 | 0.371 | 16566 | 16505 |
1170 | CvM2 | SRMRB | ULSMV | 50 | 5 | 0.582 | 0.549 | 0.580 | 0.104 | 0.640 | 0.504 | 4339 | 4319 |
1171 | CvM2 | SRMRB | ULSMV | 50 | 10 | 0.617 | 0.591 | 0.620 | 0.088 | 0.758 | 0.458 | 5547 | 5551 |
1172 | CvM2 | SRMRB | ULSMV | 50 | 30 | 0.674 | 0.647 | 0.693 | 0.076 | 0.835 | 0.460 | 6680 | 6635 |
1173 | CvM2 | SRMRB | ULSMV | 100 | ALL | 0.701 | 0.664 | 0.707 | 0.065 | 0.826 | 0.498 | 19541 | 19571 |
1174 | CvM2 | SRMRB | ULSMV | 100 | 5 | 0.641 | 0.611 | 0.638 | 0.075 | 0.771 | 0.481 | 5546 | 5570 |
1175 | CvM2 | SRMRB | ULSMV | 100 | 10 | 0.698 | 0.681 | 0.706 | 0.063 | 0.879 | 0.489 | 6712 | 6741 |
1176 | CvM2 | SRMRB | ULSMV | 100 | 30 | 0.777 | 0.716 | 0.809 | 0.055 | 0.930 | 0.480 | 7283 | 7260 |
1177 | CvM2 | SRMRB | ULSMV | 200 | ALL | 0.769 | 0.715 | 0.772 | 0.049 | 0.847 | 0.571 | 21818 | 21873 |
1178 | CvM2 | SRMRB | ULSMV | 200 | 5 | 0.703 | 0.673 | 0.703 | 0.059 | 0.783 | 0.567 | 6835 | 6898 |
1179 | CvM2 | SRMRB | ULSMV | 200 | 10 | 0.778 | 0.739 | 0.798 | 0.049 | 0.876 | 0.574 | 7373 | 7376 |
1180 | CvM2 | SRMRB | ULSMV | 200 | 30 | 0.858 | 0.770 | 0.884 | 0.043 | 0.918 | 0.585 | 7610 | 7599 |
1181 | CvM2 | SRMRB | WLSMV | ALL | ALL | 0.641 | 0.614 | 0.648 | 0.069 | 0.827 | 0.414 | 66216 | 66637 |
1182 | CvM2 | SRMRB | WLSMV | ALL | 5 | 0.598 | 0.590 | 0.609 | 0.074 | 0.829 | 0.358 | 18319 | 18523 |
1183 | CvM2 | SRMRB | WLSMV | ALL | 10 | 0.634 | 0.610 | 0.642 | 0.071 | 0.806 | 0.419 | 22482 | 22664 |
1184 | CvM2 | SRMRB | WLSMV | ALL | 30 | 0.685 | 0.637 | 0.691 | 0.067 | 0.815 | 0.485 | 25415 | 25450 |
1185 | CvM2 | SRMRB | WLSMV | 30 | ALL | 0.598 | 0.570 | 0.602 | 0.120 | 0.784 | 0.374 | 12160 | 12278 |
1186 | CvM2 | SRMRB | WLSMV | 30 | 5 | 0.572 | 0.533 | 0.568 | 0.152 | 0.578 | 0.555 | 2872 | 2886 |
1187 | CvM2 | SRMRB | WLSMV | 30 | 10 | 0.596 | 0.562 | 0.592 | 0.122 | 0.781 | 0.391 | 4066 | 4131 |
1188 | CvM2 | SRMRB | WLSMV | 30 | 30 | 0.642 | 0.605 | 0.649 | 0.113 | 0.815 | 0.414 | 5222 | 5261 |
1189 | CvM2 | SRMRB | WLSMV | 50 | ALL | 0.656 | 0.615 | 0.660 | 0.096 | 0.801 | 0.449 | 15127 | 15246 |
1190 | CvM2 | SRMRB | WLSMV | 50 | 5 | 0.609 | 0.559 | 0.604 | 0.112 | 0.697 | 0.483 | 3768 | 3851 |
1191 | CvM2 | SRMRB | WLSMV | 50 | 10 | 0.637 | 0.608 | 0.635 | 0.096 | 0.830 | 0.422 | 5179 | 5218 |
1192 | CvM2 | SRMRB | WLSMV | 50 | 30 | 0.732 | 0.668 | 0.744 | 0.090 | 0.819 | 0.527 | 6180 | 6177 |
1193 | CvM2 | SRMRB | WLSMV | 100 | ALL | 0.736 | 0.678 | 0.732 | 0.076 | 0.746 | 0.635 | 18265 | 18372 |
1194 | CvM2 | SRMRB | WLSMV | 100 | 5 | 0.662 | 0.631 | 0.658 | 0.082 | 0.795 | 0.501 | 5191 | 5241 |
1195 | CvM2 | SRMRB | WLSMV | 100 | 10 | 0.724 | 0.684 | 0.724 | 0.074 | 0.804 | 0.582 | 6232 | 6279 |
1196 | CvM2 | SRMRB | WLSMV | 100 | 30 | 0.840 | 0.738 | 0.861 | 0.069 | 0.792 | 0.699 | 6842 | 6852 |
1197 | CvM2 | SRMRB | WLSMV | 200 | ALL | 0.795 | 0.713 | 0.785 | 0.058 | 0.757 | 0.723 | 20664 | 20741 |
1198 | CvM2 | SRMRB | WLSMV | 200 | 5 | 0.722 | 0.683 | 0.717 | 0.062 | 0.815 | 0.581 | 6488 | 6545 |
