Last updated: 2019-10-30
Checks: 7 0
Knit directory: mcfa-fit/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190507)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .RData
Ignored: .RDataTmp
Ignored: .Rhistory
Ignored: .Rproj.user/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | ba44658 | noah-padgett | 2019-09-29 | wflow_git_commit(all = T) |
html | ba44658 | noah-padgett | 2019-09-29 | wflow_git_commit(all = T) |
html | 982c8f1 | noah-padgett | 2019-05-18 | roc analyses completed |
html | a1b0dc1 | noah-padgett | 2019-05-08 | Build site. |
Rmd | b794176 | noah-padgett | 2019-05-08 | updated tables and figures |
html | 6fd16ed | noah-padgett | 2019-05-08 | Build site. |
Rmd | 8a65691 | noah-padgett | 2019-05-08 | summary tables recreated |
html | 584d1b0 | noah-padgett | 2019-05-08 | Build site. |
Rmd | f22b9e3 | noah-padgett | 2019-05-08 | summary tables recreated |
Purpose of this file:
The output is mostly just a lot of latex ready tables. Not all of these tables are included in the final publication, but we wanted to be as precise as possible with respect to the summary of the fit statistics.
##Chunk iptions
knitr::opts_chunk$set(out.width = "225%")
#setwd('C:/Users/noahp/Dropbox/MCFA Thesis/Code Results')
## Packages
## General Packages
library(tidyverse)
-- Attaching packages --------------------------------------------------------- tidyverse 1.2.1 --
v ggplot2 3.2.0 v purrr 0.3.2
v tibble 2.1.1 v dplyr 0.8.1
v tidyr 0.8.3 v stringr 1.4.0
v readr 1.3.1 v forcats 0.4.0
-- Conflicts ------------------------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
# Formatting and Tables
library(kableExtra)
Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':
group_rows
library(xtable)
# For plotting
library(ggplot2)
theme_set(theme_bw())
# Data manipulating
library(dplyr)
sim_results <- as_tibble(read.table('data/compiled_fit_results.txt', header=T,sep='\t'))
## Next, turn condition into a factor for plotting
sim_results$Condition <- as.factor(sim_results$Condition)
## Next, since TLI is non-normed, any value greater than 1 needs to be rescaled to 1.
sim_results$TLI <- ifelse(sim_results$TLI > 1, 1, sim_results$TLI)
sim_results$TLI <- ifelse(sim_results$TLI < 0, 0, sim_results$TLI)
## Next, summarize the results of the chi-square test of model fit. This is done simply by comparing the p-value to alpha (0.05) and indicating whether the model was flagged as fitting or not.
# Note: if p < 0.05 then this variable is flagged as 0, and 1 otherwise
sim_results$Chi2_pvalue_decision <- ifelse(sim_results$chisqu_pvalue < 0.05, 0, 1)
# 0 = rejected that these data fit this model
# 1 = failed to reject that these data fit this model
Currently, each condition is kind of like a hidden id that we don’t know what the actual factor is. So, first thing isto create meaningful labels for us to use. Remember, the 72 conditions for the this study were
## level-1 Sample size
ss_l1 <- c(5, 10, 30) ## 6 conditions each
ss_l2 <- c(30, 50, 100, 200) ## 18 condition each
