Last updated: 2019-10-18

Checks: 7 0

Knit directory: mcfa-fit/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190507) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .RDataTmp
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/est_ulsmv.Rmd
    Untracked:  analysis/est_wlsmv.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 6ee3d83 noah-padgett 2019-10-18 updated estimation methods and ROC files
html 6ee3d83 noah-padgett 2019-10-18 updated estimation methods and ROC files
Rmd ba44658 noah-padgett 2019-09-29 wflow_git_commit(all = T)
html ba44658 noah-padgett 2019-09-29 wflow_git_commit(all = T)
html 982c8f1 noah-padgett 2019-05-18 roc analyses completed
Rmd 4a2f40d noah-padgett 2019-05-10 fixed index page and updated roc file
Rmd 3cd3ef6 noah-padgett 2019-05-09 updated analyses

Purpose of this file:

  1. Conduct ROC Analysies
  2. Create ROC Curves
  3. Create Summary tables of ROC analyses

Packages and Set-Up

##Chunk iptions
knitr::opts_chunk$set(out.width="225%")
#setwd('C:/Users/noahp/Dropbox/MCFA Thesis/Code Results')
## Packages
## General Packages
library(tidyverse)
-- Attaching packages -------------------------------------- tidyverse 1.2.1 --
v ggplot2 3.2.0     v purrr   0.3.2
v tibble  2.1.1     v dplyr   0.8.1
v tidyr   0.8.3     v stringr 1.4.0
v readr   1.3.1     v forcats 0.4.0
-- Conflicts ----------------------------------------- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
library(car)
Loading required package: carData

Attaching package: 'car'
The following object is masked from 'package:dplyr':

    recode
The following object is masked from 'package:purrr':

    some
library(psych)

Attaching package: 'psych'
The following object is masked from 'package:car':

    logit
The following objects are masked from 'package:ggplot2':

    %+%, alpha
# Formatting and Tables
library(kableExtra)

Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':

    group_rows
library(xtable)
# For plotting
library(ggplot2)
theme_set(theme_bw() + theme(legend.position = 'bottom'))
# Data manipulating
library(dplyr)
# ROC Analysis
library(pROC)
Type 'citation("pROC")' for a citation.

Attaching package: 'pROC'
The following objects are masked from 'package:stats':

    cov, smooth, var
## One global parameter for printing figures
save.fig <- F
## Load up the functions needed for ANOVA and Assumption checking
source('code/r_functions.R')

Data Management

sim_results <- as_tibble(read.table('data/compiled_fit_results.txt', header=T,sep='\t'))
## Next, turn condition into a factor for plotting
sim_results$Condition <- as.factor(sim_results$Condition)
## Next, since TLI is non-normed, any value greater than 1 needs to be rescaled to 1.
sim_results$TLI <- ifelse(sim_results$TLI > 1, 1, sim_results$TLI)
sim_results$TLI <- ifelse(sim_results$TLI < 0, 0, sim_results$TLI)
## Next, summarize the results of the chi-square test of model fit. This is done simply by comparing the p-value to alpha (0.05) and indicating whether the model was flagged as fitting or not.
# Note: if  p < 0.05 then this variable is flagged as 0, and 1 otherwise
sim_results$Chi2_pvalue_decision <- ifelse(sim_results$chisqu_pvalue > 0.05, 1, 0)
# 0 = rejected that these data fit this model
# 1 = failed to reject that these data fit this model

Adding Labels to Conditions

Currently, each condition is kind of like a hidden id that we don’t know what the actual factor is. So, first thing isto create meaningful labels for us to use. Remember, the 72 conditions for the this study were

  1. Level-1 sample size (5, 10, 30)
  2. Level-2 sample size (30, 50, 100, 200)
  3. Observed indicator ICC (.1, .3, .5)
  4. Latent variable ICC (.1, .5)
## level-1 Sample size
ss_l1 <- c(5, 10, 30) ## 6 conditions each
ss_l2 <- c(30, 50, 100, 200) ## 18 condition each
icc_ov <- c(.1, .3, .5) ## 2 conditions each
icc_lv <- c(.1, .5) ## every other condition
nCon <- 72 # number of conditions
nRep <- 500 # number of replications per condition
nMod <- 12 ## numberof estimated models per conditions
## Total number of rows: 432,000
ss_l2 <- c(rep(ss_l2[1], 18*nRep*nMod), rep(ss_l2[2], 18*nRep*nMod), rep(ss_l2[3], 18*nRep*nMod), rep(ss_l2[4], 18*nRep*nMod))
ss_l1 <- rep(c(rep(ss_l1[1],6*nRep*nMod), rep(ss_l1[2],6*nRep*nMod), rep(ss_l1[3],6*nRep*nMod)), 4)
icc_ov <- rep(c(rep(icc_ov[1], 2*nRep*nMod), rep(icc_ov[2], 2*nRep*nMod), rep(icc_ov[3], 2*nRep*nMod)), 12)
icc_lv <- rep(c(rep(icc_lv[1], nRep*nMod), rep(icc_lv[2], nRep*nMod)), 36)
## Force these vectors to be column vectors
ss_l1 <- matrix(ss_l1, ncol=1)
ss_l2 <- matrix(ss_l2, ncol=1)
icc_ov <- matrix(icc_ov, ncol=1)
icc_lv <- matrix(icc_lv, ncol=1)
## Add the labels to the results data frame
sim_results <- sim_results[order(sim_results$Condition),]
sim_results <- cbind(sim_results, ss_l1, ss_l2, icc_ov, icc_lv)
## Force the conditions to be factors
sim_results$ss_l1 <- as.factor(sim_results$ss_l1)
sim_results$ss_l2 <- as.factor(sim_results$ss_l2)
sim_results$icc_ov <- as.factor(sim_results$icc_ov)
sim_results$icc_lv <- as.factor(sim_results$icc_lv)
sim_results$Model <- factor(sim_results$Model, levels = c('C','M1','M2','M12'), ordered = T)

ROC Analysis Labels

Make coding of variables/model specifications for the ROC analyses. The coding of the variables is in order to get the correct specifications labeled for the ROC analyses to come. The coding is as follows:

  1. C = correct model specification versus any misspecification (Model C vs. M1, M2, M12)
  2. CvM1 = when only the level-1 model is misspecified (Model C vs. M1)
  3. CvM2 = when only the level-2 model is misspecified (Model C vs. M2)
## Need to make codes for the ROC analyses outcomes
# first, C vs. M1,M2,M12 - Perfect specification
sim_results$C <- ifelse(sim_results$Model == 'C', 1, 0)
table(sim_results$C)

     0      1 
324000 108000 
# second, C vs. M1|M12- correct level 1 model
sim_results$CvM1 <- ifelse(sim_results$Model == 'C', 1, 0)
sim_results$CvM1[sim_results$Model == "M2" | sim_results$Model == "M12"] <- NA
table(sim_results$CvM1)

     0      1 
108000 108000 
# third, C vs. M2|M12- correct level 2 model
sim_results$CvM2 <- ifelse(sim_results$Model == 'C', 1, 0)
sim_results$CvM2[sim_results$Model == "M1" | sim_results$Model == "M12"] <- NA
table(sim_results$CvM2)

     0      1 
108000 108000 

Introduction to ROC Analysis

ROC stands for Receiver Operating Characteristic. ROC analysis aims to detect the presense of signals in data by looking at how the ability to classify an outcome (usually binary) based on a continuous or ordinal indicator. ROC analyses was orginally used in wartime to help detect the presence of radar signals. However, now ROC analysis is used in many areas including medical and psychology research. It is commonly used as a tool to help make decisions about what tools or methods help classify objects or individuals into specific groups.

In R, a package called pROC (Robin et al., 2011) was built that greatly enhancing the flexibility of using R for ROC analysis. For example, aside from just being able to conduct ROC analysis, one can compute confidences for this curve and conduct specific statistical tests comparing AUCs from the same data.

For the ROC analyses, we conducted them in pieces to build more and more fine grained information about the classification quality of fit indices for detecting a simple type of misspecification. For misspecification, we broke up the ROC analyses into three major chunks.

  1. Detecting any type of misspecification (i.e., C vs. M1-M2-M12),
  2. Detecting misspecified level-1 model (i.e., C vs. M1), and
  3. Detecting misspecified level-2 model (i.e., C vs. M2).

Within each of these major chunks of analyses, we furhter investigated whether classification of correctly specified models was depended upon estimator, level-1 sample size, or level-2 sample size. There are intitally be MANY ROC curve figures and over 1200 ROC analyses.

Setting up the objects to store the individual results so that we can use them all for the figures. First, we run over each condition separately then go into the conditional ROC analyses.

fit_roc <- fit_roc_smooth <- list()
roc_summary <- as.data.frame(matrix(0,ncol=13, nrow=5*3*4*4*5))
colnames(roc_summary) <- c('Classification','Index', 'Estimator', 'Level-2 SS', 
                           'Level-1 SS', 'AUC',
                           'partial-AUC','Smoothed-AUC', 'Threshold',
                           'Specificity','Sensitivity', 'Num-C', 'Num-Mis')
roc_summary_gen <- as.data.frame(matrix(0,ncol=8, nrow=5)*3)
colnames(roc_summary_gen) <- c('Classification','Index', 'AUC',
                           'partial-AUC','Smoothed-AUC', 'Optimal-Threshold',
                           'Specificity','Sensitivity')
# Defining iterators
CLASS <- c('C', 'CvM1','CvM2')
INDEX <- c('CFI', 'TLI', 'RMSEA', 'SRMRW', 'SRMRB')
EST <- c('ALL','MLR', 'ULSMV', 'WLSMV')
SS_L1 <- c('ALL', 5, 10, 30)
SS_L2 <- c('ALL', 30, 50, 100, 200)
## Subset to the usable cases
sim_results <- filter(sim_results, Converge == 1 & Admissible == 1)

ROC Analyses

Detecting any type of misspecification

General overview over all conditions

ig <- 1 ## counter for roc_summary
j <- 1 ## Which class?
for(index in INDEX){
    ## Print out which iteration so we know what we am looking at
    cat('\n\nROC Analysis in')
    cat('\nIndex:\t', index)
    cat('\nClassification:\t', CLASS[j])
    ## Set up iteration key
    key <- paste0(index,'.',CLASS[j])
    ## Create formula
    model <- as.formula(paste0(CLASS[j], '~', index))
    ## Fit ROC curve
    fit_roc[[key]] <-  roc(model, data=sim_results, quiet=TRUE,
                           plot=TRUE, ci=TRUE, print.auc=TRUE)
    ## Create a plot of "smoothed" curve for plotting
    fit_roc_smooth[[key]] <-  smooth(roc(model, data=sim_results))
    ## Compute partial AUC for specificity .8-1
    p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
                 partial.auc.focus = 'sp', partial.auc.correct = T)
    ## get summary info
    roc_summary_gen[ig, 2] <- index
    roc_summary_gen[ig, 1] <- CLASS[j]
    roc_summary_gen[ig, 3] <- fit_roc[[key]]$auc ## total AUC
    roc_summary_gen[ig, 4] <- p.auc ## corrected partial AUC (.5 is no discrimination)
    roc_summary_gen[ig, 5] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
    roc_summary_gen[ig, 6:8] <- coords(fit_roc[[key]], "best", 
                                   ret=c("threshold", "specificity", 'sensitivity'),
                                   transpose=TRUE)
    ## print summary
    cat('\n\nSummary of ROC:\n')
    print(roc_summary_gen[ig, ])
    ## add to summary iterator
    ig <- ig + 1
} ## End loop round index


ROC Analysis in
Index:   CFI
Classification:  C

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
  Classification Index       AUC partial-AUC Smoothed-AUC
1              C   CFI 0.8156696   0.6374748    0.8456461
  Optimal-Threshold Specificity Sensitivity
1          0.977017   0.7024613   0.8549251


ROC Analysis in
Index:   TLI
Classification:  C

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
  Classification Index       AUC partial-AUC Smoothed-AUC
2              C   TLI 0.8154291   0.6374691    0.8453772
  Optimal-Threshold Specificity Sensitivity
2         0.9724203   0.7022691   0.8549251


ROC Analysis in
Index:   RMSEA
Classification:  C

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
  Classification Index       AUC partial-AUC Smoothed-AUC
3              C RMSEA 0.8034875   0.6348255    0.8299624
  Optimal-Threshold Specificity Sensitivity
3        0.01504671   0.6849311    0.829003


ROC Analysis in
Index:   SRMRW
Classification:  C

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
  Classification Index       AUC partial-AUC Smoothed-AUC
4              C SRMRW 0.7420696   0.6079951    0.7165381
  Optimal-Threshold Specificity Sensitivity
4        0.03812817   0.7281555   0.7226555


ROC Analysis in
Index:   SRMRB
Classification:  C

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
  Classification Index       AUC partial-AUC Smoothed-AUC
5              C SRMRB 0.5979973   0.5720031    0.6039185
  Optimal-Threshold Specificity Sensitivity
5        0.06685217   0.8038081   0.3519244
kable(roc_summary_gen[1:5,], format = 'html', digits=3) %>%
  kable_styling(full_width = T)
Classification Index AUC partial-AUC Smoothed-AUC Optimal-Threshold Specificity Sensitivity
C CFI 0.816 0.637 0.846 0.977 0.702 0.855
C TLI 0.815 0.637 0.845 0.972 0.702 0.855
C RMSEA 0.803 0.635 0.830 0.015 0.685 0.829
C SRMRW 0.742 0.608 0.717 0.038 0.728 0.723
C SRMRB 0.598 0.572 0.604 0.067 0.804 0.352
print(xtable(roc_summary_gen[1:5,c(2:3,6:8)], digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:30:33 2019
\begin{table}[ht]
\centering
\begin{tabular}{lrrrr}
  \toprule
Index & AUC & Optimal-Threshold & Specificity & Sensitivity \\ 
  \midrule
CFI & 0.816 & 0.977 & 0.702 & 0.855 \\ 
  TLI & 0.815 & 0.972 & 0.702 & 0.855 \\ 
  RMSEA & 0.803 & 0.015 & 0.685 & 0.829 \\ 
  SRMRW & 0.742 & 0.038 & 0.728 & 0.723 \\ 
  SRMRB & 0.598 & 0.067 & 0.804 & 0.352 \\ 
   \bottomrule
\end{tabular}
\end{table}

More fine grained information within/across conditions

i <- 1 ## counter for roc_summary
j <- 1 ## Which class?
for(index in INDEX){
  for(est in EST){
    for(s2 in SS_L2){
      for(s1 in SS_L1){
    ## Print out which iteration so we know what we are looking at
    #cat('\n\nROC Analysis in')
    #cat('\nIndex:\t', index)
    #cat('\nClassification:\t', CLASS[j])
    #cat('\nEstimation Method:\t', est)
    #cat('\nLevel-2 Sample Size:\t', s2)
    #cat('\nLevel-1 Sample Size:\t', s1)
    ## Set up iteration key
    key <- paste0(index,'.',CLASS[j],'.',est,'.', s2,'.',s1)
    # Subset data as  needed
    if(est == 'ALL' & s2 == 'ALL' & s1 == 'ALL') mydata <- sim_results
    if(est != 'ALL' & s2 == 'ALL' & s1 == 'ALL'){
      mydata <- filter(sim_results, Estimator == est)
    }
    if(est == 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
      mydata <- filter(sim_results, ss_l2 == s2)
    }
    if(est == 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, ss_l1 == s1)
    }
    if(est != 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
      mydata <- filter(sim_results, Estimator == est, ss_l2 == s2)
    }
    if(est != 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, Estimator == est, ss_l1 == s1)
    }
    if(est == 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, ss_l2 == s2, ss_l1 == s1)
    }
    if(est != 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, Estimator == est, ss_l2 == s2, ss_l1 == s1)
    }
    ## Create formula
    model <- as.formula(paste0(CLASS[j], '~', index))
    ## Fit ROC curve
    fit_roc[[key]] <-  roc(model, data=mydata, quiet=T,
                           plot =F, ci=TRUE, print.auc=TRUE)
    ## Create a plot of "smoothed" curve for plotting
    fit_roc_smooth[[key]] <-  smooth(roc(model, data=mydata))
    ## Compute partial AUC for specificity .8-1
    p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
                 partial.auc.focus = 'sp', partial.auc.correct = T)
    ## get summary info
    roc_summary[i, 2] <- index
    roc_summary[i, 1] <- CLASS[j]
    roc_summary[i, 3] <- est ##estimator
    roc_summary[i, 4] <- s2 ## level-2 sample size
    roc_summary[i, 5] <- s1 ## level-1 sample size
    roc_summary[i, 6] <- fit_roc[[key]]$auc ## total AUC
    roc_summary[i, 7] <- p.auc ## corrected partial AUC (.5 is no discrimination)
    roc_summary[i, 8] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
    roc_summary[i, 9:11] <- coords(fit_roc[[key]], "best", 
                                   ret=c("threshold", "specificity", 'sensitivity'),
                                   transpose=TRUE)
    
    ## add number of C and number of miss models in analysis
    n.C <- nrow(mydata[ mydata[, CLASS[j]] == 1, ])
    n.M <- nrow(mydata[ mydata[, CLASS[j]] == 0, ])
    roc_summary[i, 12] <- n.C
    roc_summary[i, 13] <- n.M
    