1199 | CvM2 | SRMRB | WLSMV | 200 | 10 | 0.807 | 0.735 | 0.816 | 0.055 | 0.824 | 0.665 | 7005 | 7036 |
1200 | CvM2 | SRMRB | WLSMV | 200 | 30 | 0.889 | 0.768 | 0.909 | 0.056 | 0.684 | 0.905 | 7171 | 7160 |
So, I need to parse down 1200 rows of information into somethingthat can fit into a single page table. The above (and very large tables) are condensed to only include the AUC and optimal threshold. The remaining information is left here for reference.
c <- filter(roc_summary, Classification == "C", `Level-2 SS` != 'ALL', `Level-1 SS` == 'ALL')
# Next make the columns the estimator factor
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9:11)],
c[ c$Estimator == 'ULSMV', c(6,9:11)],
c[ c$Estimator == 'WLSMV', c(6,9:11)])
kable(c1, format = 'html',digits=3, row.names = F) %>%
kable_styling(full_width = T) %>%
add_header_above(c(' '=2, 'MLR'=4, 'USLMV'=4, 'WLSMV'=4))
Index | Level-2 SS | AUC | Threshold | Specificity | Sensitivity | AUC | Threshold | Specificity | Sensitivity | AUC | Threshold | Specificity | Sensitivity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CFI | 30 | 0.747 | 0.940 | 0.726 | 0.698 | 0.628 | 0.982 | 0.431 | 0.821 | 0.705 | 0.983 | 0.546 | 0.811 |
CFI | 50 | 0.828 | 0.956 | 0.713 | 0.835 | 0.712 | 0.973 | 0.552 | 0.826 | 0.802 | 0.980 | 0.647 | 0.848 |
CFI | 100 | 0.893 | 0.974 | 0.750 | 0.918 | 0.827 | 0.971 | 0.667 | 0.906 | 0.876 | 0.979 | 0.708 | 0.936 |
CFI | 200 | 0.917 | 0.981 | 0.767 | 0.973 | 0.911 | 0.975 | 0.785 | 0.957 | 0.910 | 0.986 | 0.756 | 0.960 |
TLI | 30 | 0.746 | 0.928 | 0.725 | 0.698 | 0.628 | 0.979 | 0.430 | 0.821 | 0.705 | 0.979 | 0.547 | 0.809 |
TLI | 50 | 0.827 | 0.947 | 0.713 | 0.835 | 0.712 | 0.968 | 0.552 | 0.826 | 0.801 | 0.976 | 0.648 | 0.846 |
TLI | 100 | 0.893 | 0.968 | 0.750 | 0.918 | 0.827 | 0.965 | 0.666 | 0.906 | 0.876 | 0.975 | 0.708 | 0.936 |
TLI | 200 | 0.917 | 0.977 | 0.767 | 0.973 | 0.911 | 0.970 | 0.785 | 0.956 | 0.910 | 0.984 | 0.756 | 0.960 |
RMSEA | 30 | 0.725 | 0.029 | 0.741 | 0.660 | 0.628 | 0.008 | 0.448 | 0.771 | 0.700 | 0.013 | 0.545 | 0.786 |
RMSEA | 50 | 0.814 | 0.026 | 0.716 | 0.814 | 0.706 | 0.009 | 0.590 | 0.749 | 0.790 | 0.011 | 0.718 | 0.736 |
RMSEA | 100 | 0.889 | 0.020 | 0.747 | 0.916 | 0.813 | 0.012 | 0.671 | 0.839 | 0.873 | 0.015 | 0.723 | 0.910 |
RMSEA | 200 | 0.915 | 0.017 | 0.759 | 0.979 | 0.893 | 0.013 | 0.689 | 0.947 | 0.910 | 0.014 | 0.752 | 0.963 |
SRMRW | 30 | 0.674 | 0.042 | 0.738 | 0.568 | 0.642 | 0.052 | 0.789 | 0.459 | 0.682 | 0.050 | 0.738 | 0.585 |
SRMRW | 50 | 0.737 | 0.037 | 0.744 | 0.682 | 0.709 | 0.048 | 0.770 | 0.595 | 0.733 | 0.047 | 0.689 | 0.738 |
SRMRW | 100 | 0.816 | 0.037 | 0.672 | 0.903 | 0.803 | 0.046 | 0.689 | 0.835 | 0.797 | 0.045 | 0.627 | 0.910 |
SRMRW | 200 | 0.832 | 0.032 | 0.661 | 0.993 | 0.855 | 0.042 | 0.664 | 0.971 | 0.813 | 0.038 | 0.607 | 0.992 |
SRMRB | 30 | 0.565 | 0.143 | 0.793 | 0.325 | 0.567 | 0.106 | 0.734 | 0.381 | 0.576 | 0.117 | 0.793 | 0.325 |