icc_ov <- c(.1, .3, .5) ## 2 conditions each
icc_lv <- c(.1, .5) ## every other condition
nCon <- 72 # number of conditions
nRep <- 500 # number of replications per condition
nMod <- 12 ## numberof estimated models per conditions
## Total number of rows: 432,000
ss_l2 <- c(rep(ss_l2[1], 18*nRep*nMod), rep(ss_l2[2], 18*nRep*nMod),
rep(ss_l2[3], 18*nRep*nMod), rep(ss_l2[4], 18*nRep*nMod))
ss_l1 <- rep(c(rep(ss_l1[1],6*nRep*nMod), rep(ss_l1[2],6*nRep*nMod), rep(ss_l1[3],6*nRep*nMod)), 4)
icc_ov <- rep(c(rep(icc_ov[1], 2*nRep*nMod), rep(icc_ov[2], 2*nRep*nMod), rep(icc_ov[3], 2*nRep*nMod)), 12)
icc_lv <- rep(c(rep(icc_lv[1], nRep*nMod), rep(icc_lv[2], nRep*nMod)), 36)
## Force these vectors to be column vectors
ss_l1 <- matrix(ss_l1, ncol=1)
ss_l2 <- matrix(ss_l2, ncol=1)
icc_ov <- matrix(icc_ov, ncol=1)
icc_lv <- matrix(icc_lv, ncol=1)
## Add the labels to the results data frame
sim_results <- sim_results[order(sim_results$Condition),]
sim_results <- cbind(sim_results, ss_l1, ss_l2, icc_ov, icc_lv)
## Force the conditions to be factors
sim_results$ss_l1 <- as.factor(sim_results$ss_l1)
sim_results$ss_l2 <- as.factor(sim_results$ss_l2)
sim_results$icc_ov <- as.factor(sim_results$icc_ov)
sim_results$icc_lv <- as.factor(sim_results$icc_lv)
sim_results$Model <- factor(sim_results$Model, levels = c('C','M1','M2','M12'), ordered = T)
## Set up iterators for remainder of script
mods <- c('C', 'M1', 'M2', 'M12')
ests <- c('MLR', 'ULSMV', 'WLSMV')
For the descriptive statistics, I will use dplyr. From here I can easily create matrices that store the results so that I can easily print out the results for summarizing the results. Each will be printed out as a html table and a xtable (latex ready) table.
Convergence will be broken out by Model (C, M1, M2, M12) and estimator (MLR, WLSMV, ULSMV). So, there will 12 smallish tables piecemail tables. Next, one very large table of all the conditions will be exported in latex ready format.
## first table summary table
c <- sim_results %>%
group_by(Model, Estimator) %>%
summarise(Converge=mean(Converge))
# Next make the columns the estimator factor
c <- cbind(c[ c$Model == 'C', 'Converge'],
c[ c$Model == 'M1', 'Converge'],
c[ c$Model == 'M2', 'Converge'],
c[ c$Model == 'M12', 'Converge'])
rownames(c) <- c('MLR', 'ULSMV', 'WLSMV')
colnames(c) <- c('C' ,'M1' ,'M2', 'M12')
## Print results in a nice looking table in HTML
kable(c, format='html') %>%
kable_styling(full_width = T)%>%
add_header_above(c(' '= 1, 'Model Specification'=4))
C | M1 | M2 | M12 | |
---|---|---|---|---|
MLR | 0.9998056 | 0.9819444 | 0.9998056 | 0.9997778 |
ULSMV | 0.9989722 | 0.9737500 | 0.9882500 | 0.9853056 |
WLSMV | 0.9997778 | 0.9645000 | 0.9997500 | 0.9919444 |
## Print out in tex
print(xtable(c, digits = 3), booktabs = T, include.rownames = T)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:47 2019
\begin{table}[ht]
\centering
\begin{tabular}{rrrrr}
\toprule
& C & M1 & M2 & M12 \\
\midrule
MLR & 1.000 & 0.982 & 1.000 & 1.000 \\
ULSMV & 0.999 & 0.974 & 0.988 & 0.985 \\