    ## print summary
    #cat('\n\nSummary of ROC:\n')
    #print(roc_summary[i, ])
    ## add to summary iterator
    i <- i + 1
      } ## end loop around ss l1
    } ## End loop around ss l2
  } ## End loop around estimator
} ## End loop round index
kable(roc_summary[1:400, ], format = 'html', digits=3) %>%
  kable_styling(full_width = T)
Classification Index Estimator Level-2 SS Level-1 SS AUC partial-AUC Smoothed-AUC Threshold Specificity Sensitivity Num-C Num-Mis
C CFI ALL ALL ALL 0.816 0.637 0.846 0.977 0.702 0.855 83510 223868
C CFI ALL ALL 5 0.784 0.649 0.799 0.971 0.749 0.752 23460 63082
C CFI ALL ALL 10 0.842 0.672 0.860 0.972 0.718 0.873 28208 75749
C CFI ALL ALL 30 0.829 0.612 0.809 0.986 0.643 0.944 31842 85037
C CFI ALL 30 ALL 0.679 0.544 0.713 0.968 0.587 0.739 16157 43767
C CFI ALL 30 5 0.636 0.546 0.640 0.899 0.490 0.719 3994 10825
C CFI ALL 30 10 0.708 0.560 0.721 0.959 0.597 0.728 5297 14595
C CFI ALL 30 30 0.706 0.535 0.639 0.971 0.467 0.943 6866 18347
C CFI ALL 50 ALL 0.774 0.597 0.802 0.970 0.642 0.826 19330 52168
C CFI ALL 50 5 0.720 0.585 0.727 0.956 0.654 0.680 5037 13894
C CFI ALL 50 10 0.818 0.642 0.830 0.965 0.683 0.843 6490 17559
C CFI ALL 50 30 0.795 0.580 0.763 0.983 0.589 0.969 7803 20715
C CFI ALL 100 ALL 0.864 0.684 0.884 0.977 0.723 0.905 22743 60844
C CFI ALL 100 5 0.850 0.687 0.859 0.967 0.723 0.845 6487 17448
C CFI ALL 100 10 0.889 0.725 0.901 0.974 0.741 0.946 7852 20843
C CFI ALL 100 30 0.865 0.659 0.841 0.991 0.701 0.971 8404 22553
C CFI ALL 200 ALL 0.912 0.767 0.922 0.980 0.764 0.965 25280 67089
C CFI ALL 200 5 0.904 0.747 0.914 0.977 0.787 0.940 7942 20915
C CFI ALL 200 10 0.916 0.772 0.913 0.983 0.789 0.963 8569 22752
C CFI ALL 200 30 0.931 0.811 0.923 0.994 0.797 0.965 8769 23422
C CFI MLR ALL ALL 0.841 0.710 0.840 0.967 0.746 0.834 30018 85647
C CFI MLR ALL 5 0.773 0.678 0.777 0.971 0.814 0.663 8945 24572
C CFI MLR ALL 10 0.854 0.717 0.856 0.967 0.772 0.816 10090 28785
C CFI MLR ALL 30 0.897 0.742 0.891 0.977 0.733 0.933 10983 32290
C CFI MLR 30 ALL 0.747 0.639 0.739 0.940 0.726 0.698 6295 17854
C CFI MLR 30 5 0.666 0.569 0.664 0.888 0.673 0.589 1726 4739
C CFI MLR 30 10 0.774 0.622 0.773 0.918 0.612 0.815 2054 5832
C CFI MLR 30 30 0.873 0.686 0.876 0.957 0.693 0.966 2515 7283
C CFI MLR 50 ALL 0.828 0.674 0.827 0.956 0.713 0.835 7124 20417
C CFI MLR 50 5 0.747 0.608 0.748 0.929 0.612 0.763 2032 5724
C CFI MLR 50 10 0.859 0.690 0.859 0.956 0.734 0.867 2387 6790
C CFI MLR 50 30 0.894 0.719 0.889 0.979 0.739 0.969 2705 7903
C CFI MLR 100 ALL 0.893 0.735 0.898 0.974 0.750 0.918 8014 22901
C CFI MLR 100 5 0.866 0.705 0.867 0.959 0.700 0.897 2417 6637
C CFI MLR 100 10 0.906 0.748 0.901 0.974 0.768 0.967 2760 7823
C CFI MLR 100 30 0.918 0.775 0.912 0.991 0.792 0.970 2837 8441
C CFI MLR 200 ALL 0.917 0.778 0.911 0.981 0.767 0.973 8585 24475
C CFI MLR 200 5 0.911 0.761 0.906 0.976 0.787 0.958 2770 7472
C CFI MLR 200 10 0.923 0.788 0.915 0.986 0.809 0.975 2889 8340
C CFI MLR 200 30 0.938 0.827 0.932 0.995 0.824 0.986 2926 8663
C CFI ULSMV ALL ALL 0.780 0.587 0.841 0.973 0.628 0.888 27515 71584
C CFI ULSMV ALL 5 0.775 0.618 0.807 0.967 0.697 0.794 7500 19987
C CFI ULSMV ALL 10 0.818 0.625 0.854 0.970 0.687 0.888 9333 24300
C CFI ULSMV ALL 30 0.762 0.561 0.725 0.987 0.531 0.975 10682 27297
C CFI ULSMV 30 ALL 0.628 0.524 0.720 0.982 0.431 0.821 5208 13635
C CFI ULSMV 30 5 0.617 0.531 0.638 0.981 0.633 0.575 1203 3200
C CFI ULSMV 30 10 0.665 0.535 0.726 0.978 0.498 0.795 1719 4632
C CFI ULSMV 30 30 0.614 0.516 0.481 0.988 0.268 0.975 2286 5803
C CFI ULSMV 50 ALL 0.712 0.554 0.770 0.973 0.552 0.826 6356 16505
C CFI ULSMV 50 5 0.686 0.564 0.699 0.967 0.647 0.639 1595 4319
C CFI ULSMV 50 10 0.774 0.603 0.801 0.970 0.659 0.804 2122 5551
C CFI ULSMV 50 30 0.694 0.535 0.643 0.989 0.417 0.974 2639 6635
C CFI ULSMV 100 ALL 0.827 0.634 0.855 0.971 0.667 0.906 7529 19571
C CFI ULSMV 100 5 0.829 0.671 0.840 0.965 0.709 0.823 2076 5570
C CFI ULSMV 100 10 0.874 0.711 0.886 0.970 0.742 0.908 2619 6741
C CFI ULSMV 100 30 0.798 0.584 0.740 0.989 0.583 0.967 2834 7260
C CFI ULSMV 200 ALL 0.911 0.764 0.919 0.975 0.785 0.957 8422 21873
C CFI ULSMV 200 5 0.898 0.738 0.908 0.967 0.766 0.950 2626 6898
C CFI ULSMV 200 10 0.912 0.761 0.907 0.970 0.796 0.971 2873 7376
C CFI ULSMV 200 30 0.929 0.805 0.921 0.987 0.794 0.975 2923 7599
C CFI WLSMV ALL ALL 0.836 0.649 0.871 0.982 0.682 0.896 25977 66637
C CFI WLSMV ALL 5 0.818 0.656 0.835 0.972 0.704 0.838 7015 18523
C CFI WLSMV ALL 10 0.866 0.686 0.880 0.982 0.724 0.902 8785 22664
C CFI WLSMV ALL 30 0.841 0.625 0.797 0.995 0.669 0.951 10177 25450
C CFI WLSMV 30 ALL 0.705 0.552 0.758 0.983 0.546 0.811 4654 12278
C CFI WLSMV 30 5 0.675 0.558 0.680 0.936 0.455 0.807 1065 2886
C CFI WLSMV 30 10 0.763 0.588 0.776 0.981 0.624 0.804 1524 4131
C CFI WLSMV 30 30 0.700 0.537 0.564 0.987 0.397 0.977 2065 5261
C CFI WLSMV 50 ALL 0.802 0.625 0.830 0.980 0.647 0.848 5850 15246
C CFI WLSMV 50 5 0.747 0.596 0.751 0.964 0.618 0.769 1410 3851
C CFI WLSMV 50 10 0.843 0.663 0.841 0.976 0.688 0.880 1981 5218
C CFI WLSMV 50 30 0.828 0.612 0.771 0.992 0.630 0.966 2459 6177
C CFI WLSMV 100 ALL 0.876 0.703 0.891 0.979 0.708 0.936 7200 18372
C CFI WLSMV 100 5 0.859 0.690 0.862 0.972 0.711 0.880 1994 5241
C CFI WLSMV 100 10 0.893 0.721 0.882 0.983 0.746 0.947 2473 6279
C CFI WLSMV 100 30 0.889 0.706 0.863 0.994 0.735 0.977 2733 6852
C CFI WLSMV 200 ALL 0.910 0.761 0.898 0.986 0.756 0.960 8273 20741
C CFI WLSMV 200 5 0.904 0.742 0.897 0.979 0.769 0.962 2546 6545
C CFI WLSMV 200 10 0.917 0.772 0.907 0.988 0.783 0.981 2807 7036
C CFI WLSMV 200 30 0.930 0.806 0.919 0.997 0.808 0.969 2920 7160
C TLI ALL ALL ALL 0.815 0.637 0.845 0.972 0.702 0.855 83510 223868
C TLI ALL ALL 5 0.784 0.649 0.799 0.965 0.749 0.752 23460 63082
C TLI ALL ALL 10 0.841 0.672 0.859 0.966 0.717 0.873 28208 75749
C TLI ALL ALL 30 0.828 0.612 0.810 0.983 0.643 0.945 31842 85037
C TLI ALL 30 ALL 0.678 0.544 0.713 0.961 0.587 0.739 16157 43767
C TLI ALL 30 5 0.635 0.546 0.639 0.878 0.487 0.720 3994 10825
C TLI ALL 30 10 0.707 0.560 0.721 0.951 0.597 0.728 5297 14595
C TLI ALL 30 30 0.706 0.535 0.640 0.965 0.467 0.943 6866 18347
C TLI ALL 50 ALL 0.773 0.597 0.802 0.964 0.641 0.826 19330 52168
C TLI ALL 50 5 0.719 0.585 0.727 0.948 0.653 0.681 5037 13894
C TLI ALL 50 10 0.818 0.642 0.830 0.958 0.682 0.843 6490 17559
C TLI ALL 50 30 0.795 0.580 0.764 0.980 0.588 0.969 7803 20715
C TLI ALL 100 ALL 0.864 0.684 0.884 0.972 0.722 0.905 22743 60844
C TLI ALL 100 5 0.849 0.687 0.859 0.961 0.723 0.845 6487 17448
C TLI ALL 100 10 0.889 0.724 0.901 0.968 0.739 0.948 7852 20843
C TLI ALL 100 30 0.865 0.659 0.842 0.989 0.701 0.971 8404 22553
C TLI ALL 200 ALL 0.912 0.767 0.922 0.976 0.763 0.965 25280 67089
C TLI ALL 200 5 0.904 0.747 0.914 0.972 0.786 0.941 7942 20915
C TLI ALL 200 10 0.916 0.772 0.913 0.980 0.789 0.963 8569 22752
C TLI ALL 200 30 0.931 0.811 0.923 0.993 0.797 0.965 8769 23422
C TLI MLR ALL ALL 0.840 0.710 0.840 0.961 0.750 0.830 30018 85647
C TLI MLR ALL 5 0.772 0.678 0.776 0.965 0.814 0.663 8945 24572
C TLI MLR ALL 10 0.853 0.717 0.855 0.960 0.772 0.816 10090 28785
C TLI MLR ALL 30 0.897 0.742 0.891 0.972 0.733 0.933 10983 32290
C TLI MLR 30 ALL 0.746 0.639 0.738 0.928 0.725 0.698 6295 17854
C TLI MLR 30 5 0.664 0.569 0.663 0.867 0.678 0.582 1726 4739
C TLI MLR 30 10 0.773 0.622 0.772 0.902 0.610 0.815 2054 5832
C TLI MLR 30 30 0.873 0.686 0.876 0.949 0.693 0.966 2515 7283
C TLI MLR 50 ALL 0.827 0.674 0.827 0.947 0.713 0.835 7124 20417
C TLI MLR 50 5 0.746 0.607 0.747 0.915 0.610 0.763 2032 5724
C TLI MLR 50 10 0.859 0.690 0.859 0.947 0.734 0.867 2387 6790
C TLI MLR 50 30 0.894 0.719 0.889 0.975 0.739 0.969 2705 7903
C TLI MLR 100 ALL 0.893 0.735 0.898 0.968 0.750 0.918 8014 22901
C TLI MLR 100 5 0.865 0.705 0.867 0.951 0.699 0.897 2417 6637
C TLI MLR 100 10 0.906 0.748 0.901 0.969 0.768 0.967 2760 7823
C TLI MLR 100 30 0.918 0.775 0.912 0.989 0.792 0.970 2837 8441
C TLI MLR 200 ALL 0.917 0.778 0.911 0.977 0.767 0.973 8585 24475
C TLI MLR 200 5 0.911 0.761 0.906 0.972 0.790 0.955 2770 7472
C TLI MLR 200 10 0.923 0.788 0.915 0.984 0.809 0.975 2889 8340
C TLI MLR 200 30 0.938 0.827 0.932 0.994 0.824 0.986 2926 8663
C TLI ULSMV ALL ALL 0.780 0.587 0.841 0.968 0.627 0.888 27515 71584
C TLI ULSMV ALL 5 0.775 0.618 0.806 0.960 0.696 0.794 7500 19987
C TLI ULSMV ALL 10 0.818 0.625 0.854 0.964 0.686 0.888 9333 24300
C TLI ULSMV ALL 30 0.762 0.561 0.727 0.985 0.531 0.975 10682 27297
C TLI ULSMV 30 ALL 0.628 0.524 0.720 0.979 0.430 0.821 5208 13635
C TLI ULSMV 30 5 0.616 0.531 0.638 0.977 0.632 0.575 1203 3200
C TLI ULSMV 30 10 0.665 0.535 0.725 0.973 0.498 0.795 1719 4632
C TLI ULSMV 30 30 0.614 0.516 0.482 0.985 0.268 0.975 2286 5803
C TLI ULSMV 50 ALL 0.712 0.554 0.770 0.968 0.552 0.826 6356 16505
C TLI ULSMV 50 5 0.685 0.564 0.699 0.959 0.638 0.647 1595 4319
C TLI ULSMV 50 10 0.774 0.603 0.801 0.966 0.663 0.799 2122 5551
C TLI ULSMV 50 30 0.694 0.535 0.645 0.986 0.417 0.974 2639 6635
C TLI ULSMV 100 ALL 0.827 0.634 0.855 0.965 0.666 0.906 7529 19571
C TLI ULSMV 100 5 0.829 0.670 0.840 0.958 0.708 0.823 2076 5570
C TLI ULSMV 100 10 0.874 0.711 0.886 0.965 0.743 0.907 2619 6741
C TLI ULSMV 100 30 0.798 0.584 0.740 0.987 0.583 0.967 2834 7260
C TLI ULSMV 200 ALL 0.911 0.764 0.919 0.970 0.785 0.956 8422 21873
C TLI ULSMV 200 5 0.898 0.738 0.908 0.960 0.766 0.950 2626 6898
C TLI ULSMV 200 10 0.912 0.761 0.907 0.965 0.797 0.969 2873 7376
C TLI ULSMV 200 30 0.929 0.805 0.921 0.985 0.794 0.975 2923 7599
C TLI WLSMV ALL ALL 0.836 0.649 0.871 0.979 0.682 0.896 25977 66637
C TLI WLSMV ALL 5 0.818 0.656 0.835 0.966 0.703 0.838 7015 18523
C TLI WLSMV ALL 10 0.866 0.686 0.880 0.979 0.724 0.902 8785 22664
C TLI WLSMV ALL 30 0.841 0.625 0.797 0.994 0.669 0.951 10177 25450
C TLI WLSMV 30 ALL 0.705 0.552 0.758 0.979 0.547 0.809 4654 12278
C TLI WLSMV 30 5 0.674 0.558 0.680 0.924 0.453 0.807 1065 2886
C TLI WLSMV 30 10 0.762 0.588 0.776 0.978 0.627 0.801 1524 4131
C TLI WLSMV 30 30 0.700 0.537 0.565 0.984 0.397 0.977 2065 5261
C TLI WLSMV 50 ALL 0.801 0.625 0.830 0.976 0.648 0.846 5850 15246
C TLI WLSMV 50 5 0.747 0.596 0.751 0.956 0.617 0.769 1410 3851
C TLI WLSMV 50 10 0.843 0.663 0.841 0.971 0.687 0.880 1981 5218
C TLI WLSMV 50 30 0.828 0.612 0.771 0.991 0.629 0.967 2459 6177
C TLI WLSMV 100 ALL 0.876 0.703 0.892 0.975 0.708 0.936 7200 18372
C TLI WLSMV 100 5 0.858 0.690 0.862 0.966 0.711 0.880 1994 5241
C TLI WLSMV 100 10 0.893 0.721 0.882 0.980 0.746 0.947 2473 6279
C TLI WLSMV 100 30 0.889 0.706 0.863 0.993 0.735 0.977 2733 6852
C TLI WLSMV 200 ALL 0.910 0.761 0.898 0.984 0.756 0.960 8273 20741
C TLI WLSMV 200 5 0.904 0.742 0.897 0.974 0.769 0.962 2546 6545
C TLI WLSMV 200 10 0.917 0.772 0.907 0.986 0.783 0.981 2807 7036
C TLI WLSMV 200 30 0.930 0.806 0.919 0.997 0.808 0.969 2920 7160
C RMSEA ALL ALL ALL 0.803 0.635 0.830 0.015 0.685 0.829 83510 223868
C RMSEA ALL ALL 5 0.776 0.644 0.790 0.019 0.722 0.757 23460 63082
C RMSEA ALL ALL 10 0.832 0.668 0.847 0.016 0.725 0.836 28208 75749
C RMSEA ALL ALL 30 0.816 0.612 0.798 0.009 0.665 0.869 31842 85037
C RMSEA ALL 30 ALL 0.664 0.544 0.688 0.020 0.549 0.734 16157 43767
C RMSEA ALL 30 5 0.614 0.546 0.614 0.021 0.695 0.477 3994 10825
C RMSEA ALL 30 10 0.681 0.560 0.680 0.018 0.623 0.657 5297 14595
C RMSEA ALL 30 30 0.691 0.535 0.615 0.022 0.398 0.958 6866 18347
C RMSEA ALL 50 ALL 0.758 0.596 0.778 0.016 0.636 0.776 19330 52168
C RMSEA ALL 50 5 0.702 0.582 0.704 0.023 0.635 0.670 5037 13894
C RMSEA ALL 50 10 0.801 0.635 0.802 0.020 0.653 0.819 6490 17559
C RMSEA ALL 50 30 0.781 0.580 0.734 0.013 0.551 0.933 7803 20715
C RMSEA ALL 100 ALL 0.854 0.678 0.862 0.016 0.698 0.892 22743 60844
C RMSEA ALL 100 5 0.842 0.680 0.843 0.021 0.676 0.870 6487 17448
C RMSEA ALL 100 10 0.886 0.716 0.877 0.017 0.720 0.943 7852 20843
C RMSEA ALL 100 30 0.859 0.656 0.825 0.010 0.687 0.961 8404 22553
C RMSEA ALL 200 ALL 0.905 0.758 0.897 0.014 0.736 0.955 25280 67089
C RMSEA ALL 200 5 0.902 0.742 0.896 0.017 0.764 0.953 7942 20915
C RMSEA ALL 200 10 0.918 0.776 0.909 0.013 0.790 0.971 8569 22752
C RMSEA ALL 200 30 0.929 0.808 0.922 0.007 0.806 0.951 8769 23422
C RMSEA MLR ALL ALL 0.830 0.706 0.829 0.024 0.735 0.843 30018 85647
C RMSEA MLR ALL 5 0.758 0.671 0.762 0.023 0.782 0.684 8945 24572
C RMSEA MLR ALL 10 0.843 0.711 0.844 0.025 0.745 0.840 10090 28785
C RMSEA MLR ALL 30 0.896 0.738 0.894 0.019 0.729 0.944 10983 32290
C RMSEA MLR 30 ALL 0.725 0.634 0.720 0.029 0.741 0.660 6295 17854
C RMSEA MLR 30 5 0.653 0.562 0.655 0.051 0.540 0.678 1726 4739
C RMSEA MLR 30 10 0.755 0.612 0.756 0.035 0.642 0.744 2054 5832
C RMSEA MLR 30 30 0.870 0.679 0.873 0.026 0.700 0.961 2515 7283
C RMSEA MLR 50 ALL 0.814 0.669 0.813 0.026 0.716 0.814 7124 20417
C RMSEA MLR 50 5 0.730 0.599 0.731 0.034 0.593 0.752 2032 5724
C RMSEA MLR 50 10 0.850 0.680 0.851 0.026 0.725 0.849 2387 6790
C RMSEA MLR 50 30 0.892 0.715 0.887 0.018 0.736 0.979 2705 7903
C RMSEA MLR 100 ALL 0.889 0.729 0.892 0.020 0.747 0.916 8014 22901
C RMSEA MLR 100 5 0.859 0.695 0.859 0.024 0.717 0.871 2417 6637
C RMSEA MLR 100 10 0.903 0.740 0.897 0.020 0.762 0.968 2760 7823
C RMSEA MLR 100 30 0.917 0.772 0.911 0.012 0.779 0.982 2837 8441
C RMSEA MLR 200 ALL 0.915 0.772 0.908 0.017 0.759 0.979 8585 24475
C RMSEA MLR 200 5 0.908 0.751 0.900 0.019 0.782 0.964 2770 7472
C RMSEA MLR 200 10 0.921 0.781 0.912 0.014 0.801 0.981 2889 8340
C RMSEA MLR 200 30 0.937 0.825 0.930 0.008 0.832 0.975 2926 8663
C RMSEA ULSMV ALL ALL 0.770 0.587 0.807 0.012 0.596 0.855 27515 71584
C RMSEA ULSMV ALL 5 0.784 0.617 0.807 0.017 0.656 0.815 7500 19987
C RMSEA ULSMV ALL 10 0.817 0.624 0.828 0.012 0.692 0.843 9333 24300
C RMSEA ULSMV ALL 30 0.754 0.561 0.708 0.006 0.552 0.905 10682 27297
C RMSEA ULSMV 30 ALL 0.628 0.524 0.675 0.008 0.448 0.771 5208 13635
C RMSEA ULSMV 30 5 0.621 0.531 0.635 0.011 0.619 0.587 1203 3200
C RMSEA ULSMV 30 10 0.663 0.535 0.666 0.014 0.428 0.838 1719 4632
C RMSEA ULSMV 30 30 0.391 NA 0.564 -Inf 0.000 1.000 2286 5803
C RMSEA ULSMV 50 ALL 0.706 0.554 0.728 0.009 0.590 0.749 6356 16505
C RMSEA ULSMV 50 5 0.686 0.564 0.690 0.016 0.614 0.661 1595 4319
C RMSEA ULSMV 50 10 0.770 0.603 0.761 0.014 0.614 0.802 2122 5551
C RMSEA ULSMV 50 30 0.688 0.535 0.587 0.007 0.430 0.907 2639 6635
C RMSEA ULSMV 100 ALL 0.813 0.632 0.810 0.012 0.671 0.839 7529 19571
C RMSEA ULSMV 100 5 0.829 0.667 0.830 0.017 0.700 0.826 2076 5570
C RMSEA ULSMV 100 10 0.870 0.706 0.863 0.014 0.707 0.900 2619 6741
C RMSEA ULSMV 100 30 0.789 0.584 0.715 0.006 0.574 0.924 2834 7260
C RMSEA ULSMV 200 ALL 0.893 0.752 0.889 0.013 0.689 0.947 8422 21873
C RMSEA ULSMV 200 5 0.896 0.737 0.895 0.015 0.784 0.907 2626 6898
C RMSEA ULSMV 200 10 0.916 0.774 0.909 0.012 0.800 0.944 2873 7376
C RMSEA ULSMV 200 30 0.926 0.807 0.925 0.006 0.805 0.929 2923 7599
C RMSEA WLSMV ALL ALL 0.832 0.648 0.864 0.014 0.689 0.872 25977 66637
C RMSEA WLSMV ALL 5 0.820 0.655 0.837 0.019 0.719 0.819 7015 18523
C RMSEA WLSMV ALL 10 0.866 0.685 0.876 0.016 0.713 0.915 8785 22664
C RMSEA WLSMV ALL 30 0.839 0.625 0.804 0.008 0.672 0.936 10177 25450
C RMSEA WLSMV 30 ALL 0.700 0.552 0.743 0.013 0.545 0.786 4654 12278
C RMSEA WLSMV 30 5 0.674 0.558 0.679 0.021 0.614 0.652 1065 2886
C RMSEA WLSMV 30 10 0.759 0.588 0.767 0.018 0.552 0.863 1524 4131
C RMSEA WLSMV 30 30 0.694 0.537 0.573 0.008 0.446 0.895 2065 5261
C RMSEA WLSMV 50 ALL 0.790 0.625 0.811 0.011 0.718 0.736 5850 15246
C RMSEA WLSMV 50 5 0.743 0.595 0.747 0.020 0.644 0.727 1410 3851
C RMSEA WLSMV 50 10 0.842 0.663 0.838 0.018 0.664 0.897 1981 5218
C RMSEA WLSMV 50 30 0.821 0.612 0.782 0.009 0.617 0.934 2459 6177
C RMSEA WLSMV 100 ALL 0.873 0.703 0.886 0.015 0.723 0.910 7200 18372
C RMSEA WLSMV 100 5 0.858 0.690 0.863 0.021 0.673 0.914 1994 5241
C RMSEA WLSMV 100 10 0.893 0.722 0.882 0.017 0.728 0.965 2473 6279
C RMSEA WLSMV 100 30 0.889 0.706 0.859 0.009 0.737 0.972 2733 6852
C RMSEA WLSMV 200 ALL 0.910 0.761 0.898 0.014 0.752 0.963 8273 20741
C RMSEA WLSMV 200 5 0.904 0.742 0.895 0.017 0.771 0.961 2546 6545
C RMSEA WLSMV 200 10 0.918 0.775 0.908 0.013 0.786 0.979 2807 7036
C RMSEA WLSMV 200 30 0.930 0.806 0.919 0.006 0.811 0.965 2920 7160
C SRMRW ALL ALL ALL 0.742 0.608 0.717 0.038 0.728 0.723 83510 223868
C SRMRW ALL ALL 5 0.685 0.606 0.673 0.046 0.741 0.581 23460 63082
C SRMRW ALL ALL 10 0.762 0.610 0.741 0.041 0.696 0.754 28208 75749
C SRMRW ALL ALL 30 0.812 0.605 0.792 0.035 0.661 0.940 31842 85037
C SRMRW ALL 30 ALL 0.656 0.590 0.647 0.044 0.770 0.498 16157 43767
C SRMRW ALL 30 5 0.620 0.554 0.617 0.072 0.702 0.479 3994 10825
C SRMRW ALL 30 10 0.706 0.585 0.693 0.055 0.628 0.701 5297 14595
C SRMRW ALL 30 30 0.779 0.593 0.754 0.039 0.661 0.872 6866 18347
C SRMRW ALL 50 ALL 0.715 0.601 0.700 0.042 0.725 0.639 19330 52168
C SRMRW ALL 50 5 0.685 0.578 0.681 0.062 0.642 0.635 5037 13894
C SRMRW ALL 50 10 0.770 0.599 0.753 0.047 0.633 0.834 6490 17559
C SRMRW ALL 50 30 0.805 0.596 0.790 0.035 0.668 0.926 7803 20715
C SRMRW ALL 100 ALL 0.791 0.605 0.777 0.038 0.698 0.806 22743 60844
C SRMRW ALL 100 5 0.782 0.608 0.775 0.048 0.655 0.809 6487 17448
C SRMRW ALL 100 10 0.817 0.604 0.816 0.038 0.662 0.932 7852 20843
C SRMRW ALL 100 30 0.822 0.601 0.832 0.032 0.664 0.973 8404 22553
C SRMRW ALL 200 ALL 0.828 0.610 0.835 0.036 0.654 0.963 25280 67089
C SRMRW ALL 200 5 0.830 0.620 0.841 0.040 0.649 0.950 7942 20915
C SRMRW ALL 200 10 0.833 0.612 0.856 0.033 0.663 0.986 8569 22752
C SRMRW ALL 200 30 0.830 0.608 0.849 0.024 0.679 0.982 8769 23422
C SRMRW MLR ALL ALL 0.754 0.607 0.728 0.036 0.720 0.773 30018 85647
C SRMRW MLR ALL 5 0.698 0.613 0.694 0.040 0.779 0.564 8945 24572
C SRMRW MLR ALL 10 0.795 0.611 0.789 0.038 0.687 0.822 10090 28785
C SRMRW MLR ALL 30 0.832 0.611 0.840 0.031 0.661 0.998 10983 32290
C SRMRW MLR 30 ALL 0.674 0.596 0.671 0.042 0.738 0.568 6295 17854
C SRMRW MLR 30 5 0.704 0.569 0.707 0.071 0.486 0.827 1726 4739
C SRMRW MLR 30 10 0.795 0.597 0.799 0.048 0.634 0.870 2054 5832
C SRMRW MLR 30 30 0.826 0.604 0.834 0.033 0.652 0.999 2515 7283
C SRMRW MLR 50 ALL 0.737 0.606 0.730 0.037 0.744 0.682 7124 20417
C SRMRW MLR 50 5 0.768 0.597 0.774 0.056 0.571 0.855 2032 5724
C SRMRW MLR 50 10 0.825 0.610 0.844 0.041 0.629 0.965 2387 6790
C SRMRW MLR 50 30 0.831 0.609 0.833 0.029 0.660 1.000 2705 7903
C SRMRW MLR 100 ALL 0.816 0.606 0.821 0.037 0.672 0.903 8014 22901
C SRMRW MLR 100 5 0.831 0.625 0.846 0.043 0.632 0.956 2417 6637
C SRMRW MLR 100 10 0.834 0.616 0.839 0.032 0.651 1.000 2760 7823
C SRMRW MLR 100 30 0.835 0.615 0.837 0.025 0.664 1.000 2837 8441
C SRMRW MLR 200 ALL 0.832 0.610 0.861 0.032 0.661 0.993 8585 24475
C SRMRW MLR 200 5 0.850 0.640 0.868 0.032 0.667 0.980 2770 7472
C SRMRW MLR 200 10 0.844 0.631 0.848 0.024 0.655 1.000 2889 8340
C SRMRW MLR 200 30 0.840 0.623 0.842 0.013 0.664 1.000 2926 8663
C SRMRW ULSMV ALL ALL 0.740 0.633 0.715 0.045 0.741 0.715 27515 71584
C SRMRW ULSMV ALL 5 0.672 0.615 0.660 0.050 0.788 0.539 7500 19987
C SRMRW ULSMV ALL 10 0.752 0.634 0.729 0.045 0.737 0.710 9333 24300
C SRMRW ULSMV ALL 30 0.819 0.644 0.789 0.042 0.675 0.904 10682 27297
C SRMRW ULSMV 30 ALL 0.642 0.590 0.636 0.052 0.789 0.459 5208 13635
C SRMRW ULSMV 30 5 0.607 0.537 0.604 0.096 0.586 0.578 1203 3200
C SRMRW ULSMV 30 10 0.691 0.581 0.681 0.069 0.593 0.713 1719 4632
C SRMRW ULSMV 30 30 0.758 0.595 0.734 0.047 0.697 0.773 2286 5803
C SRMRW ULSMV 50 ALL 0.709 0.614 0.697 0.048 0.770 0.595 6356 16505
C SRMRW ULSMV 50 5 0.690 0.573 0.686 0.075 0.620 0.666 1595 4319
C SRMRW ULSMV 50 10 0.764 0.604 0.746 0.054 0.682 0.770 2122 5551
C SRMRW ULSMV 50 30 0.812 0.606 0.791 0.042 0.702 0.879 2639 6635
C SRMRW ULSMV 100 ALL 0.803 0.633 0.785 0.046 0.689 0.835 7529 19571
C SRMRW ULSMV 100 5 0.791 0.609 0.783 0.056 0.666 0.818 2076 5570
C SRMRW ULSMV 100 10 0.834 0.616 0.828 0.043 0.699 0.913 2619 6741
C SRMRW ULSMV 100 30 0.846 0.614 0.849 0.035 0.706 0.942 2834 7260
C SRMRW ULSMV 200 ALL 0.855 0.655 0.857 0.042 0.664 0.971 8422 21873
C SRMRW ULSMV 200 5 0.843 0.619 0.852 0.043 0.709 0.935 2626 6898
C SRMRW ULSMV 200 10 0.856 0.622 0.869 0.033 0.738 0.957 2873 7376
C SRMRW ULSMV 200 30 0.860 0.622 0.877 0.024 0.778 0.947 2923 7599
C SRMRW WLSMV ALL ALL 0.750 0.594 0.727 0.044 0.671 0.813 25977 66637
C SRMRW WLSMV ALL 5 0.696 0.604 0.687 0.048 0.747 0.610 7015 18523
C SRMRW WLSMV ALL 10 0.776 0.604 0.771 0.045 0.664 0.816 8785 22664
C SRMRW WLSMV ALL 30 0.806 0.598 0.821 0.039 0.600 0.997 10177 25450
C SRMRW WLSMV 30 ALL 0.682 0.590 0.673 0.050 0.738 0.585 4654 12278
C SRMRW WLSMV 30 5 0.679 0.556 0.680 0.085 0.562 0.714 1065 2886
C SRMRW WLSMV 30 10 0.777 0.585 0.781 0.060 0.598 0.871 1524 4131
C SRMRW WLSMV 30 30 0.805 0.590 0.814 0.042 0.597 0.999 2065 5261
C SRMRW WLSMV 50 ALL 0.733 0.594 0.723 0.047 0.689 0.738 5850 15246
C SRMRW WLSMV 50 5 0.745 0.581 0.748 0.069 0.557 0.834 1410 3851
C SRMRW WLSMV 50 10 0.808 0.597 0.828 0.049 0.609 0.954 1981 5218
C SRMRW WLSMV 50 30 0.811 0.597 0.814 0.037 0.603 1.000 2459 6177
C SRMRW WLSMV 100 ALL 0.797 0.594 0.802 0.045 0.627 0.910 7200 18372
C SRMRW WLSMV 100 5 0.812 0.606 0.824 0.052 0.590 0.951 1994 5241
C SRMRW WLSMV 100 10 0.818 0.607 0.825 0.039 0.599 0.998 2473 6279
C SRMRW WLSMV 100 30 0.818 0.608 0.821 0.024 0.600 1.000 2733 6852
C SRMRW WLSMV 200 ALL 0.813 0.601 0.844 0.038 0.607 0.992 8273 20741
C SRMRW WLSMV 200 5 0.833 0.621 0.851 0.038 0.635 0.974 2546 6545
C SRMRW WLSMV 200 10 0.838 0.630 0.846 0.025 0.628 0.980 2807 7036
C SRMRW WLSMV 200 30 0.833 0.628 0.838 0.015 0.604 0.992 2920 7160
C SRMRB ALL ALL ALL 0.598 0.572 0.604 0.067 0.804 0.352 83510 223868
C SRMRB ALL ALL 5 0.567 0.550 0.570 0.074 0.808 0.307 23460 63082
C SRMRB ALL ALL 10 0.596 0.571 0.603 0.069 0.792 0.358 28208 75749
C SRMRB ALL ALL 30 0.630 0.592 0.640 0.063 0.793 0.404 31842 85037
C SRMRB ALL 30 ALL 0.565 0.542 0.567 0.119 0.773 0.326 16157 43767
C SRMRB ALL 30 5 0.541 0.516 0.538 0.151 0.644 0.426 3994 10825
C SRMRB ALL 30 10 0.558 0.532 0.557 0.127 0.709 0.388 5297 14595
C SRMRB ALL 30 30 0.598 0.564 0.603 0.110 0.798 0.353 6866 18347
C SRMRB ALL 50 ALL 0.597 0.563 0.600 0.096 0.761 0.383 19330 52168
C SRMRB ALL 50 5 0.562 0.526 0.559 0.123 0.589 0.511 5037 13894
C SRMRB ALL 50 10 0.588 0.556 0.588 0.098 0.763 0.383 6490 17559
C SRMRB ALL 50 30 0.645 0.595 0.654 0.086 0.799 0.406 7803 20715
C SRMRB ALL 100 ALL 0.648 0.598 0.651 0.074 0.721 0.497 22743 60844
C SRMRB ALL 100 5 0.596 0.556 0.592 0.088 0.663 0.494 6487 17448
C SRMRB ALL 100 10 0.648 0.603 0.651 0.074 0.744 0.491 7852 20843
C SRMRB ALL 100 30 0.715 0.639 0.734 0.067 0.757 0.530 8404 22553
C SRMRB ALL 200 ALL 0.701 0.630 0.704 0.057 0.692 0.603 25280 67089
C SRMRB ALL 200 5 0.644 0.590 0.640 0.066 0.693 0.546 7942 20915
C SRMRB ALL 200 10 0.711 0.645 0.723 0.054 0.782 0.530 8569 22752
C SRMRB ALL 200 30 0.778 0.676 0.805 0.054 0.634 0.742 8769 23422
C SRMRB MLR ALL ALL 0.600 0.577 0.605 0.083 0.800 0.366 30018 85647
C SRMRB MLR ALL 5 0.573 0.563 0.579 0.093 0.808 0.325 8945 24572
C SRMRB MLR ALL 10 0.600 0.576 0.606 0.083 0.799 0.363 10090 28785
C SRMRB MLR ALL 30 0.636 0.597 0.645 0.082 0.746 0.460 10983 32290
C SRMRB MLR 30 ALL 0.565 0.550 0.567 0.143 0.793 0.325 6295 17854
C SRMRB MLR 30 5 0.541 0.526 0.540 0.171 0.717 0.371 1726 4739
C SRMRB MLR 30 10 0.564 0.545 0.564 0.149 0.753 0.365 2054 5832
C SRMRB MLR 30 30 0.608 0.579 0.612 0.135 0.799 0.378 2515 7283
C SRMRB MLR 50 ALL 0.610 0.575 0.610 0.119 0.744 0.435 7124 20417
C SRMRB MLR 50 5 0.579 0.548 0.577 0.140 0.678 0.464 2032 5724
C SRMRB MLR 50 10 0.611 0.581 0.610 0.121 0.747 0.454 2387 6790
C SRMRB MLR 50 30 0.664 0.608 0.669 0.110 0.757 0.487 2705 7903
C SRMRB MLR 100 ALL 0.673 0.617 0.671 0.093 0.681 0.583 8014 22901
C SRMRB MLR 100 5 0.633 0.594 0.629 0.102 0.726 0.523 2417 6637
C SRMRB MLR 100 10 0.678 0.631 0.675 0.086 0.806 0.491 2760 7823
C SRMRB MLR 100 30 0.746 0.656 0.766 0.084 0.723 0.612 2837 8441
C SRMRB MLR 200 ALL 0.732 0.657 0.732 0.069 0.708 0.646 8585 24475
C SRMRB MLR 200 5 0.686 0.643 0.682 0.074 0.779 0.543 2770 7472
C SRMRB MLR 200 10 0.741 0.675 0.755 0.066 0.782 0.580 2889 8340
C SRMRB MLR 200 30 0.819 0.709 0.841 0.064 0.678 0.762 2926 8663
C SRMRB ULSMV ALL ALL 0.595 0.580 0.606 0.056 0.838 0.324 27515 71584
C SRMRB ULSMV ALL 5 0.563 0.555 0.570 0.064 0.817 0.300 7500 19987
C SRMRB ULSMV ALL 10 0.594 0.580 0.605 0.055 0.852 0.309 9333 24300
C SRMRB ULSMV ALL 30 0.626 0.601 0.637 0.054 0.800 0.403 10682 27297
C SRMRB ULSMV 30 ALL 0.567 0.549 0.573 0.106 0.734 0.381 5208 13635
C SRMRB ULSMV 30 5 0.545 0.517 0.544 0.141 0.474 0.603 1203 3200
C SRMRB ULSMV 30 10 0.562 0.535 0.561 0.108 0.716 0.403 1719 4632
C SRMRB ULSMV 30 30 0.593 0.578 0.601 0.096 0.772 0.400 2286 5803
C SRMRB ULSMV 50 ALL 0.596 0.576 0.604 0.081 0.795 0.366 6356 16505
C SRMRB ULSMV 50 5 0.557 0.531 0.555 0.104 0.593 0.507 1595 4319
C SRMRB ULSMV 50 10 0.591 0.566 0.593 0.086 0.747 0.425 2122 5551
C SRMRB ULSMV 50 30 0.640 0.620 0.653 0.072 0.848 0.394 2639 6635
C SRMRB ULSMV 100 ALL 0.649 0.620 0.655 0.060 0.843 0.398 7529 19571
C SRMRB ULSMV 100 5 0.597 0.569 0.595 0.074 0.715 0.464 2076 5570
C SRMRB ULSMV 100 10 0.652 0.634 0.656 0.063 0.796 0.489 2619 6741
C SRMRB ULSMV 100 30 0.710 0.673 0.731 0.053 0.895 0.441 2834 7260
C SRMRB ULSMV 200 ALL 0.701 0.656 0.707 0.047 0.793 0.516 8422 21873
C SRMRB ULSMV 200 5 0.646 0.614 0.644 0.053 0.797 0.462 2626 6898
C SRMRB ULSMV 200 10 0.714 0.685 0.727 0.044 0.876 0.492 2873 7376
C SRMRB ULSMV 200 30 0.779 0.713 0.808 0.038 0.935 0.467 2923 7599
C SRMRB WLSMV ALL ALL 0.601 0.578 0.609 0.062 0.822 0.345 25977 66637
C SRMRB WLSMV ALL 5 0.570 0.558 0.576 0.069 0.823 0.302 7015 18523
C SRMRB WLSMV ALL 10 0.598 0.577 0.606 0.063 0.818 0.342 8785 22664
C SRMRB WLSMV ALL 30 0.631 0.596 0.640 0.060 0.798 0.407 10177 25450
C SRMRB WLSMV 30 ALL 0.576 0.551 0.579 0.117 0.793 0.325 4654 12278
C SRMRB WLSMV 30 5 0.551 0.518 0.548 0.152 0.538 0.555 1065 2886
C SRMRB WLSMV 30 10 0.573 0.541 0.570 0.122 0.736 0.391 1524 4131
C SRMRB WLSMV 30 30 0.608 0.577 0.614 0.109 0.822 0.356 2065 5261
C SRMRB WLSMV 50 ALL 0.613 0.579 0.618 0.096 0.730 0.450 5850 15246
C SRMRB WLSMV 50 5 0.576 0.534 0.573 0.112 0.642 0.483 1410 3851
C SRMRB WLSMV 50 10 0.598 0.567 0.598 0.096 0.774 0.409 1981 5218
C SRMRB WLSMV 50 30 0.671 0.620 0.681 0.086 0.819 0.438 2459 6177
C SRMRB WLSMV 100 ALL 0.670 0.621 0.670 0.071 0.728 0.534 7200 18372
C SRMRB WLSMV 100 5 0.608 0.573 0.603 0.080 0.736 0.462 1994 5241
C SRMRB WLSMV 100 10 0.668 0.627 0.667 0.072 0.755 0.530 2473 6279
C SRMRB WLSMV 100 30 0.754 0.674 0.774 0.064 0.795 0.558 2733 6852
C SRMRB WLSMV 200 ALL 0.723 0.651 0.722 0.054 0.699 0.643 8273 20741
C SRMRB WLSMV 200 5 0.661 0.616 0.657 0.061 0.727 0.548 2546 6545
C SRMRB WLSMV 200 10 0.736 0.673 0.745 0.052 0.795 0.577 2807 7036
C SRMRB WLSMV 200 30 0.814 0.707 0.838 0.048 0.735 0.698 2920 7160