SRMRB | 50 | 0.610 | 0.119 | 0.744 | 0.435 | 0.596 | 0.081 | 0.795 | 0.366 | 0.613 | 0.096 | 0.730 | 0.450 |
SRMRB | 100 | 0.673 | 0.093 | 0.681 | 0.583 | 0.649 | 0.060 | 0.843 | 0.398 | 0.670 | 0.071 | 0.728 | 0.534 |
SRMRB | 200 | 0.732 | 0.069 | 0.708 | 0.646 | 0.701 | 0.047 | 0.793 | 0.516 | 0.723 | 0.054 | 0.699 | 0.643 |
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9)],
c[ c$Estimator == 'ULSMV', c(6,9)],
c[ c$Estimator == 'WLSMV', c(6,9)])
print(xtable(c1, digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:42:37 2019
\begin{table}[ht]
\centering
\begin{tabular}{llrrrrrr}
\toprule
Index & Level-2 SS & AUC & Threshold & AUC & Threshold & AUC & Threshold \\
\midrule
CFI & 30 & 0.747 & 0.940 & 0.628 & 0.982 & 0.705 & 0.983 \\
CFI & 50 & 0.828 & 0.956 & 0.712 & 0.973 & 0.802 & 0.980 \\
CFI & 100 & 0.893 & 0.974 & 0.827 & 0.971 & 0.876 & 0.979 \\
CFI & 200 & 0.917 & 0.981 & 0.911 & 0.975 & 0.910 & 0.986 \\
TLI & 30 & 0.746 & 0.928 & 0.628 & 0.979 & 0.705 & 0.979 \\
TLI & 50 & 0.827 & 0.947 & 0.712 & 0.968 & 0.801 & 0.976 \\
TLI & 100 & 0.893 & 0.968 & 0.827 & 0.965 & 0.876 & 0.975 \\
TLI & 200 & 0.917 & 0.977 & 0.911 & 0.970 & 0.910 & 0.984 \\
RMSEA & 30 & 0.725 & 0.029 & 0.628 & 0.008 & 0.700 & 0.013 \\
RMSEA & 50 & 0.814 & 0.026 & 0.706 & 0.009 & 0.790 & 0.011 \\
RMSEA & 100 & 0.889 & 0.020 & 0.813 & 0.012 & 0.873 & 0.015 \\
RMSEA & 200 & 0.915 & 0.017 & 0.893 & 0.013 & 0.910 & 0.014 \\
SRMRW & 30 & 0.674 & 0.042 & 0.642 & 0.052 & 0.682 & 0.050 \\
SRMRW & 50 & 0.737 & 0.037 & 0.709 & 0.048 & 0.733 & 0.047 \\
SRMRW & 100 & 0.816 & 0.037 & 0.803 & 0.046 & 0.797 & 0.045 \\
SRMRW & 200 & 0.832 & 0.032 & 0.855 & 0.042 & 0.813 & 0.038 \\
SRMRB & 30 & 0.565 & 0.143 & 0.567 & 0.106 & 0.576 & 0.117 \\
SRMRB & 50 & 0.610 & 0.119 & 0.596 & 0.081 & 0.613 & 0.096 \\
SRMRB & 100 & 0.673 & 0.093 & 0.649 & 0.060 & 0.670 & 0.071 \\
SRMRB & 200 & 0.732 & 0.069 & 0.701 & 0.047 & 0.723 & 0.054 \\
\bottomrule
\end{tabular}
\end{table}
c <- filter(roc_summary, Classification == "CvM1", `Level-2 SS` != 'ALL', `Level-1 SS` == 'ALL')
# Next make the columns the estimator factor
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9:11)],
c[ c$Estimator == 'ULSMV', c(6,9:11)],
c[ c$Estimator == 'WLSMV', c(6,9:11)])
kable(c1, format = 'html',digits=3, row.names = F) %>%
kable_styling(full_width = T) %>%
add_header_above(c(' '=2, 'MLR'=4, 'USLMV'=4, 'WLSMV'=4))
Index | Level-2 SS | AUC | Threshold | Specificity | Sensitivity | AUC | Threshold | Specificity | Sensitivity | AUC | Threshold | Specificity | Sensitivity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CFI | 30 | 0.829 | 0.944 | 0.918 | 0.684 | 0.649 | 0.979 | 0.482 | 0.830 | 0.804 | 0.983 | 0.732 | 0.811 |
CFI | 50 | 0.926 | 0.955 | 0.921 | 0.842 | 0.735 | 0.972 | 0.613 | 0.834 | 0.926 | 0.980 | 0.884 | 0.849 |
CFI | 100 | 0.990 | 0.962 | 0.959 | 0.960 | 0.875 | 0.971 | 0.781 | 0.905 | 0.992 | 0.972 | 0.965 | 0.965 |
CFI | 200 | 1.000 | 0.969 | 0.994 | 0.995 | 0.989 | 0.975 | 0.954 | 0.956 | 1.000 | 0.971 | 0.994 | 0.996 |