WLSMV & 1.000 & 0.965 & 1.000 & 0.992 \\
\bottomrule
\end{tabular}
\end{table}
## first table summary table
c <- sim_results %>%
group_by(Model, Estimator, ss_l1, ss_l2) %>%
summarise(Converge=mean(Converge))
# Next make the columns the estimator factor
c1 <- cbind(c[ c$Model == 'C', c('Estimator', 'ss_l1', 'ss_l2', 'Converge')],
c[ c$Model == 'M1', 'Converge'],
c[ c$Model == 'M2', 'Converge'],
c[ c$Model == 'M12', 'Converge'])
colnames(c1) <- c('Estimator', 'SS Level-1', 'SS Level-2', 'C' ,'M1' ,'M2', 'M12')
## Print results in a nice looking table in HTML
kable(c1, format='html') %>%
kable_styling(full_width = T) %>%
add_header_above(c(' '= 3, 'Model Specification'=4))
Estimator | SS Level-1 | SS Level-2 | C | M1 | M2 | M12 |
---|---|---|---|---|---|---|
MLR | 5 | 30 | 1.0000000 | 0.9820000 | 0.9996667 | 0.9996667 |
MLR | 5 | 50 | 1.0000000 | 0.9860000 | 1.0000000 | 1.0000000 |
MLR | 5 | 100 | 1.0000000 | 0.9820000 | 1.0000000 | 1.0000000 |
MLR | 5 | 200 | 0.9996667 | 0.9860000 | 1.0000000 | 1.0000000 |
MLR | 10 | 30 | 1.0000000 | 0.9816667 | 1.0000000 | 0.9993333 |
MLR | 10 | 50 | 1.0000000 | 0.9783333 | 0.9996667 | 1.0000000 |
MLR | 10 | 100 | 1.0000000 | 0.9800000 | 1.0000000 | 1.0000000 |
MLR | 10 | 200 | 0.9996667 | 0.9873333 | 1.0000000 | 1.0000000 |
MLR | 30 | 30 | 1.0000000 | 0.9713333 | 1.0000000 | 0.9990000 |
MLR | 30 | 50 | 0.9996667 | 0.9766667 | 0.9993333 | 0.9993333 |
MLR | 30 | 100 | 0.9993333 | 0.9846667 | 0.9996667 | 1.0000000 |
MLR | 30 | 200 | 0.9993333 | 0.9873333 | 0.9993333 | 1.0000000 |
ULSMV | 5 | 30 | 0.9896667 | 0.9283333 | 0.9576667 | 0.9436667 |
ULSMV | 5 | 50 | 0.9996667 | 0.9576667 | 0.9820000 | 0.9723333 |
ULSMV | 5 | 100 | 1.0000000 | 0.9743333 | 0.9926667 | 0.9896667 |
ULSMV | 5 | 200 | 1.0000000 | 0.9846667 | 0.9993333 | 0.9993333 |
ULSMV | 10 | 30 | 0.9990000 | 0.9603333 | 0.9756667 | 0.9700000 |
ULSMV | 10 | 50 | 0.9996667 | 0.9686667 | 0.9883333 | 0.9883333 |
ULSMV | 10 | 100 | 1.0000000 | 0.9826667 | 0.9956667 | 0.9946667 |
ULSMV | 10 | 200 | 1.0000000 | 0.9880000 | 0.9996667 | 0.9996667 |
ULSMV | 30 | 30 | 0.9996667 | 0.9740000 | 0.9806667 | 0.9806667 |
ULSMV | 30 | 50 | 1.0000000 | 0.9840000 | 0.9920000 | 0.9893333 |
ULSMV | 30 | 100 | 1.0000000 | 0.9896667 | 0.9953333 | 0.9963333 |
ULSMV | 30 | 200 | 1.0000000 | 0.9926667 | 1.0000000 | 0.9996667 |
WLSMV | 5 | 30 | 0.9976667 | 0.9036667 | 0.9973333 | 0.9513333 |
WLSMV | 5 | 50 | 1.0000000 | 0.9413333 | 1.0000000 | 0.9786667 |
WLSMV | 5 | 100 | 1.0000000 | 0.9706667 | 1.0000000 | 0.9983333 |
WLSMV | 5 | 200 | 1.0000000 | 0.9806667 | 1.0000000 | 1.0000000 |
WLSMV | 10 | 30 | 1.0000000 | 0.9446667 | 1.0000000 | 0.9830000 |
WLSMV | 10 | 50 | 0.9996667 | 0.9626667 | 0.9996667 | 0.9983333 |
WLSMV | 10 | 100 | 1.0000000 | 0.9746667 | 1.0000000 | 1.0000000 |
WLSMV | 10 | 200 | 1.0000000 | 0.9860000 | 1.0000000 | 1.0000000 |
WLSMV | 30 | 30 | 1.0000000 | 0.9653333 | 1.0000000 | 0.9936667 |
WLSMV | 30 | 50 | 1.0000000 | 0.9750000 | 1.0000000 | 1.0000000 |
WLSMV | 30 | 100 | 1.0000000 | 0.9846667 | 1.0000000 | 1.0000000 |