Detecting Misspecification at Level-1

General overview over all conditions

j <- 2 ## Which class?
for(index in INDEX){
    ## Print out which iteration so we know what we am looking at
    cat('\n\nROC Analysis in')
    cat('\nIndex:\t', index)
    cat('\nClassification:\t', CLASS[j])
    ## Set up iteration key
    key <- paste0(index,'.',CLASS[j])
    ## Create formula
    model <- as.formula(paste0(CLASS[j], '~', index))
    ## Fit ROC curve
    fit_roc[[key]] <-  roc(model, data=sim_results, quiet=T,
                           plot =TRUE, ci=TRUE, print.auc=TRUE)
    ## Create a plot of "smoothed" curve for plotting
    fit_roc_smooth[[key]] <-  smooth(roc(model, data=sim_results))
    ## Compute partial AUC for specificity .8-1
    p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
                 partial.auc.focus = 'sp', partial.auc.correct = T)
    ## get summary info
    roc_summary_gen[ig, 2] <- index
    roc_summary_gen[ig, 1] <- CLASS[j]
    roc_summary_gen[ig, 3] <- fit_roc[[key]]$auc ## total AUC
    roc_summary_gen[ig, 4] <- p.auc ## corrected partial AUC (.5 is no discrimination)
    roc_summary_gen[ig, 5] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
    roc_summary_gen[ig, 6:8] <- coords(fit_roc[[key]], "best", 
                                   ret=c("threshold", "specificity", 'sensitivity'),
                                   transpose=TRUE)
    ## print summary
    cat('\n\nSummary of ROC:\n')
    print(roc_summary_gen[ig, ])
    ## add to summary iterator
    ig <- ig + 1
} ## End loop round index


ROC Analysis in
Index:   CFI
Classification:  CvM1

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
  Classification Index       AUC partial-AUC Smoothed-AUC
6           CvM1   CFI 0.8942411   0.7896568    0.9008448
  Optimal-Threshold Specificity Sensitivity
6         0.9707385   0.8682327    0.883183


ROC Analysis in
Index:   TLI
Classification:  CvM1

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
  Classification Index       AUC partial-AUC Smoothed-AUC
7           CvM1   TLI 0.8942411   0.7896568    0.9008143
  Optimal-Threshold Specificity Sensitivity
7         0.9648862   0.8682327    0.883183


ROC Analysis in
Index:   RMSEA
Classification:  CvM1

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
  Classification Index       AUC partial-AUC Smoothed-AUC
8           CvM1 RMSEA 0.8776767   0.7534801    0.8844573
  Optimal-Threshold Specificity Sensitivity
8         0.0169548   0.8114027   0.8589859


ROC Analysis in
Index:   SRMRW
Classification:  CvM1

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
  Classification Index       AUC partial-AUC Smoothed-AUC
9           CvM1 SRMRW 0.8725866    0.869644    0.8879885
  Optimal-Threshold Specificity Sensitivity
9        0.03824319   0.9745978   0.7240689


ROC Analysis in
Index:   SRMRB
Classification:  CvM1

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
   Classification Index       AUC partial-AUC Smoothed-AUC
10           CvM1 SRMRB 0.5373652   0.5405211    0.5473238
   Optimal-Threshold Specificity Sensitivity
10        0.05688385   0.8393742   0.2433847
kable(roc_summary_gen[1:5,], format = 'html', digits=3) %>%
  kable_styling(full_width = T)
Classification Index AUC partial-AUC Smoothed-AUC Optimal-Threshold Specificity Sensitivity
C CFI 0.816 0.637 0.846 0.977 0.702 0.855
C TLI 0.815 0.637 0.845 0.972 0.702 0.855
C RMSEA 0.803 0.635 0.830 0.015 0.685 0.829
C SRMRW 0.742 0.608 0.717 0.038 0.728 0.723
C SRMRB 0.598 0.572 0.604 0.067 0.804 0.352
print(xtable(roc_summary_gen[1:5,c(2:3,6:8)], digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:34:55 2019
\begin{table}[ht]
\centering
\begin{tabular}{lrrrr}
  \toprule
Index & AUC & Optimal-Threshold & Specificity & Sensitivity \\ 
  \midrule
CFI & 0.816 & 0.977 & 0.702 & 0.855 \\ 
  TLI & 0.815 & 0.972 & 0.702 & 0.855 \\ 
  RMSEA & 0.803 & 0.015 & 0.685 & 0.829 \\ 
  SRMRW & 0.742 & 0.038 & 0.728 & 0.723 \\ 
  SRMRB & 0.598 & 0.067 & 0.804 & 0.352 \\ 
   \bottomrule
\end{tabular}
\end{table}

More fine grained information within/across conditions

i <- 401
j <- 2 ## Which class?
for(index in INDEX){
  for(est in EST){
    for(s2 in SS_L2){
      for(s1 in SS_L1){
    ## Print out which iteration so we know what we are looking at
    #cat('\n\nROC Analysis in')
    #cat('\nIndex:\t', index)
    #cat('\nClassification:\t', CLASS[j])
    #cat('\nEstimation Method:\t', est)
    #cat('\nLevel-2 Sample Size:\t', s2)
    #cat('\nLevel-1 Sample Size:\t', s1)
    ## Set up iteration key
    key <- paste0(index,'.',CLASS[j],'.',est,'.', s2,'.',s1)
    # Subset data as  needed
    if(est == 'ALL' & s2 == 'ALL' & s1 == 'ALL') mydata <- sim_results
    if(est != 'ALL' & s2 == 'ALL' & s1 == 'ALL'){
      mydata <- filter(sim_results, Estimator == est)
    }
    if(est == 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
      mydata <- filter(sim_results, ss_l2 == s2)
    }
    if(est == 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, ss_l1 == s1)
    }
    if(est != 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
      mydata <- filter(sim_results, Estimator == est, ss_l2 == s2)
    }
    if(est != 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, Estimator == est, ss_l1 == s1)
    }
    if(est == 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, ss_l2 == s2, ss_l1 == s1)
    }
    if(est != 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, Estimator == est, ss_l2 == s2, ss_l1 == s1)
    }
    ## Create formula
    model <- as.formula(paste0(CLASS[j], '~', index))
    ## Fit ROC curve
    fit_roc[[key]] <-  roc(model, data=mydata,quiet=T,
                           plot =F, ci=TRUE, print.auc=TRUE)
    ## Create a plot of "smoothed" curve for plotting
    fit_roc_smooth[[key]] <-  tryCatch(smooth(roc(model, data=mydata)),
                                       error = function(e) NA)
                                      
    ## Compute partial AUC for specificity .8-1
    p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
                 partial.auc.focus = 'sp', partial.auc.correct = T)
    ## get summary info
    roc_summary[i, 2] <- index
    roc_summary[i, 1] <- CLASS[j]
    roc_summary[i, 3] <- est ##estimator
    roc_summary[i, 4] <- s2 ## level-2 sample size
    roc_summary[i, 5] <- s1 ## level-1 sample size
    roc_summary[i, 6] <- fit_roc[[key]]$auc ## total AUC
    roc_summary[i, 7] <- p.auc ## corrected partial AUC (.5 is no discrimination)
    if(is.na(fit_roc_smooth[[key]]) == T){
      roc_summary[i, 8] <- NA
    } else {
      roc_summary[i, 8] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
    }
    roc_summary[i, 9:11] <- coords(fit_roc[[key]], "best", 
                                   ret=c("threshold", "specificity", 'sensitivity'),
                                   transpose=TRUE)
    
    ## add number of C and number of miss models in analysis
    n.C <- nrow(mydata[ mydata[, CLASS[j]] == 1, ])
    n.M <- nrow(mydata[ mydata[, CLASS[j]] == 0, ])
    roc_summary[i, 12] <- n.C
    roc_summary[i, 13] <- n.M
    