TLI | 30 | 0.829 | 0.932 | 0.918 | 0.684 | 0.649 | 0.975 | 0.482 | 0.830 | 0.804 | 0.979 | 0.732 | 0.811 |
TLI | 50 | 0.926 | 0.945 | 0.921 | 0.842 | 0.735 | 0.966 | 0.613 | 0.834 | 0.926 | 0.976 | 0.884 | 0.849 |
TLI | 100 | 0.990 | 0.954 | 0.959 | 0.960 | 0.875 | 0.965 | 0.781 | 0.905 | 0.992 | 0.966 | 0.965 | 0.965 |
TLI | 200 | 1.000 | 0.962 | 0.994 | 0.995 | 0.989 | 0.970 | 0.954 | 0.956 | 1.000 | 0.966 | 0.994 | 0.996 |
RMSEA | 30 | 0.799 | 0.030 | 0.903 | 0.663 | 0.651 | 0.010 | 0.460 | 0.803 | 0.796 | 0.014 | 0.707 | 0.794 |
RMSEA | 50 | 0.908 | 0.026 | 0.912 | 0.823 | 0.729 | 0.012 | 0.589 | 0.800 | 0.908 | 0.014 | 0.850 | 0.806 |
RMSEA | 100 | 0.988 | 0.024 | 0.953 | 0.958 | 0.854 | 0.011 | 0.765 | 0.827 | 0.988 | 0.017 | 0.967 | 0.931 |
RMSEA | 200 | 1.000 | 0.020 | 0.996 | 0.993 | 0.958 | 0.013 | 0.821 | 0.947 | 1.000 | 0.020 | 0.995 | 0.996 |
SRMRW | 30 | 0.769 | 0.042 | 0.907 | 0.567 | 0.722 | 0.053 | 0.922 | 0.464 | 0.801 | 0.053 | 0.896 | 0.634 |
SRMRW | 50 | 0.861 | 0.038 | 0.960 | 0.692 | 0.817 | 0.048 | 0.953 | 0.603 | 0.877 | 0.047 | 0.962 | 0.731 |
SRMRW | 100 | 0.981 | 0.037 | 0.967 | 0.905 | 0.945 | 0.046 | 0.961 | 0.839 | 0.982 | 0.045 | 0.966 | 0.913 |
SRMRW | 200 | 1.000 | 0.033 | 0.998 | 0.998 | 0.997 | 0.043 | 0.992 | 0.979 | 1.000 | 0.040 | 0.999 | 0.998 |
SRMRB | 30 | 0.518 | 0.177 | 0.698 | 0.346 | 0.532 | 0.093 | 0.834 | 0.233 | 0.530 | 0.109 | 0.842 | 0.218 |
SRMRB | 50 | 0.503 | 0.151 | 0.805 | 0.235 | 0.541 | 0.070 | 0.875 | 0.217 | 0.552 | 0.086 | 0.827 | 0.266 |
SRMRB | 100 | 0.530 | 0.069 | 0.917 | 0.186 | 0.565 | 0.052 | 0.880 | 0.262 | 0.582 | 0.060 | 0.883 | 0.267 |
SRMRB | 200 | 0.600 | 0.057 | 0.853 | 0.350 | 0.595 | 0.038 | 0.924 | 0.272 | 0.626 | 0.048 | 0.754 | 0.455 |
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9)],
c[ c$Estimator == 'ULSMV', c(6,9)],
c[ c$Estimator == 'WLSMV', c(6,9)])
print(xtable(c1, digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:42:37 2019
\begin{table}[ht]
\centering
\begin{tabular}{llrrrrrr}
\toprule
Index & Level-2 SS & AUC & Threshold & AUC & Threshold & AUC & Threshold \\
\midrule
CFI & 30 & 0.829 & 0.944 & 0.649 & 0.979 & 0.804 & 0.983 \\
CFI & 50 & 0.926 & 0.955 & 0.735 & 0.972 & 0.926 & 0.980 \\
CFI & 100 & 0.990 & 0.962 & 0.875 & 0.971 & 0.992 & 0.972 \\
CFI & 200 & 1.000 & 0.969 & 0.989 & 0.975 & 1.000 & 0.971 \\
TLI & 30 & 0.829 & 0.932 & 0.649 & 0.975 & 0.804 & 0.979 \\
TLI & 50 & 0.926 & 0.945 & 0.735 & 0.966 & 0.926 & 0.976 \\
TLI & 100 & 0.990 & 0.954 & 0.875 & 0.965 & 0.992 & 0.966 \\
TLI & 200 & 1.000 & 0.962 & 0.989 & 0.970 & 1.000 & 0.966 \\
RMSEA & 30 & 0.799 & 0.030 & 0.651 & 0.010 & 0.796 & 0.014 \\
RMSEA & 50 & 0.908 & 0.026 & 0.729 & 0.012 & 0.908 & 0.014 \\
RMSEA & 100 & 0.988 & 0.024 & 0.854 & 0.011 & 0.988 & 0.017 \\
RMSEA & 200 & 1.000 & 0.020 & 0.958 & 0.013 & 1.000 & 0.020 \\
SRMRW & 30 & 0.769 & 0.042 & 0.722 & 0.053 & 0.801 & 0.053 \\
SRMRW & 50 & 0.861 & 0.038 & 0.817 & 0.048 & 0.877 & 0.047 \\