WLSMV | 30 | 200 | 1.0000000 | 0.9846667 | 1.0000000 | 1.0000000 |
## Print out in tex
print(xtable(c1, digits = 3), booktabs = T, include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:47 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllrrrr}
\toprule
Estimator & SS Level-1 & SS Level-2 & C & M1 & M2 & M12 \\
\midrule
MLR & 5 & 30 & 1.000 & 0.982 & 1.000 & 1.000 \\
MLR & 5 & 50 & 1.000 & 0.986 & 1.000 & 1.000 \\
MLR & 5 & 100 & 1.000 & 0.982 & 1.000 & 1.000 \\
MLR & 5 & 200 & 1.000 & 0.986 & 1.000 & 1.000 \\
MLR & 10 & 30 & 1.000 & 0.982 & 1.000 & 0.999 \\
MLR & 10 & 50 & 1.000 & 0.978 & 1.000 & 1.000 \\
MLR & 10 & 100 & 1.000 & 0.980 & 1.000 & 1.000 \\
MLR & 10 & 200 & 1.000 & 0.987 & 1.000 & 1.000 \\
MLR & 30 & 30 & 1.000 & 0.971 & 1.000 & 0.999 \\
MLR & 30 & 50 & 1.000 & 0.977 & 0.999 & 0.999 \\
MLR & 30 & 100 & 0.999 & 0.985 & 1.000 & 1.000 \\
MLR & 30 & 200 & 0.999 & 0.987 & 0.999 & 1.000 \\
ULSMV & 5 & 30 & 0.990 & 0.928 & 0.958 & 0.944 \\
ULSMV & 5 & 50 & 1.000 & 0.958 & 0.982 & 0.972 \\
ULSMV & 5 & 100 & 1.000 & 0.974 & 0.993 & 0.990 \\
ULSMV & 5 & 200 & 1.000 & 0.985 & 0.999 & 0.999 \\
ULSMV & 10 & 30 & 0.999 & 0.960 & 0.976 & 0.970 \\
ULSMV & 10 & 50 & 1.000 & 0.969 & 0.988 & 0.988 \\
ULSMV & 10 & 100 & 1.000 & 0.983 & 0.996 & 0.995 \\
ULSMV & 10 & 200 & 1.000 & 0.988 & 1.000 & 1.000 \\
ULSMV & 30 & 30 & 1.000 & 0.974 & 0.981 & 0.981 \\
ULSMV & 30 & 50 & 1.000 & 0.984 & 0.992 & 0.989 \\
ULSMV & 30 & 100 & 1.000 & 0.990 & 0.995 & 0.996 \\
ULSMV & 30 & 200 & 1.000 & 0.993 & 1.000 & 1.000 \\
WLSMV & 5 & 30 & 0.998 & 0.904 & 0.997 & 0.951 \\
WLSMV & 5 & 50 & 1.000 & 0.941 & 1.000 & 0.979 \\
WLSMV & 5 & 100 & 1.000 & 0.971 & 1.000 & 0.998 \\
WLSMV & 5 & 200 & 1.000 & 0.981 & 1.000 & 1.000 \\
WLSMV & 10 & 30 & 1.000 & 0.945 & 1.000 & 0.983 \\
WLSMV & 10 & 50 & 1.000 & 0.963 & 1.000 & 0.998 \\
WLSMV & 10 & 100 & 1.000 & 0.975 & 1.000 & 1.000 \\
WLSMV & 10 & 200 & 1.000 & 0.986 & 1.000 & 1.000 \\
WLSMV & 30 & 30 & 1.000 & 0.965 & 1.000 & 0.994 \\
WLSMV & 30 & 50 & 1.000 & 0.975 & 1.000 & 1.000 \\
WLSMV & 30 & 100 & 1.000 & 0.985 & 1.000 & 1.000 \\
WLSMV & 30 & 200 & 1.000 & 0.985 & 1.000 & 1.000 \\
\bottomrule
\end{tabular}
\end{table}
## first table summary table
c <- sim_results %>%
group_by(Model, Estimator, ss_l1, ss_l2, icc_ov, icc_lv) %>%
summarise(Converge=mean(Converge))
# Next make the columns the estimator factor
c1 <- cbind(c[ c$Model == 'C' & c$Estimator == 'MLR', c('ss_l1', 'ss_l2','icc_ov', 'icc_lv', 'Converge')],
c[ c$Model == 'C' & c$Estimator == 'ULSMV', 'Converge'],
c[ c$Model == 'C' & c$Estimator == 'WLSMV', 'Converge'],
c[ c$Model == 'M1' & c$Estimator == 'MLR', 'Converge'],
c[ c$Model == 'M1' & c$Estimator == 'ULSMV', 'Converge'],
c[ c$Model == 'M1' & c$Estimator == 'WLSMV', 'Converge'],
c[ c$Model == 'M2' & c$Estimator == 'MLR', 'Converge'],
c[ c$Model == 'M2' & c$Estimator == 'ULSMV', 'Converge'],
c[ c$Model == 'M2' & c$Estimator == 'WLSMV', 'Converge'],
c[ c$Model == 'M12' & c$Estimator == 'MLR', 'Converge'],