    ## print summary
    #cat('\n\nSummary of ROC:\n')
    #print(roc_summary[i, ])
    ## add to summary iterator
    i <- i + 1
      } ## end loop around ss l1
    } ## End loop around ss l2
  } ## End loop around estimator
} ## End loop round index
kable(roc_summary[401:800, ], format = 'html', digits=3) %>%
  kable_styling(full_width = T)
Classification Index Estimator Level-2 SS Level-1 SS AUC partial-AUC Smoothed-AUC Threshold Specificity Sensitivity Num-C Num-Mis
401 CvM1 CFI ALL ALL ALL 0.894 0.790 0.901 0.971 0.868 0.883 241960 223868
402 CvM1 CFI ALL ALL 5 0.846 0.769 0.846 0.968 0.868 0.766 68483 63082
403 CvM1 CFI ALL ALL 10 0.927 0.855 0.922 0.968 0.902 0.889 81868 75749
404 CvM1 CFI ALL ALL 30 0.908 0.745 0.912 0.976 0.836 0.976 91609 85037
405 CvM1 CFI ALL 30 ALL 0.739 0.572 0.770 0.963 0.692 0.761 47053 43767
406 CvM1 CFI ALL 30 5 0.661 0.561 0.666 0.921 0.619 0.633 11584 10825
407 CvM1 CFI ALL 30 10 0.773 0.612 0.787 0.952 0.675 0.769 15551 14595
408 CvM1 CFI ALL 30 30 0.783 0.558 0.742 0.965 0.627 0.969 19918 18347
409 CvM1 CFI ALL 50 ALL 0.851 0.702 0.867 0.970 0.808 0.826 56136 52168
410 CvM1 CFI ALL 50 5 0.770 0.636 0.775 0.961 0.763 0.654 14818 13894
411 CvM1 CFI ALL 50 10 0.905 0.795 0.903 0.959 0.817 0.887 18954 17559
412 CvM1 CFI ALL 50 30 0.878 0.663 0.874 0.980 0.784 0.981 22364 20715
413 CvM1 CFI ALL 100 ALL 0.950 0.878 0.950 0.971 0.909 0.933 65882 60844
414 CvM1 CFI ALL 100 5 0.926 0.842 0.923 0.967 0.867 0.847 18983 17448
415 CvM1 CFI ALL 100 10 0.982 0.961 0.973 0.971 0.956 0.959 22711 20843
416 CvM1 CFI ALL 100 30 0.938 0.827 0.930 0.982 0.894 0.995 24188 22553
417 CvM1 CFI ALL 200 ALL 0.997 0.993 0.994 0.975 0.982 0.979 72889 67089
418 CvM1 CFI ALL 200 5 0.993 0.985 0.989 0.971 0.970 0.967 23098 20915
419 CvM1 CFI ALL 200 10 0.999 0.998 0.999 0.970 0.992 0.990 24652 22752
420 CvM1 CFI ALL 200 30 0.998 0.995 0.998 0.987 0.991 0.992 25139 23422
421 CvM1 CFI MLR ALL ALL 0.932 0.922 0.919 0.956 0.948 0.873 89822 85647
422 CvM1 CFI MLR ALL 5 0.832 0.799 0.832 0.963 0.907 0.704 26722 24572
423 CvM1 CFI MLR ALL 10 0.947 0.929 0.940 0.956 0.955 0.866 30195 28785
424 CvM1 CFI MLR ALL 30 1.000 0.999 1.000 0.956 0.995 0.993 32905 32290
425 CvM1 CFI MLR 30 ALL 0.829 0.798 0.822 0.944 0.918 0.684 18778 17854
426 CvM1 CFI MLR 30 5 0.699 0.597 0.698 0.889 0.722 0.582 5086 4739
427 CvM1 CFI MLR 30 10 0.860 0.751 0.858 0.919 0.751 0.811 6138 5832
428 CvM1 CFI MLR 30 30 0.998 0.995 0.998 0.949 0.973 0.987 7554 7283
429 CvM1 CFI MLR 50 ALL 0.926 0.882 0.914 0.955 0.921 0.842 21335 20417
430 CvM1 CFI MLR 50 5 0.795 0.669 0.795 0.929 0.681 0.762 6083 5724
431 CvM1 CFI MLR 50 10 0.961 0.910 0.959 0.953 0.907 0.886 7170 6790
432 CvM1 CFI MLR 50 30 1.000 1.000 1.000 0.966 0.998 1.000 8082 7903
433 CvM1 CFI MLR 100 ALL 0.990 0.977 0.984 0.962 0.959 0.960 24013 22901
434 CvM1 CFI MLR 100 5 0.946 0.877 0.946 0.959 0.847 0.903 7258 6637
435 CvM1 CFI MLR 100 10 0.999 0.998 0.999 0.966 0.988 0.991 8237 7823
436 CvM1 CFI MLR 100 30 1.000 1.000 NA 0.967 1.000 1.000 8518 8441
437 CvM1 CFI MLR 200 ALL 1.000 0.999 1.000 0.969 0.994 0.995 25696 24475
438 CvM1 CFI MLR 200 5 0.998 0.995 0.998 0.971 0.985 0.981 8295 7472
439 CvM1 CFI MLR 200 10 1.000 1.000 NA 0.968 1.000 1.000 8650 8340
440 CvM1 CFI MLR 200 30 1.000 1.000 NA 0.969 1.000 1.000 8751 8663
441 CvM1 CFI ULSMV ALL ALL 0.822 0.620 0.871 0.977 0.750 0.874 77713 71584
442 CvM1 CFI ULSMV ALL 5 0.819 0.697 0.835 0.967 0.789 0.793 21448 19987
443 CvM1 CFI ULSMV ALL 10 0.873 0.723 0.892 0.970 0.810 0.888 26416 24300
444 CvM1 CFI ULSMV ALL 30 0.792 0.572 0.793 0.987 0.643 0.975 29849 27297
445 CvM1 CFI ULSMV 30 ALL 0.649 0.529 0.751 0.979 0.482 0.830 14727 13635
446 CvM1 CFI ULSMV 30 5 0.627 0.536 0.649 0.967 0.606 0.622 3399 3200
447 CvM1 CFI ULSMV 30 10 0.691 0.543 0.760 0.978 0.559 0.795 4926 4632
448 CvM1 CFI ULSMV 30 30 0.631 0.519 0.515 0.987 0.337 0.976 6402 5803
449 CvM1 CFI ULSMV 50 ALL 0.735 0.562 0.799 0.972 0.613 0.834 17918 16505
450 CvM1 CFI ULSMV 50 5 0.713 0.586 0.727 0.962 0.667 0.670 4573 4319
451 CvM1 CFI ULSMV 50 10 0.813 0.644 0.837 0.971 0.748 0.803 6038 5551
452 CvM1 CFI ULSMV 50 30 0.701 0.535 0.674 0.988 0.482 0.977 7307 6635
453 CvM1 CFI ULSMV 100 ALL 0.875 0.711 0.901 0.971 0.781 0.905 21277 19571
454 CvM1 CFI ULSMV 100 5 0.880 0.768 0.884 0.967 0.809 0.813 5969 5570
455 CvM1 CFI ULSMV 100 10 0.946 0.885 0.943 0.970 0.885 0.908 7390 6741
456 CvM1 CFI ULSMV 100 30 0.823 0.596 0.789 0.984 0.674 0.982 7918 7260
457 CvM1 CFI ULSMV 200 ALL 0.989 0.973 0.986 0.975 0.954 0.956 23791 21873
458 CvM1 CFI ULSMV 200 5 0.983 0.961 0.979 0.968 0.934 0.944 7507 6898
459 CvM1 CFI ULSMV 200 10 0.996 0.991 0.996 0.970 0.977 0.971 8062 7376
460 CvM1 CFI ULSMV 200 30 0.993 0.981 0.993 0.987 0.972 0.975 8222 7599
461 CvM1 CFI WLSMV ALL ALL 0.945 0.877 0.947 0.977 0.906 0.923 74425 66637
462 CvM1 CFI WLSMV ALL 5 0.910 0.831 0.906 0.970 0.882 0.850 20313 18523
463 CvM1 CFI WLSMV ALL 10 0.977 0.943 0.970 0.973 0.934 0.953 25257 22664
464 CvM1 CFI WLSMV ALL 30 0.950 0.862 0.939 0.988 0.898 0.992 28855 25450
465 CvM1 CFI WLSMV 30 ALL 0.804 0.632 0.844 0.983 0.732 0.811 13548 12278
466 CvM1 CFI WLSMV 30 5 0.734 0.600 0.738 0.930 0.513 0.839 3099 2886
467 CvM1 CFI WLSMV 30 10 0.886 0.765 0.894 0.981 0.835 0.804 4487 4131
468 CvM1 CFI WLSMV 30 30 0.801 0.584 0.723 0.986 0.612 0.979 5962 5261
469 CvM1 CFI WLSMV 50 ALL 0.926 0.851 0.930 0.980 0.884 0.849 16883 15246
470 CvM1 CFI WLSMV 50 5 0.836 0.698 0.840 0.964 0.767 0.769 4162 3851
471 CvM1 CFI WLSMV 50 10 0.972 0.930 0.971 0.972 0.914 0.916 5746 5218
472 CvM1 CFI WLSMV 50 30 0.972 0.922 0.969 0.991 0.920 0.977 6975 6177
473 CvM1 CFI WLSMV 100 ALL 0.992 0.981 0.988 0.972 0.965 0.965 20592 18372
474 CvM1 CFI WLSMV 100 5 0.960 0.905 0.960 0.969 0.890 0.904 5756 5241
475 CvM1 CFI WLSMV 100 10 0.999 0.998 0.999 0.973 0.987 0.994 7084 6279
476 CvM1 CFI WLSMV 100 30 1.000 1.000 NA 0.984 1.000 1.000 7752 6852
477 CvM1 CFI WLSMV 200 ALL 1.000 1.000 1.000 0.971 0.994 0.996 23402 20741
478 CvM1 CFI WLSMV 200 5 0.999 0.997 0.999 0.971 0.983 0.988 7296 6545
479 CvM1 CFI WLSMV 200 10 1.000 1.000 NA 0.977 1.000 1.000 7940 7036
480 CvM1 CFI WLSMV 200 30 1.000 1.000 NA 0.979 1.000 1.000 8166 7160
481 CvM1 TLI ALL ALL ALL 0.894 0.790 0.901 0.965 0.868 0.883 241960 223868
482 CvM1 TLI ALL ALL 5 0.846 0.769 0.846 0.962 0.868 0.766 68483 63082
483 CvM1 TLI ALL ALL 10 0.927 0.855 0.922 0.961 0.902 0.889 81868 75749
484 CvM1 TLI ALL ALL 30 0.908 0.745 0.912 0.972 0.836 0.976 91609 85037
485 CvM1 TLI ALL 30 ALL 0.739 0.572 0.770 0.955 0.692 0.761 47053 43767
486 CvM1 TLI ALL 30 5 0.661 0.561 0.666 0.906 0.619 0.633 11584 10825
487 CvM1 TLI ALL 30 10 0.773 0.612 0.787 0.942 0.675 0.769 15551 14595
488 CvM1 TLI ALL 30 30 0.783 0.558 0.742 0.958 0.627 0.969 19918 18347
489 CvM1 TLI ALL 50 ALL 0.851 0.702 0.867 0.964 0.808 0.826 56136 52168
490 CvM1 TLI ALL 50 5 0.770 0.636 0.775 0.953 0.763 0.654 14818 13894
491 CvM1 TLI ALL 50 10 0.905 0.795 0.903 0.951 0.817 0.887 18954 17559
492 CvM1 TLI ALL 50 30 0.878 0.663 0.874 0.976 0.784 0.981 22364 20715
493 CvM1 TLI ALL 100 ALL 0.950 0.878 0.950 0.965 0.909 0.933 65882 60844
494 CvM1 TLI ALL 100 5 0.926 0.842 0.923 0.960 0.867 0.847 18983 17448
495 CvM1 TLI ALL 100 10 0.982 0.961 0.973 0.965 0.956 0.959 22711 20843
496 CvM1 TLI ALL 100 30 0.938 0.827 0.930 0.978 0.894 0.995 24188 22553
497 CvM1 TLI ALL 200 ALL 0.997 0.993 0.994 0.970 0.982 0.979 72889 67089
498 CvM1 TLI ALL 200 5 0.993 0.985 0.989 0.965 0.970 0.967 23098 20915
499 CvM1 TLI ALL 200 10 0.999 0.998 0.999 0.964 0.992 0.990 24652 22752
500 CvM1 TLI ALL 200 30 0.998 0.995 0.998 0.985 0.991 0.992 25139 23422
501 CvM1 TLI MLR ALL ALL 0.932 0.922 0.919 0.948 0.948 0.873 89822 85647
502 CvM1 TLI MLR ALL 5 0.832 0.799 0.832 0.955 0.907 0.704 26722 24572
503 CvM1 TLI MLR ALL 10 0.947 0.929 0.940 0.947 0.955 0.866 30195 28785
504 CvM1 TLI MLR ALL 30 1.000 0.999 1.000 0.947 0.995 0.993 32905 32290
505 CvM1 TLI MLR 30 ALL 0.829 0.798 0.822 0.932 0.918 0.684 18778 17854
506 CvM1 TLI MLR 30 5 0.699 0.597 0.698 0.867 0.722 0.582 5086 4739
507 CvM1 TLI MLR 30 10 0.860 0.751 0.858 0.903 0.751 0.811 6138 5832
508 CvM1 TLI MLR 30 30 0.998 0.995 0.998 0.939 0.973 0.987 7554 7283
509 CvM1 TLI MLR 50 ALL 0.926 0.882 0.914 0.945 0.921 0.842 21335 20417
510 CvM1 TLI MLR 50 5 0.795 0.669 0.795 0.915 0.681 0.762 6083 5724
511 CvM1 TLI MLR 50 10 0.961 0.910 0.959 0.944 0.907 0.886 7170 6790
512 CvM1 TLI MLR 50 30 1.000 1.000 1.000 0.959 0.998 1.000 8082 7903
513 CvM1 TLI MLR 100 ALL 0.990 0.977 0.984 0.954 0.959 0.960 24013 22901
514 CvM1 TLI MLR 100 5 0.946 0.877 0.946 0.951 0.847 0.903 7258 6637
515 CvM1 TLI MLR 100 10 0.999 0.998 0.999 0.959 0.988 0.991 8237 7823
516 CvM1 TLI MLR 100 30 1.000 1.000 NA 0.961 1.000 1.000 8518 8441
517 CvM1 TLI MLR 200 ALL 1.000 0.999 1.000 0.962 0.994 0.995 25696 24475
518 CvM1 TLI MLR 200 5 0.998 0.995 0.998 0.965 0.985 0.981 8295 7472
519 CvM1 TLI MLR 200 10 1.000 1.000 NA 0.962 1.000 1.000 8650 8340
520 CvM1 TLI MLR 200 30 1.000 1.000 NA 0.963 1.000 1.000 8751 8663
521 CvM1 TLI ULSMV ALL ALL 0.822 0.620 0.871 0.973 0.750 0.874 77713 71584
522 CvM1 TLI ULSMV ALL 5 0.819 0.697 0.835 0.960 0.789 0.793 21448 19987
523 CvM1 TLI ULSMV ALL 10 0.873 0.723 0.892 0.964 0.810 0.888 26416 24300
524 CvM1 TLI ULSMV ALL 30 0.792 0.572 0.793 0.985 0.643 0.975 29849 27297
525 CvM1 TLI ULSMV 30 ALL 0.649 0.529 0.751 0.975 0.482 0.830 14727 13635
526 CvM1 TLI ULSMV 30 5 0.627 0.536 0.649 0.960 0.606 0.622 3399 3200
527 CvM1 TLI ULSMV 30 10 0.691 0.543 0.760 0.973 0.559 0.795 4926 4632
528 CvM1 TLI ULSMV 30 30 0.631 0.519 0.515 0.985 0.337 0.976 6402 5803
529 CvM1 TLI ULSMV 50 ALL 0.735 0.562 0.799 0.966 0.613 0.834 17918 16505
530 CvM1 TLI ULSMV 50 5 0.713 0.586 0.727 0.954 0.667 0.670 4573 4319
531 CvM1 TLI ULSMV 50 10 0.813 0.644 0.837 0.965 0.748 0.803 6038 5551
532 CvM1 TLI ULSMV 50 30 0.701 0.535 0.674 0.986 0.482 0.977 7307 6635
533 CvM1 TLI ULSMV 100 ALL 0.875 0.711 0.901 0.965 0.781 0.905 21277 19571
534 CvM1 TLI ULSMV 100 5 0.880 0.768 0.884 0.960 0.809 0.813 5969 5570
535 CvM1 TLI ULSMV 100 10 0.946 0.885 0.943 0.964 0.885 0.908 7390 6741
536 CvM1 TLI ULSMV 100 30 0.823 0.596 0.789 0.980 0.674 0.982 7918 7260
537 CvM1 TLI ULSMV 200 ALL 0.989 0.973 0.986 0.970 0.954 0.956 23791 21873
538 CvM1 TLI ULSMV 200 5 0.983 0.961 0.979 0.962 0.934 0.944 7507 6898
539 CvM1 TLI ULSMV 200 10 0.996 0.991 0.996 0.964 0.977 0.971 8062 7376
540 CvM1 TLI ULSMV 200 30 0.993 0.981 0.993 0.985 0.972 0.975 8222 7599
541 CvM1 TLI WLSMV ALL ALL 0.945 0.877 0.947 0.972 0.906 0.923 74425 66637
542 CvM1 TLI WLSMV ALL 5 0.910 0.831 0.906 0.964 0.882 0.850 20313 18523
543 CvM1 TLI WLSMV ALL 10 0.977 0.943 0.970 0.968 0.934 0.953 25257 22664
544 CvM1 TLI WLSMV ALL 30 0.950 0.862 0.939 0.985 0.898 0.992 28855 25450
545 CvM1 TLI WLSMV 30 ALL 0.804 0.632 0.844 0.979 0.732 0.811 13548 12278
546 CvM1 TLI WLSMV 30 5 0.734 0.600 0.738 0.916 0.513 0.839 3099 2886
547 CvM1 TLI WLSMV 30 10 0.886 0.765 0.894 0.977 0.835 0.804 4487 4131
548 CvM1 TLI WLSMV 30 30 0.801 0.584 0.723 0.984 0.612 0.979 5962 5261
549 CvM1 TLI WLSMV 50 ALL 0.926 0.851 0.930 0.976 0.884 0.849 16883 15246
550 CvM1 TLI WLSMV 50 5 0.836 0.698 0.840 0.956 0.767 0.769 4162 3851
551 CvM1 TLI WLSMV 50 10 0.972 0.930 0.971 0.966 0.914 0.916 5746 5218
552 CvM1 TLI WLSMV 50 30 0.972 0.922 0.969 0.989 0.920 0.977 6975 6177
553 CvM1 TLI WLSMV 100 ALL 0.992 0.981 0.988 0.966 0.965 0.965 20592 18372
554 CvM1 TLI WLSMV 100 5 0.960 0.905 0.960 0.962 0.890 0.904 5756 5241
555 CvM1 TLI WLSMV 100 10 0.999 0.998 0.999 0.967 0.987 0.994 7084 6279
556 CvM1 TLI WLSMV 100 30 1.000 1.000 NA 0.981 1.000 1.000 7752 6852
557 CvM1 TLI WLSMV 200 ALL 1.000 1.000 1.000 0.966 0.994 0.996 23402 20741
558 CvM1 TLI WLSMV 200 5 0.999 0.997 0.999 0.966 0.983 0.988 7296 6545
559 CvM1 TLI WLSMV 200 10 1.000 1.000 NA 0.972 1.000 1.000 7940 7036
560 CvM1 TLI WLSMV 200 30 1.000 1.000 NA 0.975 1.000 1.000 8166 7160
561 CvM1 RMSEA ALL ALL ALL 0.878 0.753 0.884 0.017 0.811 0.859 241960 223868
562 CvM1 RMSEA ALL ALL 5 0.833 0.749 0.833 0.020 0.824 0.767 68483 63082
563 CvM1 RMSEA ALL ALL 10 0.910 0.820 0.907 0.017 0.855 0.861 81868 75749
564 CvM1 RMSEA ALL ALL 30 0.891 0.714 0.893 0.014 0.771 0.943 91609 85037
565 CvM1 RMSEA ALL 30 ALL 0.720 0.572 0.745 0.023 0.632 0.768 47053 43767
566 CvM1 RMSEA ALL 30 5 0.632 0.559 0.635 0.023 0.703 0.501 11584 10825
567 CvM1 RMSEA ALL 30 10 0.740 0.605 0.745 0.020 0.695 0.682 15551 14595
568 CvM1 RMSEA ALL 30 30 0.765 0.558 0.714 0.023 0.571 0.963 19918 18347
569 CvM1 RMSEA ALL 50 ALL 0.832 0.675 0.845 0.020 0.718 0.839 56136 52168
570 CvM1 RMSEA ALL 50 5 0.746 0.625 0.749 0.023 0.695 0.681 14818 13894
571 CvM1 RMSEA ALL 50 10 0.882 0.746 0.883 0.020 0.795 0.828 18954 17559
572 CvM1 RMSEA ALL 50 30 0.860 0.650 0.835 0.015 0.700 0.959 22364 20715
573 CvM1 RMSEA ALL 100 ALL 0.936 0.838 0.939 0.017 0.855 0.911 65882 60844
574 CvM1 RMSEA ALL 100 5 0.913 0.813 0.915 0.021 0.805 0.870 18983 17448
575 CvM1 RMSEA ALL 100 10 0.972 0.923 0.973 0.017 0.898 0.950 22711 20843
576 CvM1 RMSEA ALL 100 30 0.928 0.801 0.906 0.012 0.850 0.991 24188 22553
577 CvM1 RMSEA ALL 200 ALL 0.984 0.955 0.986 0.015 0.927 0.960 72889 67089
578 CvM1 RMSEA ALL 200 5 0.989 0.969 0.990 0.018 0.938 0.958 23098 20915
579 CvM1 RMSEA ALL 200 10 0.997 0.992 0.998 0.013 0.970 0.976 24652 22752
580 CvM1 RMSEA ALL 200 30 0.990 0.973 0.991 0.007 0.930 0.976 25139 23422
581 CvM1 RMSEA MLR ALL ALL 0.918 0.913 0.905 0.025 0.950 0.856 89822 85647
582 CvM1 RMSEA MLR ALL 5 0.809 0.788 0.812 0.024 0.895 0.695 26722 24572
583 CvM1 RMSEA MLR ALL 10 0.932 0.917 0.928 0.025 0.955 0.843 30195 28785
584 CvM1 RMSEA MLR ALL 30 0.999 0.999 0.999 0.025 0.994 0.989 32905 32290
585 CvM1 RMSEA MLR 30 ALL 0.799 0.779 0.797 0.030 0.903 0.663 18778 17854
586 CvM1 RMSEA MLR 30 5 0.678 0.585 0.680 0.048 0.652 0.605 5086 4739
587 CvM1 RMSEA MLR 30 10 0.834 0.723 0.836 0.034 0.799 0.704 6138 5832
588 CvM1 RMSEA MLR 30 30 0.997 0.991 0.996 0.027 0.967 0.981 7554 7283
589 CvM1 RMSEA MLR 50 ALL 0.908 0.869 0.897 0.026 0.912 0.823 21335 20417
590 CvM1 RMSEA MLR 50 5 0.771 0.655 0.772 0.034 0.657 0.752 6083 5724
591 CvM1 RMSEA MLR 50 10 0.949 0.889 0.949 0.027 0.877 0.877 7170 6790
592 CvM1 RMSEA MLR 50 30 1.000 1.000 1.000 0.022 0.997 1.000 8082 7903
593 CvM1 RMSEA MLR 100 ALL 0.988 0.973 0.982 0.024 0.953 0.958 24013 22901
594 CvM1 RMSEA MLR 100 5 0.937 0.861 0.938 0.024 0.857 0.871 7258 6637
595 CvM1 RMSEA MLR 100 10 0.999 0.998 0.999 0.022 0.982 0.991 8237 7823
596 CvM1 RMSEA MLR 100 30 1.000 1.000 NA 0.020 1.000 1.000 8518 8441
597 CvM1 RMSEA MLR 200 ALL 1.000 0.999 1.000 0.020 0.996 0.993 25696 24475
598 CvM1 RMSEA MLR 200 5 0.998 0.994 0.998 0.020 0.985 0.979 8295 7472
599 CvM1 RMSEA MLR 200 10 1.000 1.000 NA 0.020 1.000 1.000 8650 8340
600 CvM1 RMSEA MLR 200 30 1.000 1.000 NA 0.018 1.000 1.000 8751 8663
601 CvM1 RMSEA ULSMV ALL ALL 0.809 0.619 0.841 0.012 0.677 0.857 77713 71584
602 CvM1 RMSEA ULSMV ALL 5 0.827 0.685 0.841 0.015 0.770 0.778 21448 19987
603 CvM1 RMSEA ULSMV ALL 10 0.867 0.702 0.878 0.013 0.759 0.870 26416 24300
604 CvM1 RMSEA ULSMV ALL 30 0.778 0.572 0.745 0.006 0.587 0.924 29849 27297
605 CvM1 RMSEA ULSMV 30 ALL 0.651 0.529 0.705 0.010 0.460 0.803 14727 13635
606 CvM1 RMSEA ULSMV 30 5 0.633 0.536 0.647 0.012 0.629 0.596 3399 3200
607 CvM1 RMSEA ULSMV 30 10 0.688 0.543 0.693 0.014 0.469 0.838 4926 4632
608 CvM1 RMSEA ULSMV 30 30 0.375 NA 0.564 -Inf 0.000 1.000 6402 5803
609 CvM1 RMSEA ULSMV 50 ALL 0.729 0.562 0.755 0.012 0.589 0.800 17918 16505
610 CvM1 RMSEA ULSMV 50 5 0.712 0.586 0.718 0.016 0.650 0.666 4573 4319
611 CvM1 RMSEA ULSMV 50 10 0.803 0.635 0.799 0.014 0.668 0.803 6038 5551
612 CvM1 RMSEA ULSMV 50 30 0.693 0.535 0.584 0.009 0.422 0.957 7307 6635
613 CvM1 RMSEA ULSMV 100 ALL 0.854 0.687 0.858 0.011 0.765 0.827 21277 19571
614 CvM1 RMSEA ULSMV 100 5 0.876 0.750 0.878 0.017 0.772 0.826 5969 5570
615 CvM1 RMSEA ULSMV 100 10 0.933 0.838 0.934 0.014 0.818 0.892 7390 6741
616 CvM1 RMSEA ULSMV 100 30 0.809 0.596 0.738 0.009 0.594 0.984 7918 7260
617 CvM1 RMSEA ULSMV 200 ALL 0.958 0.895 0.962 0.013 0.821 0.947 23791 21873
618 CvM1 RMSEA ULSMV 200 5 0.976 0.939 0.978 0.015 0.926 0.907 7507 6898
619 CvM1 RMSEA ULSMV 200 10 0.993 0.980 0.994 0.011 0.973 0.935 8062 7376
620 CvM1 RMSEA ULSMV 200 30 0.976 0.937 0.978 0.006 0.903 0.929 8222 7599
621 CvM1 RMSEA WLSMV ALL ALL 0.940 0.861 0.944 0.017 0.879 0.914 74425 66637
622 CvM1 RMSEA WLSMV ALL 5 0.912 0.829 0.909 0.021 0.858 0.870 20313 18523
623 CvM1 RMSEA WLSMV ALL 10 0.977 0.940 0.973 0.020 0.921 0.961 25257 22664
624 CvM1 RMSEA WLSMV ALL 30 0.947 0.853 0.945 0.011 0.873 0.979 28855 25450
625 CvM1 RMSEA WLSMV 30 ALL 0.796 0.631 0.831 0.014 0.707 0.794 13548 12278
626 CvM1 RMSEA WLSMV 30 5 0.732 0.601 0.737 0.021 0.700 0.652 3099 2886
627 CvM1 RMSEA WLSMV 30 10 0.880 0.757 0.887 0.018 0.754 0.863 4487 4131
628 CvM1 RMSEA WLSMV 30 30 0.793 0.584 0.728 0.008 0.617 0.904 5962 5261
629 CvM1 RMSEA WLSMV 50 ALL 0.908 0.817 0.912 0.014 0.850 0.806 16883 15246
630 CvM1 RMSEA WLSMV 50 5 0.831 0.694 0.835 0.020 0.789 0.724 4162 3851
631 CvM1 RMSEA WLSMV 50 10 0.970 0.926 0.971 0.020 0.904 0.925 5746 5218
632 CvM1 RMSEA WLSMV 50 30 0.961 0.894 0.960 0.009 0.878 0.935 6975 6177
633 CvM1 RMSEA WLSMV 100 ALL 0.988 0.970 0.987 0.017 0.967 0.931 20592 18372
634 CvM1 RMSEA WLSMV 100 5 0.960 0.903 0.959 0.021 0.880 0.916 5756 5241
635 CvM1 RMSEA WLSMV 100 10 0.999 0.999 0.999 0.020 0.986 0.994 7084 6279
636 CvM1 RMSEA WLSMV 100 30 1.000 1.000 1.000 0.012 0.999 0.999 7752 6852
637 CvM1 RMSEA WLSMV 200 ALL 1.000 1.000 1.000 0.020 0.995 0.996 23402 20741
638 CvM1 RMSEA WLSMV 200 5 0.999 0.997 0.999 0.020 0.984 0.985 7296 6545
639 CvM1 RMSEA WLSMV 200 10 1.000 1.000 NA 0.019 1.000 1.000 7940 7036
640 CvM1 RMSEA WLSMV 200 30 1.000 1.000 NA 0.014 1.000 1.000 8166 7160
641 CvM1 SRMRW ALL ALL ALL 0.873 0.870 0.888 0.038 0.975 0.724 241960 223868
642 CvM1 SRMRW ALL ALL 5 0.789 0.771 0.810 0.047 0.920 0.588 68483 63082
643 CvM1 SRMRW ALL ALL 10 0.904 0.881 0.912 0.042 0.936 0.770 81868 75749
644 CvM1 SRMRW ALL ALL 30 0.978 0.977 0.978 0.035 0.993 0.941 91609 85037
645 CvM1 SRMRW ALL 30 ALL 0.748 0.726 0.778 0.044 0.921 0.500 47053 43767
646 CvM1 SRMRW ALL 30 5 0.690 0.621 0.689 0.072 0.803 0.483 11584 10825
647 CvM1 SRMRW ALL 30 10 0.828 0.757 0.822 0.056 0.802 0.722 15551 14595
648 CvM1 SRMRW ALL 30 30 0.943 0.938 0.943 0.039 0.967 0.872 19918 18347
649 CvM1 SRMRW ALL 50 ALL 0.835 0.805 0.853 0.042 0.926 0.639 56136 52168
650 CvM1 SRMRW ALL 50 5 0.791 0.700 0.792 0.063 0.767 0.671 14818 13894
651 CvM1 SRMRW ALL 50 10 0.923 0.883 0.916 0.047 0.897 0.834 18954 17559
652 CvM1 SRMRW ALL 50 30 0.977 0.972 0.978 0.035 0.991 0.927 22364 20715
653 CvM1 SRMRW ALL 100 ALL 0.948 0.918 0.955 0.039 0.958 0.819 65882 60844
654 CvM1 SRMRW ALL 100 5 0.932 0.875 0.930 0.050 0.863 0.859 18983 17448
655 CvM1 SRMRW ALL 100 10 0.988 0.978 0.989 0.038 0.981 0.936 22711 20843
656 CvM1 SRMRW ALL 100 30 0.997 0.995 0.997 0.035 0.996 0.981 24188 22553
657 CvM1 SRMRW ALL 200 ALL 0.996 0.991 0.996 0.036 0.991 0.964 72889 67089
658 CvM1 SRMRW ALL 200 5 0.994 0.985 0.994 0.040 0.978 0.950 23098 20915
659 CvM1 SRMRW ALL 200 10 1.000 0.999 1.000 0.034 0.997 0.989 24652 22752
660 CvM1 SRMRW ALL 200 30 1.000 1.000 1.000 0.034 1.000 1.000 25139 23422
661 CvM1 SRMRW MLR ALL ALL 0.887 0.892 0.902 0.036 0.979 0.776 89822 85647
662 CvM1 SRMRW MLR ALL 5 0.808 0.784 0.838 0.042 0.935 0.599 26722 24572
663 CvM1 SRMRW MLR ALL 10 0.951 0.919 0.960 0.038 0.955 0.829 30195 28785
664 CvM1 SRMRW MLR ALL 30 1.000 1.000 1.000 0.031 1.000 0.998 32905 32290
665 CvM1 SRMRW MLR 30 ALL 0.769 0.755 0.798 0.042 0.907 0.567 18778 17854
666 CvM1 SRMRW MLR 30 5 0.813 0.681 0.812 0.071 0.660 0.820 5086 4739
667 CvM1 SRMRW MLR 30 10 0.955 0.893 0.949 0.048 0.903 0.870 6138 5832
668 CvM1 SRMRW MLR 30 30 1.000 1.000 1.000 0.033 0.996 0.999 7554 7283
669 CvM1 SRMRW MLR 50 ALL 0.861 0.840 0.889 0.038 0.960 0.692 21335 20417
670 CvM1 SRMRW MLR 50 5 0.905 0.802 0.907 0.056 0.796 0.855 6083 5724
671 CvM1 SRMRW MLR 50 10 0.993 0.981 0.992 0.041 0.952 0.965 7170 6790
672 CvM1 SRMRW MLR 50 30 1.000 1.000 NA 0.029 1.000 1.000 8082 7903
673 CvM1 SRMRW MLR 100 ALL 0.981 0.961 0.984 0.037 0.967 0.905 24013 22901
674 CvM1 SRMRW MLR 100 5 0.987 0.966 0.987 0.043 0.939 0.956 7258 6637
675 CvM1 SRMRW MLR 100 10 1.000 1.000 1.000 0.032 0.999 1.000 8237 7823
676 CvM1 SRMRW MLR 100 30 1.000 1.000 NA 0.025 1.000 1.000 8518 8441
677 CvM1 SRMRW MLR 200 ALL 1.000 1.000 1.000 0.033 0.998 0.998 25696 24475
678 CvM1 SRMRW MLR 200 5 1.000 1.000 1.000 0.035 0.994 0.999 8295 7472
679 CvM1 SRMRW MLR 200 10 1.000 1.000 NA 0.027 1.000 1.000 8650 8340
680 CvM1 SRMRW MLR 200 30 1.000 1.000 NA 0.022 1.000 1.000 8751 8663
681 CvM1 SRMRW ULSMV ALL ALL 0.854 0.864 0.871 0.045 0.976 0.723 77713 71584
682 CvM1 SRMRW ULSMV ALL 5 0.760 0.760 0.787 0.050 0.951 0.542 21448 19987
683 CvM1 SRMRW ULSMV ALL 10 0.873 0.864 0.887 0.047 0.960 0.729 26416 24300
684 CvM1 SRMRW ULSMV ALL 30 0.960 0.961 0.962 0.042 0.995 0.904 29849 27297
685 CvM1 SRMRW ULSMV 30 ALL 0.722 0.706 0.748 0.053 0.922 0.464 14727 13635
686 CvM1 SRMRW ULSMV 30 5 0.661 0.582 0.659 0.098 0.619 0.619 3399 3200
687 CvM1 SRMRW ULSMV 30 10 0.797 0.730 0.801 0.069 0.752 0.713 4926 4632
688 CvM1 SRMRW ULSMV 30 30 0.904 0.887 0.911 0.047 0.963 0.766 6402 5803
689 CvM1 SRMRW ULSMV 50 ALL 0.817 0.795 0.840 0.048 0.953 0.603 17918 16505
690 CvM1 SRMRW ULSMV 50 5 0.790 0.688 0.793 0.076 0.730 0.703 4573 4319
691 CvM1 SRMRW ULSMV 50 10 0.906 0.867 0.913 0.054 0.922 0.770 6038 5551
692 CvM1 SRMRW ULSMV 50 30 0.968 0.958 0.970 0.044 0.983 0.894 7307 6635
693 CvM1 SRMRW ULSMV 100 ALL 0.945 0.924 0.954 0.046 0.961 0.839 21277 19571
694 CvM1 SRMRW ULSMV 100 5 0.931 0.870 0.934 0.057 0.865 0.845 5969 5570
695 CvM1 SRMRW ULSMV 100 10 0.989 0.978 0.989 0.046 0.972 0.942 7390 6741
696 CvM1 SRMRW ULSMV 100 30 0.998 0.997 0.998 0.042 0.998 0.984 7918 7260
697 CvM1 SRMRW ULSMV 200 ALL 0.997 0.995 0.997 0.043 0.992 0.979 23791 21873
698 CvM1 SRMRW ULSMV 200 5 0.995 0.989 0.996 0.045 0.982 0.954 7507 6898
699 CvM1 SRMRW ULSMV 200 10 1.000 1.000 1.000 0.041 0.996 0.999 8062 7376
700 CvM1 SRMRW ULSMV 200 30 1.000 1.000 NA 0.039 1.000 1.000 8222 7599
701 CvM1 SRMRW WLSMV ALL ALL 0.905 0.911 0.915 0.044 0.979 0.815 74425 66637
702 CvM1 SRMRW WLSMV ALL 5 0.811 0.802 0.840 0.049 0.954 0.621 20313 18523
703 CvM1 SRMRW WLSMV ALL 10 0.944 0.919 0.953 0.045 0.966 0.824 25257 22664
704 CvM1 SRMRW WLSMV ALL 30 1.000 1.000 1.000 0.039 0.999 0.997 28855 25450
705 CvM1 SRMRW WLSMV 30 ALL 0.801 0.786 0.822 0.053 0.896 0.634 13548 12278
706 CvM1 SRMRW WLSMV 30 5 0.778 0.641 0.775 0.085 0.718 0.714 3099 2886
707 CvM1 SRMRW WLSMV 30 10 0.949 0.883 0.944 0.061 0.868 0.893 4487 4131
708 CvM1 SRMRW WLSMV 30 30 1.000 0.999 1.000 0.042 0.993 0.998 5962 5261
709 CvM1 SRMRW WLSMV 50 ALL 0.877 0.862 0.897 0.047 0.962 0.731 16883 15246
710 CvM1 SRMRW WLSMV 50 5 0.892 0.787 0.891 0.069 0.797 0.834 4162 3851
711 CvM1 SRMRW WLSMV 50 10 0.992 0.980 0.992 0.049 0.965 0.954 5746 5218
712 CvM1 SRMRW WLSMV 50 30 1.000 1.000 NA 0.037 1.000 1.000 6975 6177
713 CvM1 SRMRW WLSMV 100 ALL 0.982 0.965 0.984 0.045 0.966 0.913 20592 18372
714 CvM1 SRMRW WLSMV 100 5 0.984 0.957 0.982 0.053 0.905 0.967 5756 5241
715 CvM1 SRMRW WLSMV 100 10 1.000 1.000 1.000 0.039 0.998 0.998 7084 6279
716 CvM1 SRMRW WLSMV 100 30 1.000 1.000 NA 0.031 1.000 1.000 7752 6852
717 CvM1 SRMRW WLSMV 200 ALL 1.000 1.000 1.000 0.040 0.999 0.998 23402 20741
718 CvM1 SRMRW WLSMV 200 5 1.000 1.000 1.000 0.041 0.996 0.996 7296 6545
719 CvM1 SRMRW WLSMV 200 10 1.000 1.000 NA 0.034 1.000 1.000 7940 7036
720 CvM1 SRMRW WLSMV 200 30 1.000 1.000 NA 0.028 1.000 1.000 8166 7160
721 CvM1 SRMRB ALL ALL ALL 0.537 0.541 0.547 0.057 0.839 0.243 241960 223868
722 CvM1 SRMRB ALL ALL 5 0.511 0.519 0.516 0.064 0.839 0.205 68483 63082
723 CvM1 SRMRB ALL ALL 10 0.536 0.539 0.546 0.057 0.844 0.236 81868 75749
724 CvM1 SRMRB ALL ALL 30 0.564 0.559 0.577 0.057 0.792 0.330 91609 85037
725 CvM1 SRMRB ALL 30 ALL 0.517 0.521 0.522 0.109 0.814 0.232 47053 43767
726 CvM1 SRMRB ALL 30 5 0.495 NA 0.494 0.109 0.929 0.074 11584 10825
727 CvM1 SRMRB ALL 30 10 0.511 0.512 0.511 0.127 0.647 0.388 15551 14595
728 CvM1 SRMRB ALL 30 30 0.537 0.537 0.543 0.103 0.799 0.284 19918 18347
729 CvM1 SRMRB ALL 50 ALL 0.533 0.534 0.539 0.084 0.839 0.233 56136 52168
730 CvM1 SRMRB ALL 50 5 0.503 0.504 0.502 0.120 0.535 0.480 14818 13894
731 CvM1 SRMRB ALL 50 10 0.523 0.524 0.524 0.086 0.838 0.225 18954 17559
732 CvM1 SRMRB ALL 50 30 0.570 0.560 0.578 0.080 0.815 0.313 22364 20715
733 CvM1 SRMRB ALL 100 ALL 0.559 0.556 0.568 0.063 0.811 0.302 65882 60844
734 CvM1 SRMRB ALL 100 5 0.509 0.514 0.509 0.074 0.767 0.270 18983 17448
735 CvM1 SRMRB ALL 100 10 0.561 0.554 0.565 0.067 0.757 0.365 22711 20843
736 CvM1 SRMRB ALL 100 30 0.621 0.594 0.634 0.059 0.813 0.375 24188 22553
737 CvM1 SRMRB ALL 200 ALL 0.601 0.580 0.609 0.049 0.749 0.414 72889 67089
738 CvM1 SRMRB ALL 200 5 0.540 0.534 0.540 0.061 0.633 0.452 23098 20915
739 CvM1 SRMRB ALL 200 10 0.611 0.592 0.621 0.047 0.832 0.357 24652 22752
740 CvM1 SRMRB ALL 200 30 0.682 0.627 0.703 0.043 0.828 0.417 25139 23422
741 CvM1 SRMRB MLR ALL ALL 0.512 0.539 0.526 0.061 0.921 0.157 89822 85647
742 CvM1 SRMRB MLR ALL 5 0.502 0.508 0.491 0.147 0.675 0.361 26722 24572
743 CvM1 SRMRB MLR ALL 10 0.489 0.510 0.476 0.175 0.902 0.123 30195 28785
744 CvM1 SRMRB MLR ALL 30 0.544 0.563 0.562 0.059 0.913 0.211 32905 32290
745 CvM1 SRMRB MLR 30 ALL 0.518 0.513 0.512 0.177 0.698 0.346 18778 17854
746 CvM1 SRMRB MLR 30 5 0.520 0.512 0.519 0.208 0.695 0.349 5086 4739
747 CvM1 SRMRB MLR 30 10 0.515 0.516 0.513 0.202 0.835 0.214 6138 5832
748 CvM1 SRMRB MLR 30 30 0.504 0.513 0.497 0.164 0.761 0.286 7554 7283
749 CvM1 SRMRB MLR 50 ALL 0.503 0.516 0.495 0.151 0.805 0.235 21335 20417
750 CvM1 SRMRB MLR 50 5 0.509 0.515 0.505 0.198 0.864 0.183 6083 5724
751 CvM1 SRMRB MLR 50 10 0.497 0.520 0.500 0.096 0.913 0.133 7170 6790
752 CvM1 SRMRB MLR 50 30 0.526 0.542 0.535 0.087 0.890 0.199 8082 7903
753 CvM1 SRMRB MLR 100 ALL 0.530 0.552 0.540 0.069 0.917 0.186 24013 22901
754 CvM1 SRMRB MLR 100 5 0.500 0.523 0.504 0.088 0.801 0.254 7258 6637
755 CvM1 SRMRB MLR 100 10 0.537 0.553 0.543 0.074 0.858 0.265 8237 7823
756 CvM1 SRMRB MLR 100 30 0.597 0.595 0.614 0.066 0.919 0.271 8518 8441
757 CvM1 SRMRB MLR 200 ALL 0.600 0.602 0.608 0.057 0.853 0.350 25696 24475
758 CvM1 SRMRB MLR 200 5 0.540 0.564 0.546 0.067 0.770 0.378 8295 7472
759 CvM1 SRMRB MLR 200 10 0.606 0.613 0.625 0.057 0.859 0.369 8650 8340
760 CvM1 SRMRB MLR 200 30 0.715 0.665 0.732 0.054 0.854 0.468 8751 8663
761 CvM1 SRMRB ULSMV ALL ALL 0.542 0.544 0.556 0.042 0.942 0.143 77713 71584
762 CvM1 SRMRB ULSMV ALL 5 0.517 0.521 0.524 0.051 0.893 0.154 21448 19987
763 CvM1 SRMRB ULSMV ALL 10 0.542 0.544 0.556 0.042 0.950 0.141 26416 24300
764 CvM1 SRMRB ULSMV ALL 30 0.562 0.563 0.580 0.038 0.960 0.164 29849 27297
765 CvM1 SRMRB ULSMV 30 ALL 0.532 0.531 0.541 0.093 0.834 0.233 14727 13635
766 CvM1 SRMRB ULSMV 30 5 0.508 0.501 0.511 0.172 0.216 0.810 3399 3200
767 CvM1 SRMRB ULSMV 30 10 0.525 0.517 0.526 0.106 0.681 0.378 4926 4632
768 CvM1 SRMRB ULSMV 30 30 0.551 0.554 0.559 0.093 0.753 0.359 6402 5803
769 CvM1 SRMRB ULSMV 50 ALL 0.541 0.546 0.553 0.070 0.875 0.217 17918 16505
770 CvM1 SRMRB ULSMV 50 5 0.504 0.507 0.505 0.076 0.935 0.085 4573 4319
771 CvM1 SRMRB ULSMV 50 10 0.532 0.530 0.534 0.086 0.654 0.423 6038 5551
772 CvM1 SRMRB ULSMV 50 30 0.578 0.583 0.591 0.063 0.897 0.268 7307 6635
773 CvM1 SRMRB ULSMV 100 ALL 0.565 0.573 0.581 0.052 0.880 0.262 21277 19571
774 CvM1 SRMRB ULSMV 100 5 0.520 0.522 0.522 0.064 0.798 0.262 5969 5570
775 CvM1 SRMRB ULSMV 100 10 0.573 0.578 0.582 0.054 0.866 0.307 7390 6741
776 CvM1 SRMRB ULSMV 100 30 0.612 0.626 0.636 0.047 0.915 0.331 7918 7260
777 CvM1 SRMRB ULSMV 200 ALL 0.595 0.601 0.614 0.038 0.924 0.272 23791 21873
778 CvM1 SRMRB ULSMV 200 5 0.549 0.548 0.553 0.046 0.854 0.263 7507 6898
779 CvM1 SRMRB ULSMV 200 10 0.615 0.627 0.633 0.041 0.870 0.390 8062 7376
780 CvM1 SRMRB ULSMV 200 30 0.657 0.668 0.688 0.036 0.930 0.395 8222 7599
781 CvM1 SRMRB WLSMV ALL ALL 0.551 0.547 0.563 0.052 0.877 0.216 74425 66637
782 CvM1 SRMRB WLSMV ALL 5 0.528 0.526 0.534 0.055 0.908 0.148 20313 18523
783 CvM1 SRMRB WLSMV ALL 10 0.552 0.545 0.564 0.049 0.919 0.172 25257 22664
784 CvM1 SRMRB WLSMV ALL 30 0.566 0.563 0.581 0.049 0.864 0.258 28855 25450
785 CvM1 SRMRB WLSMV 30 ALL 0.530 0.526 0.536 0.109 0.842 0.218 13548 12278
786 CvM1 SRMRB WLSMV 30 5 0.503 NA 0.503 0.143 0.421 0.604 3099 2886
787 CvM1 SRMRB WLSMV 30 10 0.523 0.513 0.523 0.127 0.588 0.463 4487 4131
788 CvM1 SRMRB WLSMV 30 30 0.545 0.541 0.551 0.109 0.738 0.356 5962 5261
789 CvM1 SRMRB WLSMV 50 ALL 0.552 0.545 0.562 0.086 0.827 0.266 16883 15246
790 CvM1 SRMRB WLSMV 50 5 0.514 0.507 0.514 0.111 0.570 0.462 4162 3851
791 CvM1 SRMRB WLSMV 50 10 0.538 0.528 0.542 0.096 0.672 0.409 5746 5218
792 CvM1 SRMRB WLSMV 50 30 0.592 0.577 0.601 0.080 0.842 0.322 6975 6177
793 CvM1 SRMRB WLSMV 100 ALL 0.582 0.574 0.593 0.060 0.883 0.267 20592 18372
794 CvM1 SRMRB WLSMV 100 5 0.526 0.522 0.526 0.074 0.759 0.304 5756 5241
795 CvM1 SRMRB WLSMV 100 10 0.586 0.571 0.589 0.066 0.757 0.407 7084 6279
796 CvM1 SRMRB WLSMV 100 30 0.641 0.623 0.657 0.058 0.852 0.392 7752 6852
797 CvM1 SRMRB WLSMV 200 ALL 0.626 0.603 0.637 0.048 0.754 0.455 23402 20741
798 CvM1 SRMRB WLSMV 200 5 0.570 0.556 0.574 0.052 0.851 0.286 7296 6545
799 CvM1 SRMRB WLSMV 200 10 0.641 0.618 0.651 0.047 0.814 0.438 7940 7036
800 CvM1 SRMRB WLSMV 200 30 0.707 0.660 0.725 0.043 0.837 0.479 8166 7160