SRMRW & 100 & 0.981 & 0.037 & 0.945 & 0.046 & 0.982 & 0.045 \\
SRMRW & 200 & 1.000 & 0.033 & 0.997 & 0.043 & 1.000 & 0.040 \\
SRMRB & 30 & 0.518 & 0.177 & 0.532 & 0.093 & 0.530 & 0.109 \\
SRMRB & 50 & 0.503 & 0.151 & 0.541 & 0.070 & 0.552 & 0.086 \\
SRMRB & 100 & 0.530 & 0.069 & 0.565 & 0.052 & 0.582 & 0.060 \\
SRMRB & 200 & 0.600 & 0.057 & 0.595 & 0.038 & 0.626 & 0.048 \\
\bottomrule
\end{tabular}
\end{table}
c <- filter(roc_summary, Classification == "CvM2", `Level-2 SS` != 'ALL', `Level-1 SS` == 'ALL')
# Next make the columns the estimator factor
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9:11)],
c[ c$Estimator == 'ULSMV', c(6,9:11)],
c[ c$Estimator == 'WLSMV', c(6,9:11)])
kable(c1, format = 'html',digits=3, row.names = F) %>%
kable_styling(full_width = T) %>%
add_header_above(c(' '=2, 'MLR'=4, 'USLMV'=4, 'WLSMV'=4))
Index | Level-2 SS | AUC | Threshold | Specificity | Sensitivity | AUC | Threshold | Specificity | Sensitivity | AUC | Threshold | Specificity | Sensitivity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CFI | 30 | 0.574 | 0.972 | 0.638 | 0.494 | 0.570 | 0.999 | 0.409 | 0.720 | 0.541 | 1.000 | 0.441 | 0.635 |
CFI | 50 | 0.624 | 0.986 | 0.623 | 0.586 | 0.641 | 0.996 | 0.545 | 0.685 | 0.601 | 0.999 | 0.590 | 0.586 |
CFI | 100 | 0.704 | 0.991 | 0.595 | 0.728 | 0.729 | 0.970 | 0.447 | 0.906 | 0.699 | 0.996 | 0.603 | 0.708 |
CFI | 200 | 0.764 | 0.995 | 0.626 | 0.789 | 0.784 | 0.978 | 0.511 | 0.946 | 0.776 | 0.997 | 0.644 | 0.771 |
TLI | 30 | 0.574 | 0.967 | 0.638 | 0.494 | 0.570 | 0.999 | 0.409 | 0.720 | 0.541 | 1.000 | 0.441 | 0.635 |
TLI | 50 | 0.624 | 0.983 | 0.623 | 0.586 | 0.641 | 0.995 | 0.545 | 0.685 | 0.601 | 0.999 | 0.590 | 0.586 |
TLI | 100 | 0.704 | 0.989 | 0.595 | 0.728 | 0.729 | 0.964 | 0.447 | 0.906 | 0.699 | 0.995 | 0.603 | 0.708 |
TLI | 200 | 0.764 | 0.994 | 0.626 | 0.789 | 0.784 | 0.973 | 0.511 | 0.946 | 0.776 | 0.996 | 0.644 | 0.771 |
RMSEA | 30 | 0.570 | 0.019 | 0.665 | 0.456 | 0.433 | -Inf | 0.000 | 1.000 | 0.459 | 0.054 | 1.000 | 0.001 |
RMSEA | 50 | 0.620 | 0.013 | 0.646 | 0.549 | 0.635 | 0.005 | 0.564 | 0.661 | 0.599 | 0.003 | 0.589 | 0.587 |
RMSEA | 100 | 0.699 | 0.010 | 0.621 | 0.685 | 0.724 | 0.007 | 0.627 | 0.719 | 0.696 | 0.007 | 0.613 | 0.698 |
RMSEA | 200 | 0.758 | 0.008 | 0.640 | 0.755 | 0.782 | 0.006 | 0.663 | 0.758 | 0.775 | 0.006 | 0.675 | 0.743 |
SRMRW | 30 | 0.499 | 0.024 | 0.270 | 0.736 | 0.513 | 0.041 | 0.722 | 0.313 | 0.504 | 0.026 | 0.885 | 0.126 |
SRMRW | 50 | 0.506 | 0.048 | 0.181 | 0.834 | 0.539 | 0.034 | 0.716 | 0.353 | 0.513 | 0.023 | 0.745 | 0.278 |
SRMRW | 100 | 0.509 | 0.036 | 0.134 | 0.892 | 0.580 | 0.035 | 0.520 | 0.613 | 0.518 | 0.028 | 0.460 | 0.571 |
SRMRW | 200 | 0.518 | 0.029 | 0.081 | 0.964 | 0.630 | 0.028 | 0.527 | 0.695 | 0.535 | 0.021 | 0.475 | 0.584 |
SRMRB | 30 | 0.613 | 0.143 | 0.871 | 0.324 | 0.575 | 0.106 | 0.747 | 0.383 | 0.598 | 0.120 | 0.784 | 0.374 |
SRMRB | 50 | 0.678 | 0.122 | 0.824 | 0.466 | 0.622 | 0.082 | 0.833 | 0.371 | 0.656 | 0.096 | 0.801 | 0.449 |