c[ c$Model == 'M12' & c$Estimator == 'ULSMV', 'Converge'],
c[ c$Model == 'M12' & c$Estimator == 'WLSMV', 'Converge'])
colnames(c1) <- c('SS Level-1', 'SS Level-2', 'ICC-OV', 'ICC-LV', rep(c('MLR', 'ULSMV', 'WLSMV'), 4))
## Print results in a nice looking table in HTML
kable(c1, format='html') %>%
kable_styling(full_width = T) %>%
add_header_above(c(' '= 4, 'Model C'=3, 'Model M1'=3, 'Model M2'=3, 'Model M12'=3))
SS Level-1 | SS Level-2 | ICC-OV | ICC-LV | MLR | ULSMV | WLSMV | MLR | ULSMV | WLSMV | MLR | ULSMV | WLSMV | MLR | ULSMV | WLSMV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 30 | 0.1 | 0.1 | 1.000 | 0.998 | 0.992 | 0.980 | 0.924 | 0.866 | 1.000 | 0.998 | 0.994 | 1.000 | 0.976 | 0.926 |
5 | 30 | 0.1 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.980 | 0.968 | 1.000 | 0.938 | 0.998 | 1.000 | 0.942 | 0.976 |
5 | 30 | 0.3 | 0.1 | 1.000 | 0.998 | 1.000 | 0.972 | 0.892 | 0.842 | 1.000 | 0.994 | 0.996 | 1.000 | 0.952 | 0.938 |
5 | 30 | 0.3 | 0.5 | 1.000 | 1.000 | 1.000 | 0.996 | 0.970 | 0.960 | 1.000 | 0.934 | 1.000 | 1.000 | 0.940 | 0.972 |
5 | 30 | 0.5 | 0.1 | 1.000 | 0.966 | 0.998 | 0.956 | 0.866 | 0.866 | 1.000 | 0.968 | 0.998 | 0.998 | 0.946 | 0.942 |
5 | 30 | 0.5 | 0.5 | 1.000 | 0.976 | 0.996 | 0.988 | 0.938 | 0.920 | 0.998 | 0.914 | 0.998 | 1.000 | 0.906 | 0.954 |
5 | 50 | 0.1 | 0.1 | 1.000 | 1.000 | 1.000 | 0.992 | 0.932 | 0.892 | 1.000 | 1.000 | 1.000 | 1.000 | 0.988 | 0.964 |
5 | 50 | 0.1 | 0.5 | 1.000 | 1.000 | 1.000 | 0.998 | 0.998 | 0.996 | 1.000 | 0.982 | 1.000 | 1.000 | 0.974 | 0.994 |
5 | 50 | 0.3 | 0.1 | 1.000 | 1.000 | 1.000 | 0.972 | 0.916 | 0.904 | 1.000 | 1.000 | 1.000 | 1.000 | 0.988 | 0.974 |
5 | 50 | 0.3 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.996 | 0.990 | 1.000 | 0.966 | 1.000 | 1.000 | 0.964 | 0.980 |
5 | 50 | 0.5 | 0.1 | 1.000 | 0.998 | 1.000 | 0.958 | 0.916 | 0.898 | 1.000 | 1.000 | 1.000 | 1.000 | 0.978 | 0.976 |
5 | 50 | 0.5 | 0.5 | 1.000 | 1.000 | 1.000 | 0.996 | 0.988 | 0.968 | 1.000 | 0.944 | 1.000 | 1.000 | 0.942 | 0.984 |
5 | 100 | 0.1 | 0.1 | 1.000 | 1.000 | 1.000 | 0.982 | 0.966 | 0.954 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.996 |
5 | 100 | 0.1 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 0.996 | 1.000 |
5 | 100 | 0.3 | 0.1 | 1.000 | 1.000 | 1.000 | 0.972 | 0.942 | 0.946 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
5 | 100 | 0.3 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.988 | 1.000 | 1.000 | 0.988 | 1.000 |
5 | 100 | 0.5 | 0.1 | 1.000 | 1.000 | 1.000 | 0.942 | 0.938 | 0.932 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 |
5 | 100 | 0.5 | 0.5 | 1.000 | 1.000 | 1.000 | 0.996 | 1.000 | 0.992 | 1.000 | 0.970 | 1.000 | 1.000 | 0.958 | 0.994 |
5 | 200 | 0.1 | 0.1 | 1.000 | 1.000 | 1.000 | 0.996 | 0.986 | 0.984 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
5 | 200 | 0.1 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
5 | 200 | 0.3 | 0.1 | 1.000 | 1.000 | 1.000 | 0.978 | 0.960 | 0.954 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