Detecting Misspecification at Level-2

General overview over all conditions

j <- 3 ## Which class?
for(index in INDEX){
    ## Print out which iteration so we know what we am looking at
    cat('\n\nROC Analysis in')
    cat('\nIndex:\t', index)
    cat('\nClassification:\t', CLASS[j])
    ## Set up iteration key
    key <- paste0(index,'.',CLASS[j])
    ## Create formula
    model <- as.formula(paste0(CLASS[j], '~', index))
    ## Fit ROC curve
    fit_roc[[key]] <-  roc(model, data=sim_results,quiet=T,
                           plot =TRUE, ci=TRUE, print.auc=TRUE)
    ## Create a plot of "smoothed" curve for plotting
    fit_roc_smooth[[key]] <-  smooth(roc(model, data=sim_results))
    ## Compute partial AUC for specificity .8-1
    p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
                 partial.auc.focus = 'sp', partial.auc.correct = T)
    ## get summary info
    roc_summary_gen[ig, 2] <- index
    roc_summary_gen[ig, 1] <- CLASS[j]
    roc_summary_gen[ig, 3] <- fit_roc[[key]]$auc ## total AUC
    roc_summary_gen[ig, 4] <- p.auc ## corrected partial AUC (.5 is no discrimination)
    roc_summary_gen[ig, 5] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
    roc_summary_gen[ig, 6:8] <- coords(fit_roc[[key]], "best", 
                                   ret=c("threshold", "specificity", 'sensitivity'),
                                   transpose=TRUE)
    ## print summary
    cat('\n\nSummary of ROC:\n')
    print(roc_summary_gen[ig, ])
    ## add to summary iterator
    ig <- ig + 1
} ## End loop round index


ROC Analysis in
Index:   CFI
Classification:  CvM2

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
   Classification Index      AUC partial-AUC Smoothed-AUC
11           CvM2   CFI 0.669498   0.5483643    0.6916255
   Optimal-Threshold Specificity Sensitivity
11         0.9932424   0.5757261    0.694697


ROC Analysis in
Index:   TLI
Classification:  CvM2

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
   Classification Index      AUC partial-AUC Smoothed-AUC
12           CvM2   TLI 0.669498   0.5483643    0.6916017
   Optimal-Threshold Specificity Sensitivity
12         0.9918909   0.5757261    0.694697


ROC Analysis in
Index:   RMSEA
Classification:  CvM2

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
   Classification Index       AUC partial-AUC Smoothed-AUC
13           CvM2 RMSEA 0.6644986   0.5483738     0.691537
   Optimal-Threshold Specificity Sensitivity
13       0.008547063    0.587031   0.6791605


ROC Analysis in
Index:   SRMRW
Classification:  CvM2

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
   Classification Index       AUC partial-AUC Smoothed-AUC
14           CvM2 SRMRW 0.5270719   0.5050447    0.5241129
   Optimal-Threshold Specificity Sensitivity
14        0.03089441   0.4519094   0.5970939


ROC Analysis in
Index:   SRMRB
Classification:  CvM2

Version Author Date
982c8f1 noah-padgett 2019-05-18


Summary of ROC:
   Classification Index       AUC partial-AUC Smoothed-AUC
15           CvM2 SRMRB 0.6343083   0.6012881     0.641562
   Optimal-Threshold Specificity Sensitivity
15        0.07595733   0.7774833   0.4406392
kable(roc_summary_gen[11:15,], format = 'html', digits=3) %>%
  kable_styling(full_width = T)
Classification Index AUC partial-AUC Smoothed-AUC Optimal-Threshold Specificity Sensitivity
11 CvM2 CFI 0.669 0.548 0.692 0.993 0.576 0.695
12 CvM2 TLI 0.669 0.548 0.692 0.992 0.576 0.695
13 CvM2 RMSEA 0.664 0.548 0.692 0.009 0.587 0.679
14 CvM2 SRMRW 0.527 0.505 0.524 0.031 0.452 0.597
15 CvM2 SRMRB 0.634 0.601 0.642 0.076 0.777 0.441
print(xtable(roc_summary_gen[11:15,c(2:3,6:8)], digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:38:44 2019
\begin{table}[ht]
\centering
\begin{tabular}{lrrrr}
  \toprule
Index & AUC & Optimal-Threshold & Specificity & Sensitivity \\ 
  \midrule
CFI & 0.669 & 0.993 & 0.576 & 0.695 \\ 
  TLI & 0.669 & 0.992 & 0.576 & 0.695 \\ 
  RMSEA & 0.664 & 0.009 & 0.587 & 0.679 \\ 
  SRMRW & 0.527 & 0.031 & 0.452 & 0.597 \\ 
  SRMRB & 0.634 & 0.076 & 0.777 & 0.441 \\ 
   \bottomrule
\end{tabular}
\end{table}

More fine grained information within/across conditions

j <- 3 ## Which class?
for(index in INDEX){
  for(est in EST){
    for(s2 in SS_L2){
      for(s1 in SS_L1){
    ## Print out which iteration so we know what we are looking at
    #cat('\n\nROC Analysis in')
    #cat('\nIndex:\t', index)
    #cat('\nClassification:\t', CLASS[j])
    #cat('\nEstimation Method:\t', est)
    #cat('\nLevel-2 Sample Size:\t', s2)
    #cat('\nLevel-1 Sample Size:\t', s1)
    ## Set up iteration key
    key <- paste0(index,'.',CLASS[j],'.',est,'.', s2,'.',s1)
    # Subset data as  needed
    if(est == 'ALL' & s2 == 'ALL' & s1 == 'ALL') mydata <- sim_results
    if(est != 'ALL' & s2 == 'ALL' & s1 == 'ALL'){
      mydata <- filter(sim_results, Estimator == est)
    }
    if(est == 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
      mydata <- filter(sim_results, ss_l2 == s2)
    }
    if(est == 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, ss_l1 == s1)
    }
    if(est != 'ALL' & s2 != 'ALL' & s1 == 'ALL'){
      mydata <- filter(sim_results, Estimator == est, ss_l2 == s2)
    }
    if(est != 'ALL' & s2 == 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, Estimator == est, ss_l1 == s1)
    }
    if(est == 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, ss_l2 == s2, ss_l1 == s1)
    }
    if(est != 'ALL' & s2 != 'ALL' & s1 != 'ALL'){
      mydata <- filter(sim_results, Estimator == est, ss_l2 == s2, ss_l1 == s1)
    }
    ## Create formula
    model <- as.formula(paste0(CLASS[j], '~', index))
    ## Fit ROC curve
    fit_roc[[key]] <-  roc(model, data=mydata, quiet=T,
                           plot =F, ci=TRUE, print.auc=TRUE)
    ## Create a plot of "smoothed" curve for plotting
    fit_roc_smooth[[key]] <-  smooth(roc(model, data=mydata))
    ## Compute partial AUC for specificity .8-1
    p.auc <- auc(fit_roc[[key]], partial.auc = c(1,.8),
                 partial.auc.focus = 'sp', partial.auc.correct = T)
    ## get summary info
    roc_summary[i, 2] <- index
    roc_summary[i, 1] <- CLASS[j]
    roc_summary[i, 3] <- est ##estimator
    roc_summary[i, 4] <- s2 ## level-2 sample size
    roc_summary[i, 5] <- s1 ## level-1 sample size
    roc_summary[i, 6] <- fit_roc[[key]]$auc ## total AUC
    roc_summary[i, 7] <- p.auc ## corrected partial AUC (.5 is no discrimination)
    roc_summary[i, 8] <- fit_roc_smooth[[key]]$auc ## smoothed AUC
    roc_summary[i, 9:11] <- coords(fit_roc[[key]], "best", 
                                   ret=c("threshold", "specificity", 'sensitivity'),
                                   transpose=TRUE)
    
    ## add number of C and number of miss models in analysis
    n.C <- nrow(mydata[ mydata[, CLASS[j]] == 1, ])
    n.M <- nrow(mydata[ mydata[, CLASS[j]] == 0, ])
    roc_summary[i, 12] <- n.C
    roc_summary[i, 13] <- n.M
    