SRMRB | 100 | 0.756 | 0.098 | 0.744 | 0.672 | 0.701 | 0.065 | 0.826 | 0.498 | 0.736 | 0.076 | 0.746 | 0.635 |
SRMRB | 200 | 0.808 | 0.072 | 0.795 | 0.710 | 0.769 | 0.049 | 0.847 | 0.571 | 0.795 | 0.058 | 0.757 | 0.723 |
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9)],
c[ c$Estimator == 'ULSMV', c(6,9)],
c[ c$Estimator == 'WLSMV', c(6,9)])
print(xtable(c1, digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:42:37 2019
\begin{table}[ht]
\centering
\begin{tabular}{llrrrrrr}
\toprule
Index & Level-2 SS & AUC & Threshold & AUC & Threshold & AUC & Threshold \\
\midrule
CFI & 30 & 0.574 & 0.972 & 0.570 & 0.999 & 0.541 & 1.000 \\
CFI & 50 & 0.624 & 0.986 & 0.641 & 0.996 & 0.601 & 0.999 \\
CFI & 100 & 0.704 & 0.991 & 0.729 & 0.970 & 0.699 & 0.996 \\
CFI & 200 & 0.764 & 0.995 & 0.784 & 0.978 & 0.776 & 0.997 \\
TLI & 30 & 0.574 & 0.967 & 0.570 & 0.999 & 0.541 & 1.000 \\
TLI & 50 & 0.624 & 0.983 & 0.641 & 0.995 & 0.601 & 0.999 \\
TLI & 100 & 0.704 & 0.989 & 0.729 & 0.964 & 0.699 & 0.995 \\
TLI & 200 & 0.764 & 0.994 & 0.784 & 0.973 & 0.776 & 0.996 \\
RMSEA & 30 & 0.570 & 0.019 & 0.433 & -Inf & 0.459 & 0.054 \\
RMSEA & 50 & 0.620 & 0.013 & 0.635 & 0.005 & 0.599 & 0.003 \\
RMSEA & 100 & 0.699 & 0.010 & 0.724 & 0.007 & 0.696 & 0.007 \\
RMSEA & 200 & 0.758 & 0.008 & 0.782 & 0.006 & 0.775 & 0.006 \\
SRMRW & 30 & 0.499 & 0.024 & 0.513 & 0.041 & 0.504 & 0.026 \\
SRMRW & 50 & 0.506 & 0.048 & 0.539 & 0.034 & 0.513 & 0.023 \\
SRMRW & 100 & 0.509 & 0.036 & 0.580 & 0.035 & 0.518 & 0.028 \\
SRMRW & 200 & 0.518 & 0.029 & 0.630 & 0.028 & 0.535 & 0.021 \\
SRMRB & 30 & 0.613 & 0.143 & 0.575 & 0.106 & 0.598 & 0.120 \\
SRMRB & 50 & 0.678 & 0.122 & 0.622 & 0.082 & 0.656 & 0.096 \\
SRMRB & 100 & 0.756 & 0.098 & 0.701 & 0.065 & 0.736 & 0.076 \\
SRMRB & 200 & 0.808 & 0.072 & 0.769 & 0.049 & 0.795 & 0.058 \\
\bottomrule
\end{tabular}
\end{table}
roc_smooth_data <- as.data.frame(matrix(0,ncol=7, nrow=514*(3*4*5*5)))
colnames(roc_smooth_data) <- c('Index', 'Classification', 'Estimator','Level-2 SS', 'AUC', 'Sensitivity', 'Specificity')
i <- 1
j <- 514
for(index in INDEX){
for(est in EST){
for(class in CLASS){
for(s2 in SS_L2){
## Set up iteration key
key <- paste0(index,'.',class,'.',est,'.', s2,'.ALL')
## update extracted data
roc_smooth_data[i:j, 1] <- index
roc_smooth_data[i:j, 2] <- class
roc_smooth_data[i:j, 3] <- est
roc_smooth_data[i:j, 4] <- s2
## extract smooth fit object
fit <- fit_roc_smooth[[key]]
if(is.null(fit) == T){
## update sen,spec, and auc
roc_smooth_data[i:j, 5] <- NA
roc_smooth_data[i:j, 6] <- NA
roc_smooth_data[i:j, 7] <- NA
} else {
## update sen,spec, and auc
roc_smooth_data[i:j, 5] <- fit$auc
roc_smooth_data[i:j, 6] <- fit$sensitivities
roc_smooth_data[i:j, 7] <- fit$specificities
}
## update iterators
i <- i + 514
j <- j + 514
}
}
}}
## Forcing factor orders
roc_smooth_data$Index <- factor(
roc_smooth_data$Index, ordered = T,
levels=c('CFI', 'TLI', 'RMSEA', 'SRMRW', 'SRMRB'))