5 | 200 | 0.3 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
5 | 200 | 0.5 | 0.1 | 1.000 | 1.000 | 1.000 | 0.942 | 0.962 | 0.946 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
5 | 200 | 0.5 | 0.5 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.996 | 1.000 | 1.000 | 0.996 | 1.000 |
10 | 30 | 0.1 | 0.1 | 1.000 | 1.000 | 1.000 | 0.992 | 0.948 | 0.920 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990 | 0.982 |
10 | 30 | 0.1 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.994 | 1.000 | 0.980 | 1.000 | 1.000 | 0.970 | 0.994 |
10 | 30 | 0.3 | 0.1 | 1.000 | 1.000 | 1.000 | 0.974 | 0.898 | 0.900 | 1.000 | 1.000 | 1.000 | 0.998 | 0.990 | 0.986 |
10 | 30 | 0.3 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.996 | 0.996 | 1.000 | 0.940 | 1.000 | 1.000 | 0.952 | 0.992 |
10 | 30 | 0.5 | 0.1 | 1.000 | 0.998 | 1.000 | 0.932 | 0.938 | 0.880 | 1.000 | 0.990 | 1.000 | 1.000 | 0.980 | 0.964 |
10 | 30 | 0.5 | 0.5 | 1.000 | 0.996 | 1.000 | 0.992 | 0.984 | 0.978 | 1.000 | 0.944 | 1.000 | 0.998 | 0.938 | 0.980 |
10 | 50 | 0.1 | 0.1 | 1.000 | 1.000 | 1.000 | 0.990 | 0.956 | 0.964 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.998 |
10 | 50 | 0.1 | 0.5 | 1.000 | 0.998 | 0.998 | 1.000 | 0.998 | 0.998 | 1.000 | 0.992 | 0.998 | 1.000 | 0.994 | 0.998 |
10 | 50 | 0.3 | 0.1 | 1.000 | 1.000 | 1.000 | 0.954 | 0.936 | 0.932 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
10 | 50 | 0.3 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.982 | 1.000 | 1.000 | 0.986 | 1.000 |
10 | 50 | 0.5 | 0.1 | 1.000 | 1.000 | 1.000 | 0.926 | 0.932 | 0.884 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 |
10 | 50 | 0.5 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990 | 0.998 | 0.998 | 0.956 | 1.000 | 1.000 | 0.952 | 0.996 |
10 | 100 | 0.1 | 0.1 | 1.000 | 1.000 | 1.000 | 0.992 | 0.980 | 0.984 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
10 | 100 | 0.1 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 0.998 | 1.000 |
10 | 100 | 0.3 | 0.1 | 1.000 | 1.000 | 1.000 | 0.964 | 0.958 | 0.946 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
10 | 100 | 0.3 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 0.998 | 1.000 |
10 | 100 | 0.5 | 0.1 | 1.000 | 1.000 | 1.000 | 0.924 | 0.958 | 0.918 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
10 | 100 | 0.5 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.978 | 1.000 | 1.000 | 0.972 | 1.000 |
10 | 200 | 0.1 | 0.1 | 1.000 | 1.000 | 1.000 | 0.992 | 1.000 | 0.996 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
10 | 200 | 0.1 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
10 | 200 | 0.3 | 0.1 | 0.998 | 1.000 | 1.000 | 0.992 | 0.976 | 0.980 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
10 | 200 | 0.3 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
10 | 200 | 0.5 | 0.1 | 1.000 | 1.000 | 1.000 | 0.940 | 0.952 | 0.940 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
10 | 200 | 0.5 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 0.998 | 1.000 |