    ## print summary
    #cat('\n\nSummary of ROC:\n')
    #print(roc_summary[i, ])
    ## add to summary iterator
    i <- i + 1
      } ## end loop around ss l1
    } ## End loop around ss l2
  } ## End loop around estimator
} ## End loop round index
kable(roc_summary[801:1200, ], format = 'html', digits=3) %>%
  kable_styling(full_width = T)
Classification Index Estimator Level-2 SS Level-1 SS AUC partial-AUC Smoothed-AUC Threshold Specificity Sensitivity Num-C Num-Mis
801 CvM2 CFI ALL ALL ALL 0.669 0.548 0.692 0.993 0.576 0.695 223583 223868
802 CvM2 CFI ALL ALL 5 0.654 0.549 0.672 0.981 0.593 0.675 62891 63082
803 CvM2 CFI ALL ALL 10 0.687 0.556 0.699 0.990 0.588 0.714 75570 75749
804 CvM2 CFI ALL ALL 30 0.686 0.543 0.682 0.998 0.556 0.752 85122 85037
805 CvM2 CFI ALL 30 ALL 0.557 0.512 0.570 0.982 0.455 0.644 43725 43767
806 CvM2 CFI ALL 30 5 0.556 0.516 0.559 0.971 0.670 0.420 10875 10825
807 CvM2 CFI ALL 30 10 0.569 0.515 0.572 0.990 0.589 0.516 14530 14595
808 CvM2 CFI ALL 30 30 0.565 0.510 0.535 0.986 0.292 0.818 18320 18347
809 CvM2 CFI ALL 50 ALL 0.620 0.530 0.631 0.990 0.538 0.655 52104 52168
810 CvM2 CFI ALL 50 5 0.595 0.527 0.600 0.971 0.566 0.586 13813 13894
811 CvM2 CFI ALL 50 10 0.649 0.545 0.652 0.980 0.515 0.704 17513 17559
812 CvM2 CFI ALL 50 30 0.637 0.525 0.599 0.995 0.431 0.788 20778 20715
813 CvM2 CFI ALL 100 ALL 0.707 0.563 0.706 0.994 0.599 0.720 60747 60844
814 CvM2 CFI ALL 100 5 0.695 0.561 0.701 0.977 0.548 0.757 17384 17448
815 CvM2 CFI ALL 100 10 0.731 0.572 0.731 0.986 0.530 0.835 20799 20843
816 CvM2 CFI ALL 100 30 0.731 0.559 0.718 0.997 0.543 0.829 22564 22553
817 CvM2 CFI ALL 200 ALL 0.771 0.605 0.762 0.995 0.619 0.788 67007 67089
818 CvM2 CFI ALL 200 5 0.757 0.577 0.756 0.985 0.567 0.859 20819 20915
819 CvM2 CFI ALL 200 10 0.778 0.600 0.770 0.990 0.535 0.911 22728 22752
820 CvM2 CFI ALL 200 30 0.816 0.637 0.811 0.998 0.694 0.817 23460 23422
821 CvM2 CFI MLR ALL ALL 0.656 0.567 0.666 0.991 0.652 0.612 85732 85647
822 CvM2 CFI MLR ALL 5 0.630 0.557 0.639 0.981 0.669 0.582 24596 24572
823 CvM2 CFI MLR ALL 10 0.664 0.563 0.674 0.988 0.662 0.627 28824 28785
824 CvM2 CFI MLR ALL 30 0.697 0.579 0.705 0.995 0.642 0.669 32312 32290
825 CvM2 CFI MLR 30 ALL 0.574 0.533 0.575 0.972 0.638 0.494 17855 17854
826 CvM2 CFI MLR 30 5 0.563 0.525 0.562 0.896 0.573 0.551 4747 4739
827 CvM2 CFI MLR 30 10 0.587 0.527 0.586 0.940 0.477 0.657 5832 5832
828 CvM2 CFI MLR 30 30 0.638 0.543 0.637 0.982 0.576 0.630 7276 7283
829 CvM2 CFI MLR 50 ALL 0.624 0.544 0.629 0.986 0.623 0.586 20411 20417
830 CvM2 CFI MLR 50 5 0.598 0.530 0.601 0.971 0.685 0.475 5706 5724
831 CvM2 CFI MLR 50 10 0.657 0.548 0.658 0.967 0.489 0.753 6787 6790
832 CvM2 CFI MLR 50 30 0.688 0.551 0.685 0.988 0.477 0.824 7918 7903
833 CvM2 CFI MLR 100 ALL 0.704 0.568 0.714 0.991 0.595 0.728 22941 22901
834 CvM2 CFI MLR 100 5 0.691 0.561 0.699 0.977 0.580 0.727 6647 6637
835 CvM2 CFI MLR 100 10 0.732 0.562 0.729 0.985 0.532 0.854 7855 7823
836 CvM2 CFI MLR 100 30 0.757 0.581 0.748 0.995 0.551 0.857 8439 8441
837 CvM2 CFI MLR 200 ALL 0.764 0.594 0.767 0.995 0.626 0.789 24525 24475
838 CvM2 CFI MLR 200 5 0.761 0.576 0.759 0.986 0.592 0.845 7496 7472
839 CvM2 CFI MLR 200 10 0.778 0.587 0.763 0.991 0.555 0.903 8350 8340
840 CvM2 CFI MLR 200 30 0.815 0.621 0.804 0.997 0.620 0.898 8679 8663
841 CvM2 CFI ULSMV ALL ALL 0.691 0.546 0.719 0.978 0.435 0.871 71635 71584
842 CvM2 CFI ULSMV ALL 5 0.677 0.547 0.706 0.971 0.535 0.767 19976 19987
843 CvM2 CFI ULSMV ALL 10 0.711 0.555 0.722 0.970 0.455 0.888 24264 24300
844 CvM2 CFI ULSMV ALL 30 0.696 0.540 0.596 0.999 0.522 0.812 27395 27297
845 CvM2 CFI ULSMV 30 ALL 0.570 0.512 0.622 0.999 0.409 0.720 13710 13635
846 CvM2 CFI ULSMV 30 5 0.565 0.514 0.584 0.972 0.521 0.604 3256 3200
847 CvM2 CFI ULSMV 30 10 0.589 0.516 0.611 0.999 0.487 0.664 4632 4632
848 CvM2 CFI ULSMV 30 30 0.571 0.510 0.422 0.999 0.250 0.881 5822 5803
849 CvM2 CFI ULSMV 50 ALL 0.641 0.531 0.665 0.996 0.545 0.685 16566 16505
850 CvM2 CFI ULSMV 50 5 0.606 0.527 0.615 0.991 0.644 0.521 4339 4319
851 CvM2 CFI ULSMV 50 10 0.675 0.548 0.682 0.971 0.466 0.800 5547 5551
852 CvM2 CFI ULSMV 50 30 0.647 0.525 0.537 0.998 0.399 0.861 6680 6635
853 CvM2 CFI ULSMV 100 ALL 0.729 0.565 0.712 0.970 0.447 0.906 19541 19571
854 CvM2 CFI ULSMV 100 5 0.715 0.565 0.718 0.975 0.584 0.752 5546 5570
855 CvM2 CFI ULSMV 100 10 0.750 0.582 0.737 0.964 0.470 0.932 6712 6741
856 CvM2 CFI ULSMV 100 30 0.733 0.556 0.658 0.999 0.586 0.806 7283 7260
857 CvM2 CFI ULSMV 200 ALL 0.784 0.610 0.750 0.978 0.511 0.946 21818 21873
858 CvM2 CFI ULSMV 200 5 0.763 0.576 0.745 0.975 0.536 0.914 6835 6898
859 CvM2 CFI ULSMV 200 10 0.780 0.604 0.744 0.968 0.505 0.974 7373 7376
860 CvM2 CFI ULSMV 200 30 0.822 0.651 0.781 0.999 0.766 0.742 7610 7599
861 CvM2 CFI WLSMV ALL ALL 0.665 0.542 0.700 0.997 0.563 0.707 66216 66637
862 CvM2 CFI WLSMV ALL 5 0.663 0.547 0.683 0.987 0.585 0.692 18319 18523
863 CvM2 CFI WLSMV ALL 10 0.694 0.553 0.710 0.992 0.535 0.781 22482 22664
864 CvM2 CFI WLSMV ALL 30 0.675 0.534 0.658 0.998 0.458 0.847 25415 25450
865 CvM2 CFI WLSMV 30 ALL 0.541 0.507 0.559 1.000 0.441 0.635 12160 12278
866 CvM2 CFI WLSMV 30 5 0.553 0.514 0.557 0.968 0.475 0.615 2872 2886
867 CvM2 CFI WLSMV 30 10 0.561 0.512 0.577 0.991 0.424 0.688 4066 4131
868 CvM2 CFI WLSMV 30 30 0.531 0.504 0.535 1.000 0.235 0.825 5222 5261
869 CvM2 CFI WLSMV 50 ALL 0.601 0.523 0.622 0.999 0.590 0.586 15127 15246
870 CvM2 CFI WLSMV 50 5 0.590 0.523 0.594 0.970 0.434 0.708 3768 3851
871 CvM2 CFI WLSMV 50 10 0.635 0.539 0.639 0.993 0.613 0.592 5179 5218
872 CvM2 CFI WLSMV 50 30 0.607 0.517 0.556 0.999 0.393 0.797 6180 6177
873 CvM2 CFI WLSMV 100 ALL 0.699 0.559 0.712 0.996 0.603 0.708 18265 18372
874 CvM2 CFI WLSMV 100 5 0.689 0.558 0.694 0.985 0.583 0.711 5191 5241
875 CvM2 CFI WLSMV 100 10 0.733 0.573 0.722 0.990 0.535 0.836 6232 6279
876 CvM2 CFI WLSMV 100 30 0.723 0.552 0.691 0.998 0.492 0.881 6842 6852
877 CvM2 CFI WLSMV 200 ALL 0.776 0.611 0.767 0.997 0.644 0.771 20664 20741
878 CvM2 CFI WLSMV 200 5 0.760 0.578 0.749 0.986 0.547 0.883 6488 6545
879 CvM2 CFI WLSMV 200 10 0.794 0.611 0.776 0.993 0.581 0.890 7005 7036
880 CvM2 CFI WLSMV 200 30 0.827 0.638 0.812 0.999 0.663 0.873 7171 7160
881 CvM2 TLI ALL ALL ALL 0.669 0.548 0.692 0.992 0.576 0.695 223583 223868
882 CvM2 TLI ALL ALL 5 0.654 0.549 0.672 0.977 0.593 0.675 62891 63082
883 CvM2 TLI ALL ALL 10 0.687 0.556 0.699 0.988 0.588 0.714 75570 75749
884 CvM2 TLI ALL ALL 30 0.686 0.543 0.682 0.997 0.556 0.752 85122 85037
885 CvM2 TLI ALL 30 ALL 0.557 0.512 0.570 0.979 0.455 0.644 43725 43767
886 CvM2 TLI ALL 30 5 0.556 0.516 0.559 0.966 0.670 0.420 10875 10825
887 CvM2 TLI ALL 30 10 0.569 0.515 0.572 0.988 0.589 0.516 14530 14595
888 CvM2 TLI ALL 30 30 0.565 0.510 0.535 0.983 0.292 0.818 18320 18347
889 CvM2 TLI ALL 50 ALL 0.620 0.530 0.631 0.988 0.538 0.655 52104 52168
890 CvM2 TLI ALL 50 5 0.595 0.527 0.600 0.965 0.566 0.586 13813 13894
891 CvM2 TLI ALL 50 10 0.649 0.545 0.652 0.976 0.515 0.704 17513 17559
892 CvM2 TLI ALL 50 30 0.637 0.525 0.599 0.994 0.431 0.788 20778 20715
893 CvM2 TLI ALL 100 ALL 0.707 0.563 0.706 0.992 0.599 0.720 60747 60844
894 CvM2 TLI ALL 100 5 0.695 0.561 0.701 0.972 0.548 0.757 17384 17448
895 CvM2 TLI ALL 100 10 0.731 0.572 0.731 0.983 0.530 0.835 20799 20843
896 CvM2 TLI ALL 100 30 0.731 0.559 0.718 0.996 0.543 0.829 22564 22553
897 CvM2 TLI ALL 200 ALL 0.771 0.605 0.762 0.994 0.619 0.788 67007 67089
898 CvM2 TLI ALL 200 5 0.757 0.577 0.756 0.982 0.567 0.859 20819 20915
899 CvM2 TLI ALL 200 10 0.778 0.600 0.770 0.988 0.535 0.911 22728 22752
900 CvM2 TLI ALL 200 30 0.816 0.637 0.811 0.998 0.694 0.817 23460 23422
901 CvM2 TLI MLR ALL ALL 0.656 0.567 0.666 0.989 0.652 0.612 85732 85647
902 CvM2 TLI MLR ALL 5 0.630 0.557 0.639 0.977 0.669 0.582 24596 24572
903 CvM2 TLI MLR ALL 10 0.664 0.563 0.674 0.986 0.662 0.627 28824 28785
904 CvM2 TLI MLR ALL 30 0.697 0.579 0.705 0.994 0.642 0.669 32312 32290
905 CvM2 TLI MLR 30 ALL 0.574 0.533 0.575 0.967 0.638 0.494 17855 17854
906 CvM2 TLI MLR 30 5 0.563 0.525 0.562 0.875 0.573 0.551 4747 4739
907 CvM2 TLI MLR 30 10 0.587 0.527 0.586 0.928 0.477 0.657 5832 5832
908 CvM2 TLI MLR 30 30 0.638 0.543 0.637 0.978 0.576 0.630 7276 7283
909 CvM2 TLI MLR 50 ALL 0.624 0.544 0.629 0.983 0.623 0.586 20411 20417
910 CvM2 TLI MLR 50 5 0.598 0.530 0.601 0.965 0.685 0.475 5706 5724
911 CvM2 TLI MLR 50 10 0.657 0.548 0.658 0.960 0.489 0.753 6787 6790
912 CvM2 TLI MLR 50 30 0.688 0.551 0.685 0.985 0.477 0.824 7918 7903
913 CvM2 TLI MLR 100 ALL 0.704 0.568 0.714 0.989 0.595 0.728 22941 22901
914 CvM2 TLI MLR 100 5 0.691 0.561 0.699 0.972 0.580 0.727 6647 6637
915 CvM2 TLI MLR 100 10 0.732 0.562 0.729 0.981 0.532 0.854 7855 7823
916 CvM2 TLI MLR 100 30 0.757 0.581 0.748 0.993 0.551 0.857 8439 8441
917 CvM2 TLI MLR 200 ALL 0.764 0.594 0.767 0.994 0.626 0.789 24525 24475
918 CvM2 TLI MLR 200 5 0.761 0.576 0.759 0.983 0.592 0.845 7496 7472
919 CvM2 TLI MLR 200 10 0.778 0.587 0.763 0.989 0.555 0.903 8350 8340
920 CvM2 TLI MLR 200 30 0.815 0.621 0.804 0.997 0.620 0.898 8679 8663
921 CvM2 TLI ULSMV ALL ALL 0.691 0.546 0.719 0.974 0.435 0.871 71635 71584
922 CvM2 TLI ULSMV ALL 5 0.677 0.547 0.706 0.966 0.535 0.767 19976 19987
923 CvM2 TLI ULSMV ALL 10 0.711 0.555 0.722 0.964 0.455 0.888 24264 24300
924 CvM2 TLI ULSMV ALL 30 0.696 0.540 0.596 0.999 0.522 0.812 27395 27297
925 CvM2 TLI ULSMV 30 ALL 0.570 0.512 0.622 0.999 0.409 0.720 13710 13635
926 CvM2 TLI ULSMV 30 5 0.565 0.514 0.584 0.966 0.521 0.604 3256 3200
927 CvM2 TLI ULSMV 30 10 0.589 0.516 0.611 0.999 0.487 0.664 4632 4632
928 CvM2 TLI ULSMV 30 30 0.571 0.510 0.422 0.999 0.250 0.881 5822 5803
929 CvM2 TLI ULSMV 50 ALL 0.641 0.531 0.665 0.995 0.545 0.685 16566 16505
930 CvM2 TLI ULSMV 50 5 0.606 0.527 0.615 0.989 0.644 0.521 4339 4319
931 CvM2 TLI ULSMV 50 10 0.675 0.548 0.682 0.966 0.466 0.800 5547 5551
932 CvM2 TLI ULSMV 50 30 0.647 0.525 0.537 0.997 0.399 0.861 6680 6635
933 CvM2 TLI ULSMV 100 ALL 0.729 0.565 0.712 0.964 0.447 0.906 19541 19571
934 CvM2 TLI ULSMV 100 5 0.715 0.565 0.718 0.969 0.584 0.752 5546 5570
935 CvM2 TLI ULSMV 100 10 0.750 0.582 0.737 0.957 0.470 0.932 6712 6741
936 CvM2 TLI ULSMV 100 30 0.733 0.556 0.658 0.999 0.586 0.806 7283 7260
937 CvM2 TLI ULSMV 200 ALL 0.784 0.610 0.750 0.973 0.511 0.946 21818 21873
938 CvM2 TLI ULSMV 200 5 0.763 0.576 0.745 0.970 0.536 0.914 6835 6898
939 CvM2 TLI ULSMV 200 10 0.780 0.604 0.744 0.962 0.505 0.974 7373 7376
940 CvM2 TLI ULSMV 200 30 0.822 0.651 0.781 0.999 0.766 0.742 7610 7599
941 CvM2 TLI WLSMV ALL ALL 0.665 0.542 0.700 0.996 0.563 0.707 66216 66637
942 CvM2 TLI WLSMV ALL 5 0.663 0.547 0.683 0.984 0.585 0.692 18319 18523
943 CvM2 TLI WLSMV ALL 10 0.694 0.553 0.710 0.990 0.535 0.781 22482 22664
944 CvM2 TLI WLSMV ALL 30 0.675 0.534 0.658 0.998 0.458 0.847 25415 25450
945 CvM2 TLI WLSMV 30 ALL 0.541 0.507 0.559 1.000 0.441 0.635 12160 12278
946 CvM2 TLI WLSMV 30 5 0.553 0.514 0.557 0.962 0.475 0.615 2872 2886
947 CvM2 TLI WLSMV 30 10 0.561 0.512 0.577 0.989 0.424 0.688 4066 4131
948 CvM2 TLI WLSMV 30 30 0.531 0.504 0.535 1.000 0.235 0.825 5222 5261
949 CvM2 TLI WLSMV 50 ALL 0.601 0.523 0.622 0.999 0.590 0.586 15127 15246
950 CvM2 TLI WLSMV 50 5 0.590 0.523 0.594 0.965 0.434 0.708 3768 3851
951 CvM2 TLI WLSMV 50 10 0.635 0.539 0.639 0.992 0.613 0.592 5179 5218
952 CvM2 TLI WLSMV 50 30 0.607 0.517 0.556 0.999 0.393 0.797 6180 6177
953 CvM2 TLI WLSMV 100 ALL 0.699 0.559 0.712 0.995 0.603 0.708 18265 18372
954 CvM2 TLI WLSMV 100 5 0.689 0.558 0.694 0.982 0.583 0.711 5191 5241
955 CvM2 TLI WLSMV 100 10 0.733 0.573 0.722 0.988 0.535 0.836 6232 6279
956 CvM2 TLI WLSMV 100 30 0.723 0.552 0.691 0.997 0.492 0.881 6842 6852
957 CvM2 TLI WLSMV 200 ALL 0.776 0.611 0.767 0.996 0.644 0.771 20664 20741
958 CvM2 TLI WLSMV 200 5 0.760 0.578 0.749 0.984 0.547 0.883 6488 6545
959 CvM2 TLI WLSMV 200 10 0.794 0.611 0.776 0.992 0.581 0.890 7005 7036
960 CvM2 TLI WLSMV 200 30 0.827 0.638 0.812 0.998 0.663 0.873 7171 7160
961 CvM2 RMSEA ALL ALL ALL 0.664 0.548 0.692 0.009 0.587 0.679 223583 223868
962 CvM2 RMSEA ALL ALL 5 0.654 0.549 0.671 0.016 0.578 0.687 62891 63082
963 CvM2 RMSEA ALL ALL 10 0.686 0.556 0.704 0.012 0.573 0.734 75570 75749
964 CvM2 RMSEA ALL ALL 30 0.681 0.543 0.709 0.005 0.544 0.763 85122 85037
965 CvM2 RMSEA ALL 30 ALL 0.551 0.512 0.558 0.004 0.607 0.479 43725 43767
966 CvM2 RMSEA ALL 30 5 0.549 0.516 0.549 0.019 0.636 0.444 10875 10825
967 CvM2 RMSEA ALL 30 10 0.558 0.515 0.555 0.008 0.619 0.477 14530 14595
968 CvM2 RMSEA ALL 30 30 0.443 NA 0.473 -Inf 0.000 1.000 18320 18347
969 CvM2 RMSEA ALL 50 ALL 0.612 0.530 0.625 0.009 0.582 0.598 52104 52168
970 CvM2 RMSEA ALL 50 5 0.590 0.527 0.590 0.021 0.489 0.647 13813 13894
971 CvM2 RMSEA ALL 50 10 0.642 0.545 0.640 0.014 0.559 0.648 17513 17559
972 CvM2 RMSEA ALL 50 30 0.629 0.525 0.591 0.005 0.522 0.679 20778 20715
973 CvM2 RMSEA ALL 100 ALL 0.705 0.563 0.710 0.009 0.596 0.720 60747 60844
974 CvM2 RMSEA ALL 100 5 0.696 0.561 0.696 0.016 0.585 0.713 17384 17448
975 CvM2 RMSEA ALL 100 10 0.736 0.572 0.722 0.014 0.498 0.868 20799 20843
976 CvM2 RMSEA ALL 100 30 0.731 0.559 0.700 0.006 0.535 0.837 22564 22553
977 CvM2 RMSEA ALL 200 ALL 0.771 0.605 0.760 0.006 0.679 0.729 67007 67089
978 CvM2 RMSEA ALL 200 5 0.759 0.577 0.742 0.015 0.536 0.892 20819 20915
979 CvM2 RMSEA ALL 200 10 0.787 0.601 0.766 0.010 0.582 0.883 22728 22752
980 CvM2 RMSEA ALL 200 30 0.822 0.637 0.804 0.005 0.636 0.882 23460 23422
981 CvM2 RMSEA MLR ALL ALL 0.653 0.566 0.662 0.010 0.672 0.576 85732 85647
982 CvM2 RMSEA MLR ALL 5 0.630 0.556 0.637 0.016 0.686 0.548 24596 24572
983 CvM2 RMSEA MLR ALL 10 0.662 0.562 0.669 0.013 0.637 0.634 28824 28785
984 CvM2 RMSEA MLR ALL 30 0.694 0.579 0.701 0.008 0.667 0.635 32312 32290
985 CvM2 RMSEA MLR 30 ALL 0.570 0.532 0.572 0.019 0.665 0.456 17855 17854
986 CvM2 RMSEA MLR 30 5 0.566 0.523 0.566 0.045 0.551 0.546 4747 4739
987 CvM2 RMSEA MLR 30 10 0.583 0.525 0.584 0.035 0.379 0.744 5832 5832
988 CvM2 RMSEA MLR 30 30 0.631 0.541 0.632 0.020 0.389 0.810 7276 7283
989 CvM2 RMSEA MLR 50 ALL 0.620 0.543 0.624 0.013 0.646 0.549 20411 20417
990 CvM2 RMSEA MLR 50 5 0.599 0.529 0.598 0.035 0.372 0.773 5706 5724
991 CvM2 RMSEA MLR 50 10 0.652 0.546 0.650 0.026 0.382 0.841 6787 6790
992 CvM2 RMSEA MLR 50 30 0.684 0.550 0.677 0.013 0.465 0.827 7918 7903
993 CvM2 RMSEA MLR 100 ALL 0.699 0.568 0.703 0.010 0.621 0.685 22941 22901
994 CvM2 RMSEA MLR 100 5 0.691 0.560 0.690 0.020 0.530 0.756 6647 6637
995 CvM2 RMSEA MLR 100 10 0.724 0.562 0.714 0.016 0.492 0.877 7855 7823
996 CvM2 RMSEA MLR 100 30 0.752 0.581 0.743 0.009 0.517 0.879 8439 8441
997 CvM2 RMSEA MLR 200 ALL 0.758 0.594 0.753 0.008 0.640 0.755 24525 24475
998 CvM2 RMSEA MLR 200 5 0.752 0.576 0.738 0.016 0.523 0.893 7496 7472
999 CvM2 RMSEA MLR 200 10 0.771 0.587 0.754 0.012 0.530 0.911 8350 8340
1000 CvM2 RMSEA MLR 200 30 0.812 0.621 0.798 0.006 0.606 0.903 8679 8663