roc_smooth_data$Classification <- factor(
roc_smooth_data$Classification,
levels=c('C','CvM1','CvM2'),
labels=c('Any Mis.', 'Level-1 Mis.', 'Level-2 Mis.'),
ordered = T
)
roc_smooth_data$Estimator <- as.factor(roc_smooth_data$Estimator)
roc_smooth_data$`Level-2 SS` <- factor(roc_smooth_data$`Level-2 SS`,
levels=c('ALL','30','50', '100', '200'),
ordered = T)
subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL', Estimator!='ALL')
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(Estimator~Classification) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index")) +
geom_abline(intercept = 1, slope = 1, color='dimgray' )
p
if(save.fig == T) ggsave('roc_plot_mis_est.pdf', plot = p, height = 6,width = 9,units = 'in')
subdata <- filter(roc_smooth_data, `Level-2 SS`!='ALL', Estimator=='ALL')
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(`Level-2 SS` ~Classification) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index"))+
geom_abline(intercept = 1, slope = 1, color='dimgray' )
p
if(save.fig == T) ggsave('roc_plot_mis_n2.pdf', plot = p, height = 6,width = 9, units = 'in')
subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL', Estimator == "ALL")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(.~Classification) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index"))+
geom_abline(intercept = 1, slope = 1, color='dimgray' )
p
if(save.fig == T) ggsave('roc_class_all.pdf', plot = p, height = 4, width = 9, units = 'in')
subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL', Estimator == "MLR")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(.~Classification) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index"))+
geom_abline(intercept = 1, slope = 1, color='dimgray' )
p
if(save.fig == T) ggsave('roc_class_mlr.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL', Estimator == "ULSMV")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(.~Classification) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index"))+
geom_abline(intercept = 1, slope = 1, color='dimgray' )
p
if(save.fig == T) ggsave('roc_class_ulsmv.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data,`Level-2 SS`=='ALL', Estimator == "WLSMV")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(.~Classification) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index"))+
geom_abline(intercept = 1, slope = 1, color='dimgray' )
p
if(save.fig == T) ggsave('roc_class_wlsmv.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL', Estimator!='ALL',
Classification == "Any Mis.")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(.~Estimator) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index"))+
geom_abline(intercept = 1, slope = 1, color='dimgray' )
p
if(save.fig == T) ggsave('roc_est_c.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL', Estimator!='ALL',
Classification == "Level-1 Mis.")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(.~Estimator) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index"))+