30 | 30 | 0.1 | 0.1 | 1.000 | 1.000 | 1.000 | 0.984 | 0.982 | 0.982 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 30 | 0.1 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.988 | 1.000 | 1.000 | 0.992 | 1.000 |
30 | 30 | 0.3 | 0.1 | 1.000 | 1.000 | 1.000 | 0.956 | 0.940 | 0.934 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 |
30 | 30 | 0.3 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 1.000 | 0.962 | 1.000 | 0.994 | 0.968 | 0.994 |
30 | 30 | 0.5 | 0.1 | 1.000 | 1.000 | 1.000 | 0.894 | 0.932 | 0.902 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.982 |
30 | 30 | 0.5 | 0.5 | 1.000 | 0.998 | 1.000 | 0.994 | 0.990 | 0.980 | 1.000 | 0.934 | 1.000 | 1.000 | 0.924 | 0.988 |
30 | 50 | 0.1 | 0.1 | 1.000 | 1.000 | 1.000 | 0.990 | 0.992 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 50 | 0.1 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.992 | 1.000 | 1.000 | 0.992 | 1.000 |
30 | 50 | 0.3 | 0.1 | 1.000 | 1.000 | 1.000 | 0.966 | 0.964 | 0.946 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 50 | 0.3 | 0.5 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.996 | 0.988 | 1.000 | 0.996 | 0.982 | 1.000 |
30 | 50 | 0.5 | 0.1 | 1.000 | 1.000 | 1.000 | 0.908 | 0.948 | 0.914 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 50 | 0.5 | 0.5 | 1.000 | 1.000 | 1.000 | 0.996 | 1.000 | 0.998 | 1.000 | 0.972 | 1.000 | 1.000 | 0.962 | 1.000 |
30 | 100 | 0.1 | 0.1 | 1.000 | 1.000 | 1.000 | 0.994 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 100 | 0.1 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 100 | 0.3 | 0.1 | 1.000 | 1.000 | 1.000 | 0.986 | 0.984 | 0.974 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 100 | 0.3 | 0.5 | 0.996 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.992 | 1.000 | 1.000 | 0.992 | 1.000 |
30 | 100 | 0.5 | 0.1 | 1.000 | 1.000 | 1.000 | 0.928 | 0.954 | 0.936 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 100 | 0.5 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.982 | 1.000 | 1.000 | 0.986 | 1.000 |
30 | 200 | 0.1 | 0.1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 200 | 0.1 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 200 | 0.3 | 0.1 | 1.000 | 1.000 | 1.000 | 0.994 | 0.986 | 0.982 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 200 | 0.3 | 0.5 | 0.996 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 0.996 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 200 | 0.5 | 0.1 | 1.000 | 1.000 | 1.000 | 0.932 | 0.972 | 0.926 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
30 | 200 | 0.5 | 0.5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 |
## Print out in tex
print(xtable(c1, digits = 3), booktabs = T, include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:47 2019
\begin{table}[ht]
\centering
\begin{tabular}{llllrrrrrrrrrrrr}
\toprule
SS Level-1 & SS Level-2 & ICC-OV & ICC-LV & MLR & ULSMV & WLSMV & MLR & ULSMV & WLSMV & MLR & ULSMV & WLSMV & MLR & ULSMV & WLSMV \\
\midrule
5 & 30 & 0.1 & 0.1 & 1.000 & 0.998 & 0.992 & 0.980 & 0.924 & 0.866 & 1.000 & 0.998 & 0.994 & 1.000 & 0.976 & 0.926 \\