1001 CvM2 RMSEA ULSMV ALL ALL 0.687 0.546 0.711 0.007 0.567 0.730 71635 71584
1002 CvM2 RMSEA ULSMV ALL 5 0.684 0.547 0.703 0.016 0.512 0.788 19976 19987
1003 CvM2 RMSEA ULSMV ALL 10 0.715 0.555 0.710 0.012 0.515 0.833 24264 24300
1004 CvM2 RMSEA ULSMV ALL 30 0.695 0.540 0.652 0.004 0.493 0.844 27395 27297
1005 CvM2 RMSEA ULSMV 30 ALL 0.433 NA 0.395 -Inf 0.000 1.000 13710 13635
1006 CvM2 RMSEA ULSMV 30 5 0.566 0.514 0.581 0.011 0.541 0.586 3256 3200
1007 CvM2 RMSEA ULSMV 30 10 0.412 NA 0.402 -Inf 0.000 1.000 4632 4632
1008 CvM2 RMSEA ULSMV 30 30 0.433 NA 0.444 -Inf 0.000 1.000 5822 5803
1009 CvM2 RMSEA ULSMV 50 ALL 0.635 0.531 0.659 0.005 0.564 0.661 16566 16505
1010 CvM2 RMSEA ULSMV 50 5 0.609 0.527 0.611 0.016 0.503 0.662 4339 4319
1011 CvM2 RMSEA ULSMV 50 10 0.676 0.548 0.666 0.011 0.545 0.722 5547 5551
1012 CvM2 RMSEA ULSMV 50 30 0.357 NA 0.451 -Inf 0.000 1.000 6680 6635
1013 CvM2 RMSEA ULSMV 100 ALL 0.724 0.565 0.714 0.007 0.627 0.719 19541 19571
1014 CvM2 RMSEA ULSMV 100 5 0.719 0.565 0.713 0.017 0.523 0.821 5546 5570
1015 CvM2 RMSEA ULSMV 100 10 0.756 0.582 0.736 0.012 0.576 0.830 6712 6741
1016 CvM2 RMSEA ULSMV 100 30 0.735 0.556 0.676 0.005 0.513 0.883 7283 7260
1017 CvM2 RMSEA ULSMV 200 ALL 0.782 0.610 0.760 0.006 0.663 0.758 21818 21873
1018 CvM2 RMSEA ULSMV 200 5 0.766 0.576 0.744 0.015 0.541 0.907 6835 6898
1019 CvM2 RMSEA ULSMV 200 10 0.794 0.604 0.769 0.012 0.538 0.944 7373 7376
1020 CvM2 RMSEA ULSMV 200 30 0.833 0.651 0.823 0.004 0.716 0.817 7610 7599
1021 CvM2 RMSEA WLSMV ALL ALL 0.664 0.542 0.697 0.006 0.583 0.685 66216 66637
1022 CvM2 RMSEA WLSMV ALL 5 0.665 0.547 0.684 0.013 0.585 0.692 18319 18523
1023 CvM2 RMSEA WLSMV ALL 10 0.696 0.553 0.711 0.011 0.547 0.767 22482 22664
1024 CvM2 RMSEA WLSMV ALL 30 0.674 0.534 0.679 0.004 0.468 0.836 25415 25450
1025 CvM2 RMSEA WLSMV 30 ALL 0.459 NA 0.444 0.054 1.000 0.001 12160 12278
1026 CvM2 RMSEA WLSMV 30 5 0.553 0.514 0.557 0.017 0.542 0.545 2872 2886
1027 CvM2 RMSEA WLSMV 30 10 0.560 0.512 0.575 0.008 0.478 0.629 4066 4131
1028 CvM2 RMSEA WLSMV 30 30 0.470 NA 0.455 0.021 1.000 0.000 5222 5261
1029 CvM2 RMSEA WLSMV 50 ALL 0.599 0.523 0.617 0.003 0.589 0.587 15127 15246
1030 CvM2 RMSEA WLSMV 50 5 0.589 0.523 0.593 0.013 0.605 0.533 3768 3851
1031 CvM2 RMSEA WLSMV 50 10 0.634 0.539 0.638 0.009 0.637 0.569 5179 5218
1032 CvM2 RMSEA WLSMV 50 30 0.396 NA 0.420 -Inf 0.000 1.000 6180 6177
1033 CvM2 RMSEA WLSMV 100 ALL 0.696 0.559 0.708 0.007 0.613 0.698 18265 18372
1034 CvM2 RMSEA WLSMV 100 5 0.689 0.558 0.691 0.015 0.549 0.745 5191 5241
1035 CvM2 RMSEA WLSMV 100 10 0.733 0.573 0.722 0.012 0.540 0.826 6232 6279
1036 CvM2 RMSEA WLSMV 100 30 0.722 0.552 0.689 0.005 0.501 0.867 6842 6852
1037 CvM2 RMSEA WLSMV 200 ALL 0.775 0.611 0.768 0.006 0.675 0.743 20664 20741
1038 CvM2 RMSEA WLSMV 200 5 0.760 0.578 0.746 0.014 0.541 0.892 6488 6545
1039 CvM2 RMSEA WLSMV 200 10 0.797 0.611 0.778 0.010 0.602 0.879 7005 7036
1040 CvM2 RMSEA WLSMV 200 30 0.827 0.638 0.810 0.005 0.644 0.891 7171 7160
1041 CvM2 SRMRW ALL ALL ALL 0.527 0.505 0.524 0.031 0.452 0.597 223583 223868
1042 CvM2 SRMRW ALL ALL 5 0.524 0.512 0.523 0.037 0.639 0.405 62891 63082
1043 CvM2 SRMRW ALL ALL 10 0.530 0.508 0.528 0.031 0.498 0.553 75570 75749
1044 CvM2 SRMRW ALL ALL 30 0.535 0.505 0.536 0.025 0.268 0.796 85122 85037
1045 CvM2 SRMRW ALL 30 ALL 0.505 0.500 0.505 0.041 0.572 0.440 43725 43767
1046 CvM2 SRMRW ALL 30 5 0.505 0.503 0.506 0.067 0.671 0.344 10875 10825
1047 CvM2 SRMRW ALL 30 10 0.504 0.500 0.506 0.069 0.112 0.904 14530 14595
1048 CvM2 SRMRW ALL 30 30 0.507 0.500 0.509 0.041 0.135 0.891 18320 18347
1049 CvM2 SRMRW ALL 50 ALL 0.517 0.502 0.517 0.037 0.483 0.547 52104 52168
1050 CvM2 SRMRW ALL 50 5 0.513 0.505 0.515 0.054 0.618 0.405 13813 13894
1051 CvM2 SRMRW ALL 50 10 0.516 0.504 0.519 0.047 0.198 0.834 17513 17559
1052 CvM2 SRMRW ALL 50 30 0.516 0.501 0.522 0.033 0.137 0.916 20778 20715
1053 CvM2 SRMRW ALL 100 ALL 0.532 0.503 0.534 0.033 0.359 0.697 60747 60844
1054 CvM2 SRMRW ALL 100 5 0.538 0.510 0.543 0.044 0.365 0.690 17384 17448
1055 CvM2 SRMRW ALL 100 10 0.536 0.506 0.545 0.038 0.138 0.932 20799 20843
1056 CvM2 SRMRW ALL 100 30 0.528 0.503 0.540 0.026 0.153 0.935 22564 22553
1057 CvM2 SRMRW ALL 200 ALL 0.554 0.506 0.561 0.028 0.275 0.822 67007 67089
1058 CvM2 SRMRW ALL 200 5 0.570 0.516 0.579 0.032 0.383 0.721 20819 20915
1059 CvM2 SRMRW ALL 200 10 0.558 0.510 0.573 0.028 0.161 0.948 22728 22752
1060 CvM2 SRMRW ALL 200 30 0.545 0.506 0.566 0.023 0.153 0.974 23460 23422
1061 CvM2 SRMRW MLR ALL ALL 0.507 0.501 0.508 0.028 0.386 0.630 85732 85647
1062 CvM2 SRMRW MLR ALL 5 0.522 0.516 0.524 0.029 0.752 0.296 24596 24572
1063 CvM2 SRMRW MLR ALL 10 0.509 0.508 0.510 0.018 0.782 0.240 28824 28785
1064 CvM2 SRMRW MLR ALL 30 0.504 0.504 0.504 0.009 0.884 0.127 32312 32290
1065 CvM2 SRMRW MLR 30 ALL 0.499 NA 0.497 0.024 0.270 0.736 17855 17854
1066 CvM2 SRMRW MLR 30 5 0.521 0.505 0.523 0.071 0.204 0.836 4747 4739
1067 CvM2 SRMRW MLR 30 10 0.504 NA 0.503 0.044 0.329 0.693 5832 5832
1068 CvM2 SRMRW MLR 30 30 0.502 0.501 0.502 0.024 0.674 0.340 7276 7283
1069 CvM2 SRMRW MLR 50 ALL 0.506 0.501 0.508 0.048 0.181 0.834 20411 20417
1070 CvM2 SRMRW MLR 50 5 0.526 0.506 0.527 0.048 0.630 0.417 5706 5724
1071 CvM2 SRMRW MLR 50 10 0.516 0.503 0.515 0.031 0.624 0.408 6787 6790
1072 CvM2 SRMRW MLR 50 30 0.504 0.501 0.504 0.019 0.278 0.736 7918 7903
1073 CvM2 SRMRW MLR 100 ALL 0.509 0.502 0.513 0.036 0.134 0.892 22941 22901
1074 CvM2 SRMRW MLR 100 5 0.556 0.512 0.557 0.038 0.354 0.734 6647 6637
1075 CvM2 SRMRW MLR 100 10 0.523 0.507 0.524 0.024 0.399 0.641 7855 7823
1076 CvM2 SRMRW MLR 100 30 0.510 0.502 0.510 0.013 0.302 0.720 8439 8441
1077 CvM2 SRMRW MLR 200 ALL 0.518 0.504 0.527 0.029 0.081 0.964 24525 24475
1078 CvM2 SRMRW MLR 200 5 0.592 0.520 0.599 0.029 0.252 0.889 7496 7472
1079 CvM2 SRMRW MLR 200 10 0.548 0.511 0.548 0.016 0.555 0.518 8350 8340
1080 CvM2 SRMRW MLR 200 30 0.523 0.507 0.523 0.009 0.569 0.472 8679 8663
1081 CvM2 SRMRW ULSMV ALL ALL 0.562 0.521 0.553 0.032 0.608 0.503 71635 71584
1082 CvM2 SRMRW ULSMV ALL 5 0.533 0.511 0.528 0.042 0.674 0.407 19976 19987
1083 CvM2 SRMRW ULSMV ALL 10 0.563 0.516 0.555 0.032 0.660 0.469 24264 24300
1084 CvM2 SRMRW ULSMV ALL 30 0.600 0.511 0.588 0.025 0.565 0.618 27395 27297
1085 CvM2 SRMRW ULSMV 30 ALL 0.513 0.502 0.512 0.041 0.722 0.313 13710 13635
1086 CvM2 SRMRW ULSMV 30 5 0.503 NA 0.503 0.102 0.320 0.704 3256 3200
1087 CvM2 SRMRW ULSMV 30 10 0.516 NA 0.517 0.069 0.338 0.712 4632 4632
1088 CvM2 SRMRW ULSMV 30 30 0.533 0.501 0.532 0.041 0.407 0.677 5822 5803
1089 CvM2 SRMRW ULSMV 50 ALL 0.539 0.508 0.536 0.034 0.716 0.353 16566 16505
1090 CvM2 SRMRW ULSMV 50 5 0.522 0.502 0.524 0.084 0.184 0.862 4339 4319
1091 CvM2 SRMRW ULSMV 50 10 0.544 0.501 0.543 0.056 0.278 0.808 5547 5551
1092 CvM2 SRMRW ULSMV 50 30 0.570 0.501 0.569 0.033 0.408 0.751 6680 6635
1093 CvM2 SRMRW ULSMV 100 ALL 0.580 0.511 0.576 0.035 0.520 0.613 19541 19571
1094 CvM2 SRMRW ULSMV 100 5 0.563 0.503 0.566 0.055 0.330 0.792 5546 5570
1095 CvM2 SRMRW ULSMV 100 10 0.595 0.505 0.597 0.038 0.402 0.801 6712 6741
1096 CvM2 SRMRW ULSMV 100 30 0.605 0.503 0.611 0.026 0.457 0.807 7283 7260
1097 CvM2 SRMRW ULSMV 200 ALL 0.630 0.514 0.628 0.028 0.527 0.695 21818 21873
1098 CvM2 SRMRW ULSMV 200 5 0.606 0.504 0.616 0.041 0.333 0.889 6835 6898
1099 CvM2 SRMRW ULSMV 200 10 0.630 0.504 0.644 0.029 0.427 0.893 7373 7376
1100 CvM2 SRMRW ULSMV 200 30 0.636 0.504 0.661 0.023 0.459 0.921 7610 7599
1101 CvM2 SRMRW WLSMV ALL ALL 0.515 0.507 0.516 0.021 0.700 0.325 66216 66637
1102 CvM2 SRMRW WLSMV ALL 5 0.520 0.515 0.520 0.032 0.794 0.257 18319 18523
1103 CvM2 SRMRW WLSMV ALL 10 0.522 0.518 0.523 0.021 0.834 0.220 22482 22664
1104 CvM2 SRMRW WLSMV ALL 30 0.518 0.517 0.521 0.012 0.838 0.207 25415 25450
1105 CvM2 SRMRW WLSMV 30 ALL 0.504 0.503 0.504 0.026 0.885 0.126 12160 12278
1106 CvM2 SRMRW WLSMV 30 5 0.509 0.500 0.509 0.081 0.429 0.593 2872 2886
1107 CvM2 SRMRW WLSMV 30 10 0.504 NA 0.503 0.053 0.440 0.579 4066 4131
1108 CvM2 SRMRW WLSMV 30 30 0.512 0.503 0.513 0.026 0.741 0.283 5222 5261
1109 CvM2 SRMRW WLSMV 50 ALL 0.513 0.506 0.514 0.023 0.745 0.278 15127 15246
1110 CvM2 SRMRW WLSMV 50 5 0.516 0.502 0.514 0.062 0.470 0.567 3768 3851
1111 CvM2 SRMRW WLSMV 50 10 0.517 0.505 0.517 0.039 0.572 0.458 5179 5218
1112 CvM2 SRMRW WLSMV 50 30 0.524 0.507 0.523 0.023 0.380 0.660 6180 6177
1113 CvM2 SRMRW WLSMV 100 ALL 0.518 0.510 0.521 0.028 0.460 0.571 18265 18372
1114 CvM2 SRMRW WLSMV 100 5 0.542 0.508 0.540 0.044 0.438 0.640 5191 5241
1115 CvM2 SRMRW WLSMV 100 10 0.548 0.512 0.547 0.028 0.524 0.553 6232 6279
1116 CvM2 SRMRW WLSMV 100 30 0.544 0.513 0.544 0.017 0.343 0.729 6842 6852
1117 CvM2 SRMRW WLSMV 200 ALL 0.535 0.519 0.542 0.021 0.475 0.584 20664 20741
1118 CvM2 SRMRW WLSMV 200 5 0.580 0.513 0.581 0.032 0.447 0.687 6488 6545
1119 CvM2 SRMRW WLSMV 200 10 0.599 0.519 0.599 0.021 0.486 0.674 7005 7036
1120 CvM2 SRMRW WLSMV 200 30 0.589 0.523 0.588 0.011 0.463 0.684 7171 7160
1121 CvM2 SRMRB ALL ALL ALL 0.634 0.601 0.642 0.076 0.777 0.441 223583 223868
1122 CvM2 SRMRB ALL ALL 5 0.596 0.576 0.602 0.078 0.821 0.344 62891 63082
1123 CvM2 SRMRB ALL ALL 10 0.631 0.599 0.639 0.078 0.769 0.441 75570 75749
1124 CvM2 SRMRB ALL ALL 30 0.675 0.625 0.683 0.071 0.773 0.497 85122 85037
1125 CvM2 SRMRB ALL 30 ALL 0.584 0.551 0.585 0.127 0.718 0.407 43725 43767
1126 CvM2 SRMRB ALL 30 5 0.560 0.526 0.557 0.162 0.578 0.522 10875 10825
1127 CvM2 SRMRB ALL 30 10 0.575 0.542 0.572 0.127 0.729 0.390 14530 14595
1128 CvM2 SRMRB ALL 30 30 0.623 0.576 0.627 0.115 0.762 0.416 18320 18347
1129 CvM2 SRMRB ALL 50 ALL 0.630 0.584 0.633 0.102 0.727 0.466 52104 52168
1130 CvM2 SRMRB ALL 50 5 0.588 0.542 0.584 0.123 0.626 0.513 13813 13894
1131 CvM2 SRMRB ALL 50 10 0.619 0.578 0.618 0.102 0.753 0.440 17513 17559
1132 CvM2 SRMRB ALL 50 30 0.687 0.621 0.699 0.092 0.773 0.488 20778 20715
1133 CvM2 SRMRB ALL 100 ALL 0.701 0.637 0.703 0.080 0.706 0.600 60747 60844
1134 CvM2 SRMRB ALL 100 5 0.641 0.591 0.636 0.088 0.731 0.495 17384 17448
1135 CvM2 SRMRB ALL 100 10 0.698 0.643 0.701 0.078 0.762 0.548 20799 20843
1136 CvM2 SRMRB ALL 100 30 0.781 0.683 0.808 0.076 0.666 0.717 22564 22553
1137 CvM2 SRMRB ALL 200 ALL 0.766 0.681 0.765 0.061 0.729 0.677 67007 67089
1138 CvM2 SRMRB ALL 200 5 0.701 0.642 0.698 0.069 0.742 0.593 20819 20915
1139 CvM2 SRMRB ALL 200 10 0.776 0.696 0.791 0.059 0.763 0.643 22728 22752
1140 CvM2 SRMRB ALL 200 30 0.848 0.729 0.876 0.058 0.674 0.825 23460 23422
1141 CvM2 SRMRB MLR ALL ALL 0.654 0.621 0.659 0.092 0.814 0.441 85732 85647
1142 CvM2 SRMRB MLR ALL 5 0.617 0.599 0.626 0.097 0.848 0.356 24596 24572
1143 CvM2 SRMRB MLR ALL 10 0.653 0.621 0.661 0.092 0.816 0.432 28824 28785
1144 CvM2 SRMRB MLR ALL 30 0.699 0.642 0.703 0.087 0.808 0.505 32312 32290
1145 CvM2 SRMRB MLR 30 ALL 0.613 0.593 0.619 0.143 0.871 0.324 17855 17854
1146 CvM2 SRMRB MLR 30 5 0.575 0.552 0.576 0.172 0.771 0.376 4747 4739
1147 CvM2 SRMRB MLR 30 10 0.607 0.583 0.610 0.151 0.817 0.375 5832 5832
1148 CvM2 SRMRB MLR 30 30 0.676 0.644 0.687 0.143 0.805 0.486 7276 7283
1149 CvM2 SRMRB MLR 50 ALL 0.678 0.640 0.683 0.122 0.824 0.466 20411 20417
1150 CvM2 SRMRB MLR 50 5 0.629 0.590 0.628 0.143 0.719 0.511 5706 5724
1151 CvM2 SRMRB MLR 50 10 0.675 0.648 0.680 0.125 0.803 0.507 6787 6790
1152 CvM2 SRMRB MLR 50 30 0.756 0.694 0.768 0.119 0.758 0.624 7918 7903
1153 CvM2 SRMRB MLR 100 ALL 0.756 0.699 0.754 0.098 0.744 0.672 22941 22901
1154 CvM2 SRMRB MLR 100 5 0.703 0.673 0.704 0.104 0.822 0.549 6647 6637
1155 CvM2 SRMRB MLR 100 10 0.757 0.721 0.762 0.094 0.832 0.606 7855 7823
1156 CvM2 SRMRB MLR 100 30 0.846 0.746 0.866 0.087 0.809 0.692 8439 8441
1157 CvM2 SRMRB MLR 200 ALL 0.808 0.729 0.800 0.072 0.795 0.710 24525 24475
1158 CvM2 SRMRB MLR 200 5 0.757 0.723 0.760 0.079 0.828 0.623 7496 7472
1159 CvM2 SRMRB MLR 200 10 0.821 0.751 0.838 0.071 0.828 0.680 8350 8340
1160 CvM2 SRMRB MLR 200 30 0.889 0.767 0.908 0.071 0.685 0.906 8679 8663
1161 CvM2 SRMRB ULSMV ALL ALL 0.629 0.612 0.642 0.063 0.813 0.409 71635 71584
1162 CvM2 SRMRB ULSMV ALL 5 0.589 0.581 0.601 0.065 0.855 0.311 19976 19987
1163 CvM2 SRMRB ULSMV ALL 10 0.626 0.610 0.641 0.058 0.869 0.349 24264 24300
1164 CvM2 SRMRB ULSMV ALL 30 0.670 0.638 0.682 0.059 0.812 0.464 27395 27297
1165 CvM2 SRMRB ULSMV 30 ALL 0.575 0.555 0.582 0.106 0.747 0.383 13710 13635
1166 CvM2 SRMRB ULSMV 30 5 0.559 0.529 0.559 0.116 0.811 0.289 3256 3200
1167 CvM2 SRMRB ULSMV 30 10 0.571 0.542 0.569 0.108 0.735 0.403 4632 4632
1168 CvM2 SRMRB ULSMV 30 30 0.605 0.587 0.615 0.096 0.796 0.395 5822 5803
1169 CvM2 SRMRB ULSMV 50 ALL 0.622 0.597 0.631 0.082 0.833 0.371 16566 16505
1170 CvM2 SRMRB ULSMV 50 5 0.582 0.549 0.580 0.104 0.640 0.504 4339 4319
1171 CvM2 SRMRB ULSMV 50 10 0.617 0.591 0.620 0.088 0.758 0.458 5547 5551
1172 CvM2 SRMRB ULSMV 50 30 0.674 0.647 0.693 0.076 0.835 0.460 6680 6635
1173 CvM2 SRMRB ULSMV 100 ALL 0.701 0.664 0.707 0.065 0.826 0.498 19541 19571
1174 CvM2 SRMRB ULSMV 100 5 0.641 0.611 0.638 0.075 0.771 0.481 5546 5570
1175 CvM2 SRMRB ULSMV 100 10 0.698 0.681 0.706 0.063 0.879 0.489 6712 6741
1176 CvM2 SRMRB ULSMV 100 30 0.777 0.716 0.809 0.055 0.930 0.480 7283 7260
1177 CvM2 SRMRB ULSMV 200 ALL 0.769 0.715 0.772 0.049 0.847 0.571 21818 21873
1178 CvM2 SRMRB ULSMV 200 5 0.703 0.673 0.703 0.059 0.783 0.567 6835 6898
1179 CvM2 SRMRB ULSMV 200 10 0.778 0.739 0.798 0.049 0.876 0.574 7373 7376
1180 CvM2 SRMRB ULSMV 200 30 0.858 0.770 0.884 0.043 0.918 0.585 7610 7599
1181 CvM2 SRMRB WLSMV ALL ALL 0.641 0.614 0.648 0.069 0.827 0.414 66216 66637
1182 CvM2 SRMRB WLSMV ALL 5 0.598 0.590 0.609 0.074 0.829 0.358 18319 18523
1183 CvM2 SRMRB WLSMV ALL 10 0.634 0.610 0.642 0.071 0.806 0.419 22482 22664
1184 CvM2 SRMRB WLSMV ALL 30 0.685 0.637 0.691 0.067 0.815 0.485 25415 25450
1185 CvM2 SRMRB WLSMV 30 ALL 0.598 0.570 0.602 0.120 0.784 0.374 12160 12278
1186 CvM2 SRMRB WLSMV 30 5 0.572 0.533 0.568 0.152 0.578 0.555 2872 2886
1187 CvM2 SRMRB WLSMV 30 10 0.596 0.562 0.592 0.122 0.781 0.391 4066 4131
1188 CvM2 SRMRB WLSMV 30 30 0.642 0.605 0.649 0.113 0.815 0.414 5222 5261
1189 CvM2 SRMRB WLSMV 50 ALL 0.656 0.615 0.660 0.096 0.801 0.449 15127 15246
1190 CvM2 SRMRB WLSMV 50 5 0.609 0.559 0.604 0.112 0.697 0.483 3768 3851
1191 CvM2 SRMRB WLSMV 50 10 0.637 0.608 0.635 0.096 0.830 0.422 5179 5218
1192 CvM2 SRMRB WLSMV 50 30 0.732 0.668 0.744 0.090 0.819 0.527 6180 6177
1193 CvM2 SRMRB WLSMV 100 ALL 0.736 0.678 0.732 0.076 0.746 0.635 18265 18372
1194 CvM2 SRMRB WLSMV 100 5 0.662 0.631 0.658 0.082 0.795 0.501 5191 5241
1195 CvM2 SRMRB WLSMV 100 10 0.724 0.684 0.724 0.074 0.804 0.582 6232 6279
1196 CvM2 SRMRB WLSMV 100 30 0.840 0.738 0.861 0.069 0.792 0.699 6842 6852
1197 CvM2 SRMRB WLSMV 200 ALL 0.795 0.713 0.785 0.058 0.757 0.723 20664 20741
1198 CvM2 SRMRB WLSMV 200 5 0.722 0.683 0.717 0.062 0.815 0.581 6488 6545
1199 CvM2 SRMRB WLSMV 200 10 0.807 0.735 0.816 0.055 0.824 0.665 7005 7036
1200 CvM2 SRMRB WLSMV 200 30 0.889 0.768 0.909 0.056 0.684 0.905 7171 7160