geom_abline(intercept = 1, slope = 1, color='dimgray' )
p
if(save.fig == T) ggsave('roc_est_cl1.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data,`Level-2 SS`=='ALL', Estimator!='ALL',
Classification == "Level-2 Mis.")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(.~Estimator) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index"))+
geom_abline(intercept = 1, slope = 1, color='dimgray' )
p
if(save.fig == T) ggsave('roc_est_cl2.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data, Estimator=='ALL', Classification == "Any Mis.",
`Level-2 SS`!='ALL')
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(.~`Level-2 SS`) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index"))+
geom_abline(intercept = 1, slope = 1, color='dimgray')
p
if(save.fig == T) ggsave('roc_n2_c.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data, `Level-2 SS`!='ALL', Estimator=='ALL',
Classification == "Level-1 Mis.")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(.~`Level-2 SS`) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index"))+
geom_abline(intercept = 1, slope = 1, color='dimgray' )
p
if(save.fig == T) ggsave('roc_n2_cl1.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data,`Level-2 SS`!='ALL', Estimator=='ALL', Classification == "Level-2 Mis.")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
geom_line(aes(linetype=Index, color=Index))+
facet_grid(.~`Level-2 SS`) +
scale_x_reverse() +
scale_color_brewer(palette="Set1") +
guides(color=guide_legend(title="Fit Index"),
linetype=guide_legend(title="Fit Index"))+
geom_abline(intercept = 1, slope = 1, color='dimgray' )
p
if(save.fig == T) ggsave('roc_n2_cl2.pdf', plot = p, height = 4,width = 9,units = 'in')
sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] pROC_1.15.0 xtable_1.8-4 kableExtra_1.1.0 psych_1.8.12
[5] car_3.0-3 carData_3.0-2 forcats_0.4.0 stringr_1.4.0
[9] dplyr_0.8.1 purrr_0.3.2 readr_1.3.1 tidyr_0.8.3
[13] tibble_2.1.1 ggplot2_3.2.0 tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] Rcpp_1.0.1 lubridate_1.7.4 lattice_0.20-38
[4] assertthat_0.2.1 rprojroot_1.3-2 digest_0.6.19
[7] R6_2.4.0 cellranger_1.1.0 plyr_1.8.4
[10] backports_1.1.4 evaluate_0.14 highr_0.8
[13] httr_1.4.0 pillar_1.4.1 rlang_0.3.4
[16] lazyeval_0.2.2 curl_3.3 readxl_1.3.1
[19] rstudioapi_0.10 data.table_1.12.2 whisker_0.3-2
[22] rmarkdown_1.13 labeling_0.3 webshot_0.5.1
[25] foreign_0.8-71 munsell_0.5.0 broom_0.5.2
[28] compiler_3.6.0 modelr_0.1.4 xfun_0.7
[31] pkgconfig_2.0.2 mnormt_1.5-5 htmltools_0.3.6
[34] tidyselect_0.2.5 workflowr_1.4.0 rio_0.5.16
[37] viridisLite_0.3.0 crayon_1.3.4 withr_2.1.2
[40] grid_3.6.0 nlme_3.1-139 jsonlite_1.6
[43] gtable_0.3.0 git2r_0.26.1 magrittr_1.5
[46] scales_1.0.0 zip_2.0.2 cli_1.1.0
[49] stringi_1.4.3 reshape2_1.4.3 fs_1.3.1
[52] xml2_1.2.0 generics_0.0.2 openxlsx_4.1.0
[55] RColorBrewer_1.1-2 tools_3.6.0 glue_1.3.1
[58] hms_0.4.2 abind_1.4-5 parallel_3.6.0
[61] yaml_2.2.0 colorspace_1.4-1 rvest_0.3.4
[64] knitr_1.23 haven_2.1.0