Summarizing the Results

So, I need to parse down 1200 rows of information into somethingthat can fit into a single page table. The above (and very large tables) are condensed to only include the AUC and optimal threshold. The remaining information is left here for reference.

Detecting Any Misspecification

c <- filter(roc_summary, Classification == "C", `Level-2 SS` != 'ALL', `Level-1 SS` == 'ALL')
# Next make the columns the estimator factor
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9:11)],
            c[ c$Estimator == 'ULSMV', c(6,9:11)],
            c[ c$Estimator == 'WLSMV', c(6,9:11)])
kable(c1, format = 'html',digits=3, row.names = F) %>%
  kable_styling(full_width = T) %>%
  add_header_above(c(' '=2, 'MLR'=4, 'USLMV'=4, 'WLSMV'=4))
MLR
USLMV
WLSMV
Index Level-2 SS AUC Threshold Specificity Sensitivity AUC Threshold Specificity Sensitivity AUC Threshold Specificity Sensitivity
CFI 30 0.747 0.940 0.726 0.698 0.628 0.982 0.431 0.821 0.705 0.983 0.546 0.811
CFI 50 0.828 0.956 0.713 0.835 0.712 0.973 0.552 0.826 0.802 0.980 0.647 0.848
CFI 100 0.893 0.974 0.750 0.918 0.827 0.971 0.667 0.906 0.876 0.979 0.708 0.936
CFI 200 0.917 0.981 0.767 0.973 0.911 0.975 0.785 0.957 0.910 0.986 0.756 0.960
TLI 30 0.746 0.928 0.725 0.698 0.628 0.979 0.430 0.821 0.705 0.979 0.547 0.809
TLI 50 0.827 0.947 0.713 0.835 0.712 0.968 0.552 0.826 0.801 0.976 0.648 0.846
TLI 100 0.893 0.968 0.750 0.918 0.827 0.965 0.666 0.906 0.876 0.975 0.708 0.936
TLI 200 0.917 0.977 0.767 0.973 0.911 0.970 0.785 0.956 0.910 0.984 0.756 0.960
RMSEA 30 0.725 0.029 0.741 0.660 0.628 0.008 0.448 0.771 0.700 0.013 0.545 0.786
RMSEA 50 0.814 0.026 0.716 0.814 0.706 0.009 0.590 0.749 0.790 0.011 0.718 0.736
RMSEA 100 0.889 0.020 0.747 0.916 0.813 0.012 0.671 0.839 0.873 0.015 0.723 0.910
RMSEA 200 0.915 0.017 0.759 0.979 0.893 0.013 0.689 0.947 0.910 0.014 0.752 0.963
SRMRW 30 0.674 0.042 0.738 0.568 0.642 0.052 0.789 0.459 0.682 0.050 0.738 0.585
SRMRW 50 0.737 0.037 0.744 0.682 0.709 0.048 0.770 0.595 0.733 0.047 0.689 0.738
SRMRW 100 0.816 0.037 0.672 0.903 0.803 0.046 0.689 0.835 0.797 0.045 0.627 0.910
SRMRW 200 0.832 0.032 0.661 0.993 0.855 0.042 0.664 0.971 0.813 0.038 0.607 0.992
SRMRB 30 0.565 0.143 0.793 0.325 0.567 0.106 0.734 0.381 0.576 0.117 0.793 0.325
SRMRB 50 0.610 0.119 0.744 0.435 0.596 0.081 0.795 0.366 0.613 0.096 0.730 0.450
SRMRB 100 0.673 0.093 0.681 0.583 0.649 0.060 0.843 0.398 0.670 0.071 0.728 0.534
SRMRB 200 0.732 0.069 0.708 0.646 0.701 0.047 0.793 0.516 0.723 0.054 0.699 0.643
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9)],
            c[ c$Estimator == 'ULSMV', c(6,9)],
            c[ c$Estimator == 'WLSMV', c(6,9)])
print(xtable(c1, digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:42:37 2019
\begin{table}[ht]
\centering
\begin{tabular}{llrrrrrr}
  \toprule
Index & Level-2 SS & AUC & Threshold & AUC & Threshold & AUC & Threshold \\ 
  \midrule
CFI & 30 & 0.747 & 0.940 & 0.628 & 0.982 & 0.705 & 0.983 \\ 
  CFI & 50 & 0.828 & 0.956 & 0.712 & 0.973 & 0.802 & 0.980 \\ 
  CFI & 100 & 0.893 & 0.974 & 0.827 & 0.971 & 0.876 & 0.979 \\ 
  CFI & 200 & 0.917 & 0.981 & 0.911 & 0.975 & 0.910 & 0.986 \\ 
  TLI & 30 & 0.746 & 0.928 & 0.628 & 0.979 & 0.705 & 0.979 \\ 
  TLI & 50 & 0.827 & 0.947 & 0.712 & 0.968 & 0.801 & 0.976 \\ 
  TLI & 100 & 0.893 & 0.968 & 0.827 & 0.965 & 0.876 & 0.975 \\ 
  TLI & 200 & 0.917 & 0.977 & 0.911 & 0.970 & 0.910 & 0.984 \\ 
  RMSEA & 30 & 0.725 & 0.029 & 0.628 & 0.008 & 0.700 & 0.013 \\ 
  RMSEA & 50 & 0.814 & 0.026 & 0.706 & 0.009 & 0.790 & 0.011 \\ 
  RMSEA & 100 & 0.889 & 0.020 & 0.813 & 0.012 & 0.873 & 0.015 \\ 
  RMSEA & 200 & 0.915 & 0.017 & 0.893 & 0.013 & 0.910 & 0.014 \\ 
  SRMRW & 30 & 0.674 & 0.042 & 0.642 & 0.052 & 0.682 & 0.050 \\ 
  SRMRW & 50 & 0.737 & 0.037 & 0.709 & 0.048 & 0.733 & 0.047 \\ 
  SRMRW & 100 & 0.816 & 0.037 & 0.803 & 0.046 & 0.797 & 0.045 \\ 
  SRMRW & 200 & 0.832 & 0.032 & 0.855 & 0.042 & 0.813 & 0.038 \\ 
  SRMRB & 30 & 0.565 & 0.143 & 0.567 & 0.106 & 0.576 & 0.117 \\ 
  SRMRB & 50 & 0.610 & 0.119 & 0.596 & 0.081 & 0.613 & 0.096 \\ 
  SRMRB & 100 & 0.673 & 0.093 & 0.649 & 0.060 & 0.670 & 0.071 \\ 
  SRMRB & 200 & 0.732 & 0.069 & 0.701 & 0.047 & 0.723 & 0.054 \\ 
   \bottomrule
\end{tabular}
\end{table}

Detecting Misspecification at level-1

c <- filter(roc_summary, Classification == "CvM1", `Level-2 SS` != 'ALL', `Level-1 SS` == 'ALL')
# Next make the columns the estimator factor
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9:11)],
            c[ c$Estimator == 'ULSMV', c(6,9:11)],
            c[ c$Estimator == 'WLSMV', c(6,9:11)])
kable(c1, format = 'html',digits=3, row.names = F) %>%
  kable_styling(full_width = T) %>%
  add_header_above(c(' '=2, 'MLR'=4, 'USLMV'=4, 'WLSMV'=4))
MLR
USLMV
WLSMV
Index Level-2 SS AUC Threshold Specificity Sensitivity AUC Threshold Specificity Sensitivity AUC Threshold Specificity Sensitivity
CFI 30 0.829 0.944 0.918 0.684 0.649 0.979 0.482 0.830 0.804 0.983 0.732 0.811
CFI 50 0.926 0.955 0.921 0.842 0.735 0.972 0.613 0.834 0.926 0.980 0.884 0.849
CFI 100 0.990 0.962 0.959 0.960 0.875 0.971 0.781 0.905 0.992 0.972 0.965 0.965
CFI 200 1.000 0.969 0.994 0.995 0.989 0.975 0.954 0.956 1.000 0.971 0.994 0.996
TLI 30 0.829 0.932 0.918 0.684 0.649 0.975 0.482 0.830 0.804 0.979 0.732 0.811
TLI 50 0.926 0.945 0.921 0.842 0.735 0.966 0.613 0.834 0.926 0.976 0.884 0.849
TLI 100 0.990 0.954 0.959 0.960 0.875 0.965 0.781 0.905 0.992 0.966 0.965 0.965
TLI 200 1.000 0.962 0.994 0.995 0.989 0.970 0.954 0.956 1.000 0.966 0.994 0.996
RMSEA 30 0.799 0.030 0.903 0.663 0.651 0.010 0.460 0.803 0.796 0.014 0.707 0.794
RMSEA 50 0.908 0.026 0.912 0.823 0.729 0.012 0.589 0.800 0.908 0.014 0.850 0.806
RMSEA 100 0.988 0.024 0.953 0.958 0.854 0.011 0.765 0.827 0.988 0.017 0.967 0.931
RMSEA 200 1.000 0.020 0.996 0.993 0.958 0.013 0.821 0.947 1.000 0.020 0.995 0.996
SRMRW 30 0.769 0.042 0.907 0.567 0.722 0.053 0.922 0.464 0.801 0.053 0.896 0.634
SRMRW 50 0.861 0.038 0.960 0.692 0.817 0.048 0.953 0.603 0.877 0.047 0.962 0.731
SRMRW 100 0.981 0.037 0.967 0.905 0.945 0.046 0.961 0.839 0.982 0.045 0.966 0.913
SRMRW 200 1.000 0.033 0.998 0.998 0.997 0.043 0.992 0.979 1.000 0.040 0.999 0.998
SRMRB 30 0.518 0.177 0.698 0.346 0.532 0.093 0.834 0.233 0.530 0.109 0.842 0.218
SRMRB 50 0.503 0.151 0.805 0.235 0.541 0.070 0.875 0.217 0.552 0.086 0.827 0.266
SRMRB 100 0.530 0.069 0.917 0.186 0.565 0.052 0.880 0.262 0.582 0.060 0.883 0.267
SRMRB 200 0.600 0.057 0.853 0.350 0.595 0.038 0.924 0.272 0.626 0.048 0.754 0.455
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9)],
            c[ c$Estimator == 'ULSMV', c(6,9)],
            c[ c$Estimator == 'WLSMV', c(6,9)])
print(xtable(c1, digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:42:37 2019
\begin{table}[ht]
\centering
\begin{tabular}{llrrrrrr}
  \toprule
Index & Level-2 SS & AUC & Threshold & AUC & Threshold & AUC & Threshold \\ 
  \midrule
CFI & 30 & 0.829 & 0.944 & 0.649 & 0.979 & 0.804 & 0.983 \\ 
  CFI & 50 & 0.926 & 0.955 & 0.735 & 0.972 & 0.926 & 0.980 \\ 
  CFI & 100 & 0.990 & 0.962 & 0.875 & 0.971 & 0.992 & 0.972 \\ 
  CFI & 200 & 1.000 & 0.969 & 0.989 & 0.975 & 1.000 & 0.971 \\ 
  TLI & 30 & 0.829 & 0.932 & 0.649 & 0.975 & 0.804 & 0.979 \\ 
  TLI & 50 & 0.926 & 0.945 & 0.735 & 0.966 & 0.926 & 0.976 \\ 
  TLI & 100 & 0.990 & 0.954 & 0.875 & 0.965 & 0.992 & 0.966 \\ 
  TLI & 200 & 1.000 & 0.962 & 0.989 & 0.970 & 1.000 & 0.966 \\ 
  RMSEA & 30 & 0.799 & 0.030 & 0.651 & 0.010 & 0.796 & 0.014 \\ 
  RMSEA & 50 & 0.908 & 0.026 & 0.729 & 0.012 & 0.908 & 0.014 \\ 
  RMSEA & 100 & 0.988 & 0.024 & 0.854 & 0.011 & 0.988 & 0.017 \\ 
  RMSEA & 200 & 1.000 & 0.020 & 0.958 & 0.013 & 1.000 & 0.020 \\ 
  SRMRW & 30 & 0.769 & 0.042 & 0.722 & 0.053 & 0.801 & 0.053 \\ 
  SRMRW & 50 & 0.861 & 0.038 & 0.817 & 0.048 & 0.877 & 0.047 \\ 
  SRMRW & 100 & 0.981 & 0.037 & 0.945 & 0.046 & 0.982 & 0.045 \\ 
  SRMRW & 200 & 1.000 & 0.033 & 0.997 & 0.043 & 1.000 & 0.040 \\ 
  SRMRB & 30 & 0.518 & 0.177 & 0.532 & 0.093 & 0.530 & 0.109 \\ 
  SRMRB & 50 & 0.503 & 0.151 & 0.541 & 0.070 & 0.552 & 0.086 \\ 
  SRMRB & 100 & 0.530 & 0.069 & 0.565 & 0.052 & 0.582 & 0.060 \\ 
  SRMRB & 200 & 0.600 & 0.057 & 0.595 & 0.038 & 0.626 & 0.048 \\ 
   \bottomrule
\end{tabular}
\end{table}

Detecting Misspecification at level-2

c <- filter(roc_summary, Classification == "CvM2", `Level-2 SS` != 'ALL', `Level-1 SS` == 'ALL')
# Next make the columns the estimator factor
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9:11)],
            c[ c$Estimator == 'ULSMV', c(6,9:11)],
            c[ c$Estimator == 'WLSMV', c(6,9:11)])
kable(c1, format = 'html',digits=3, row.names = F) %>%
  kable_styling(full_width = T) %>%
  add_header_above(c(' '=2, 'MLR'=4, 'USLMV'=4, 'WLSMV'=4))
MLR
USLMV
WLSMV
Index Level-2 SS AUC Threshold Specificity Sensitivity AUC Threshold Specificity Sensitivity AUC Threshold Specificity Sensitivity
CFI 30 0.574 0.972 0.638 0.494 0.570 0.999 0.409 0.720 0.541 1.000 0.441 0.635
CFI 50 0.624 0.986 0.623 0.586 0.641 0.996 0.545 0.685 0.601 0.999 0.590 0.586
CFI 100 0.704 0.991 0.595 0.728 0.729 0.970 0.447 0.906 0.699 0.996 0.603 0.708
CFI 200 0.764 0.995 0.626 0.789 0.784 0.978 0.511 0.946 0.776 0.997 0.644 0.771
TLI 30 0.574 0.967 0.638 0.494 0.570 0.999 0.409 0.720 0.541 1.000 0.441 0.635
TLI 50 0.624 0.983 0.623 0.586 0.641 0.995 0.545 0.685 0.601 0.999 0.590 0.586
TLI 100 0.704 0.989 0.595 0.728 0.729 0.964 0.447 0.906 0.699 0.995 0.603 0.708
TLI 200 0.764 0.994 0.626 0.789 0.784 0.973 0.511 0.946 0.776 0.996 0.644 0.771
RMSEA 30 0.570 0.019 0.665 0.456 0.433 -Inf 0.000 1.000 0.459 0.054 1.000 0.001
RMSEA 50 0.620 0.013 0.646 0.549 0.635 0.005 0.564 0.661 0.599 0.003 0.589 0.587
RMSEA 100 0.699 0.010 0.621 0.685 0.724 0.007 0.627 0.719 0.696 0.007 0.613 0.698
RMSEA 200 0.758 0.008 0.640 0.755 0.782 0.006 0.663 0.758 0.775 0.006 0.675 0.743
SRMRW 30 0.499 0.024 0.270 0.736 0.513 0.041 0.722 0.313 0.504 0.026 0.885 0.126
SRMRW 50 0.506 0.048 0.181 0.834 0.539 0.034 0.716 0.353 0.513 0.023 0.745 0.278
SRMRW 100 0.509 0.036 0.134 0.892 0.580 0.035 0.520 0.613 0.518 0.028 0.460 0.571
SRMRW 200 0.518 0.029 0.081 0.964 0.630 0.028 0.527 0.695 0.535 0.021 0.475 0.584
SRMRB 30 0.613 0.143 0.871 0.324 0.575 0.106 0.747 0.383 0.598 0.120 0.784 0.374
SRMRB 50 0.678 0.122 0.824 0.466 0.622 0.082 0.833 0.371 0.656 0.096 0.801 0.449
SRMRB 100 0.756 0.098 0.744 0.672 0.701 0.065 0.826 0.498 0.736 0.076 0.746 0.635
SRMRB 200 0.808 0.072 0.795 0.710 0.769 0.049 0.847 0.571 0.795 0.058 0.757 0.723
c1 <- cbind(c[ c$Estimator == 'MLR', c(2,4,6,9)],
            c[ c$Estimator == 'ULSMV', c(6,9)],
            c[ c$Estimator == 'WLSMV', c(6,9)])
print(xtable(c1, digits = 3), booktabs=T,include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Fri Oct 18 19:42:37 2019
\begin{table}[ht]
\centering
\begin{tabular}{llrrrrrr}
  \toprule
Index & Level-2 SS & AUC & Threshold & AUC & Threshold & AUC & Threshold \\ 
  \midrule
CFI & 30 & 0.574 & 0.972 & 0.570 & 0.999 & 0.541 & 1.000 \\ 
  CFI & 50 & 0.624 & 0.986 & 0.641 & 0.996 & 0.601 & 0.999 \\ 
  CFI & 100 & 0.704 & 0.991 & 0.729 & 0.970 & 0.699 & 0.996 \\ 
  CFI & 200 & 0.764 & 0.995 & 0.784 & 0.978 & 0.776 & 0.997 \\ 
  TLI & 30 & 0.574 & 0.967 & 0.570 & 0.999 & 0.541 & 1.000 \\ 
  TLI & 50 & 0.624 & 0.983 & 0.641 & 0.995 & 0.601 & 0.999 \\ 
  TLI & 100 & 0.704 & 0.989 & 0.729 & 0.964 & 0.699 & 0.995 \\ 
  TLI & 200 & 0.764 & 0.994 & 0.784 & 0.973 & 0.776 & 0.996 \\ 
  RMSEA & 30 & 0.570 & 0.019 & 0.433 & -Inf & 0.459 & 0.054 \\ 
  RMSEA & 50 & 0.620 & 0.013 & 0.635 & 0.005 & 0.599 & 0.003 \\ 
  RMSEA & 100 & 0.699 & 0.010 & 0.724 & 0.007 & 0.696 & 0.007 \\ 
  RMSEA & 200 & 0.758 & 0.008 & 0.782 & 0.006 & 0.775 & 0.006 \\ 
  SRMRW & 30 & 0.499 & 0.024 & 0.513 & 0.041 & 0.504 & 0.026 \\ 
  SRMRW & 50 & 0.506 & 0.048 & 0.539 & 0.034 & 0.513 & 0.023 \\ 
  SRMRW & 100 & 0.509 & 0.036 & 0.580 & 0.035 & 0.518 & 0.028 \\ 
  SRMRW & 200 & 0.518 & 0.029 & 0.630 & 0.028 & 0.535 & 0.021 \\ 
  SRMRB & 30 & 0.613 & 0.143 & 0.575 & 0.106 & 0.598 & 0.120 \\ 
  SRMRB & 50 & 0.678 & 0.122 & 0.622 & 0.082 & 0.656 & 0.096 \\ 
  SRMRB & 100 & 0.756 & 0.098 & 0.701 & 0.065 & 0.736 & 0.076 \\ 
  SRMRB & 200 & 0.808 & 0.072 & 0.769 & 0.049 & 0.795 & 0.058 \\ 
   \bottomrule
\end{tabular}
\end{table}

ROC Curves

First extract the data

roc_smooth_data <- as.data.frame(matrix(0,ncol=7, nrow=514*(3*4*5*5)))
colnames(roc_smooth_data) <- c('Index', 'Classification', 'Estimator','Level-2 SS', 'AUC', 'Sensitivity', 'Specificity')
i <- 1
j <- 514
for(index in INDEX){
  for(est in EST){
    for(class in CLASS){
    for(s2 in SS_L2){
    ## Set up iteration key
    key <- paste0(index,'.',class,'.',est,'.', s2,'.ALL')
      ## update extracted data
      roc_smooth_data[i:j, 1] <- index
      roc_smooth_data[i:j, 2] <- class
      roc_smooth_data[i:j, 3] <- est
      roc_smooth_data[i:j, 4] <- s2
      ## extract smooth fit object
      fit <- fit_roc_smooth[[key]]
      if(is.null(fit) == T){
        ## update sen,spec, and auc
        roc_smooth_data[i:j, 5] <- NA
        roc_smooth_data[i:j, 6] <- NA
        roc_smooth_data[i:j, 7] <- NA
      } else {
        ## update sen,spec, and auc
        roc_smooth_data[i:j, 5] <- fit$auc
        roc_smooth_data[i:j, 6] <- fit$sensitivities
        roc_smooth_data[i:j, 7] <- fit$specificities
      }
      
      ## update iterators
      i <- i + 514
      j <- j + 514
    }
  }
}}
## Forcing factor orders
roc_smooth_data$Index <- factor(
  roc_smooth_data$Index, ordered = T,
  levels=c('CFI', 'TLI', 'RMSEA', 'SRMRW', 'SRMRB'))
roc_smooth_data$Classification <- factor(
  roc_smooth_data$Classification,
  levels=c('C','CvM1','CvM2'),
  labels=c('Any Mis.', 'Level-1 Mis.', 'Level-2 Mis.'),
  ordered = T
)
roc_smooth_data$Estimator <- as.factor(roc_smooth_data$Estimator)
roc_smooth_data$`Level-2 SS` <- factor(roc_smooth_data$`Level-2 SS`,
                                       levels=c('ALL','30','50', '100', '200'),
                                       ordered = T)

Plot by Misspecification and Estimation Method

subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL', Estimator!='ALL')
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(Estimator~Classification) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index")) +
  geom_abline(intercept = 1, slope = 1, color='dimgray' )
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_plot_mis_est.pdf', plot = p, height = 6,width = 9,units = 'in')

Plot by Misspecification and Level-2 Sample Size

subdata <- filter(roc_smooth_data, `Level-2 SS`!='ALL', Estimator=='ALL')
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(`Level-2 SS` ~Classification) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index"))+
  geom_abline(intercept = 1, slope = 1, color='dimgray' )
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_plot_mis_n2.pdf', plot = p, height = 6,width = 9, units = 'in')

Figures of Subconditions and Smaller Plots for Exporting

Figures by Classification Outcome

subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL',  Estimator == "ALL")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(.~Classification) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index"))+
  geom_abline(intercept = 1, slope = 1, color='dimgray' )
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_class_all.pdf', plot = p, height = 4, width = 9, units = 'in')
subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL', Estimator == "MLR")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(.~Classification) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index"))+
  geom_abline(intercept = 1, slope = 1, color='dimgray' )
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_class_mlr.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL', Estimator == "ULSMV")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(.~Classification) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index"))+
  geom_abline(intercept = 1, slope = 1, color='dimgray' )
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_class_ulsmv.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data,`Level-2 SS`=='ALL',  Estimator == "WLSMV")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(.~Classification) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index"))+
  geom_abline(intercept = 1, slope = 1, color='dimgray' )
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_class_wlsmv.pdf', plot = p, height = 4,width = 9,units = 'in')

Figures by Estimation Method

subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL', Estimator!='ALL',
                  Classification == "Any Mis.")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(.~Estimator) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index"))+
  geom_abline(intercept = 1, slope = 1, color='dimgray' )
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_est_c.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data, `Level-2 SS`=='ALL', Estimator!='ALL',
                  Classification == "Level-1 Mis.")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(.~Estimator) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index"))+
  geom_abline(intercept = 1, slope = 1, color='dimgray' )
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_est_cl1.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data,`Level-2 SS`=='ALL', Estimator!='ALL',
                  Classification == "Level-2 Mis.")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(.~Estimator) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index"))+
  geom_abline(intercept = 1, slope = 1, color='dimgray' )
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_est_cl2.pdf', plot = p, height = 4,width = 9,units = 'in')

Figures by Level-2 Sample Size

subdata <- filter(roc_smooth_data, Estimator=='ALL', Classification == "Any Mis.",
                  `Level-2 SS`!='ALL')
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(.~`Level-2 SS`) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index"))+
  geom_abline(intercept = 1, slope = 1, color='dimgray')
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_n2_c.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data, `Level-2 SS`!='ALL', Estimator=='ALL',
                  Classification == "Level-1 Mis.")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(.~`Level-2 SS`) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index"))+
  geom_abline(intercept = 1, slope = 1, color='dimgray' )
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_n2_cl1.pdf', plot = p, height = 4,width = 9,units = 'in')
subdata <- filter(roc_smooth_data,`Level-2 SS`!='ALL', Estimator=='ALL',  Classification == "Level-2 Mis.")
p <- ggplot(subdata, aes(x = Specificity, y=Sensitivity, group = Index)) +
  geom_line(aes(linetype=Index, color=Index))+
  facet_grid(.~`Level-2 SS`) +
  scale_x_reverse() +
  scale_color_brewer(palette="Set1") +
  guides(color=guide_legend(title="Fit Index"),
         linetype=guide_legend(title="Fit Index"))+
  geom_abline(intercept = 1, slope = 1, color='dimgray' )
p

Version Author Date
ba44658 noah-padgett 2019-09-29
982c8f1 noah-padgett 2019-05-18
if(save.fig == T) ggsave('roc_n2_cl2.pdf', plot = p, height = 4,width = 9,units = 'in')

sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] pROC_1.15.0      xtable_1.8-4     kableExtra_1.1.0 psych_1.8.12    
 [5] car_3.0-3        carData_3.0-2    forcats_0.4.0    stringr_1.4.0   
 [9] dplyr_0.8.1      purrr_0.3.2      readr_1.3.1      tidyr_0.8.3     
[13] tibble_2.1.1     ggplot2_3.2.0    tidyverse_1.2.1 

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.1         lubridate_1.7.4    lattice_0.20-38   
 [4] assertthat_0.2.1   rprojroot_1.3-2    digest_0.6.19     
 [7] R6_2.4.0           cellranger_1.1.0   plyr_1.8.4        
[10] backports_1.1.4    evaluate_0.14      highr_0.8         
[13] httr_1.4.0         pillar_1.4.1       rlang_0.3.4       
[16] lazyeval_0.2.2     curl_3.3           readxl_1.3.1      
[19] rstudioapi_0.10    data.table_1.12.2  whisker_0.3-2     
[22] rmarkdown_1.13     labeling_0.3       webshot_0.5.1     
[25] foreign_0.8-71     munsell_0.5.0      broom_0.5.2       
[28] compiler_3.6.0     modelr_0.1.4       xfun_0.7          
[31] pkgconfig_2.0.2    mnormt_1.5-5       htmltools_0.3.6   
[34] tidyselect_0.2.5   workflowr_1.4.0    rio_0.5.16        
[37] viridisLite_0.3.0  crayon_1.3.4       withr_2.1.2       
[40] grid_3.6.0         nlme_3.1-139       jsonlite_1.6      
[43] gtable_0.3.0       git2r_0.26.1       magrittr_1.5      
[46] scales_1.0.0       zip_2.0.2          cli_1.1.0         
[49] stringi_1.4.3      reshape2_1.4.3     fs_1.3.1          
[52] xml2_1.2.0         generics_0.0.2     openxlsx_4.1.0    
[55] RColorBrewer_1.1-2 tools_3.6.0        glue_1.3.1        
[58] hms_0.4.2          abind_1.4-5        parallel_3.6.0    
[61] yaml_2.2.0         colorspace_1.4-1   rvest_0.3.4       
[64] knitr_1.23         haven_2.1.0