5 & 30 & 0.1 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 0.980 & 0.968 & 1.000 & 0.938 & 0.998 & 1.000 & 0.942 & 0.976 \\
5 & 30 & 0.3 & 0.1 & 1.000 & 0.998 & 1.000 & 0.972 & 0.892 & 0.842 & 1.000 & 0.994 & 0.996 & 1.000 & 0.952 & 0.938 \\
5 & 30 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 0.996 & 0.970 & 0.960 & 1.000 & 0.934 & 1.000 & 1.000 & 0.940 & 0.972 \\
5 & 30 & 0.5 & 0.1 & 1.000 & 0.966 & 0.998 & 0.956 & 0.866 & 0.866 & 1.000 & 0.968 & 0.998 & 0.998 & 0.946 & 0.942 \\
5 & 30 & 0.5 & 0.5 & 1.000 & 0.976 & 0.996 & 0.988 & 0.938 & 0.920 & 0.998 & 0.914 & 0.998 & 1.000 & 0.906 & 0.954 \\
5 & 50 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.992 & 0.932 & 0.892 & 1.000 & 1.000 & 1.000 & 1.000 & 0.988 & 0.964 \\
5 & 50 & 0.1 & 0.5 & 1.000 & 1.000 & 1.000 & 0.998 & 0.998 & 0.996 & 1.000 & 0.982 & 1.000 & 1.000 & 0.974 & 0.994 \\
5 & 50 & 0.3 & 0.1 & 1.000 & 1.000 & 1.000 & 0.972 & 0.916 & 0.904 & 1.000 & 1.000 & 1.000 & 1.000 & 0.988 & 0.974 \\
5 & 50 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 0.996 & 0.990 & 1.000 & 0.966 & 1.000 & 1.000 & 0.964 & 0.980 \\
5 & 50 & 0.5 & 0.1 & 1.000 & 0.998 & 1.000 & 0.958 & 0.916 & 0.898 & 1.000 & 1.000 & 1.000 & 1.000 & 0.978 & 0.976 \\
5 & 50 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 0.996 & 0.988 & 0.968 & 1.000 & 0.944 & 1.000 & 1.000 & 0.942 & 0.984 \\
5 & 100 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.982 & 0.966 & 0.954 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.996 \\
5 & 100 & 0.1 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 1.000 & 1.000 & 0.996 & 1.000 \\
5 & 100 & 0.3 & 0.1 & 1.000 & 1.000 & 1.000 & 0.972 & 0.942 & 0.946 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
5 & 100 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.988 & 1.000 & 1.000 & 0.988 & 1.000 \\
5 & 100 & 0.5 & 0.1 & 1.000 & 1.000 & 1.000 & 0.942 & 0.938 & 0.932 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 1.000 \\
5 & 100 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 0.996 & 1.000 & 0.992 & 1.000 & 0.970 & 1.000 & 1.000 & 0.958 & 0.994 \\
5 & 200 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.996 & 0.986 & 0.984 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
5 & 200 & 0.1 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
5 & 200 & 0.3 & 0.1 & 1.000 & 1.000 & 1.000 & 0.978 & 0.960 & 0.954 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
5 & 200 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
5 & 200 & 0.5 & 0.1 & 1.000 & 1.000 & 1.000 & 0.942 & 0.962 & 0.946 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
5 & 200 & 0.5 & 0.5 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.996 & 1.000 & 1.000 & 0.996 & 1.000 \\
10 & 30 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.992 & 0.948 & 0.920 & 1.000 & 1.000 & 1.000 & 1.000 & 0.990 & 0.982 \\
10 & 30 & 0.1 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.994 & 1.000 & 0.980 & 1.000 & 1.000 & 0.970 & 0.994 \\
10 & 30 & 0.3 & 0.1 & 1.000 & 1.000 & 1.000 & 0.974 & 0.898 & 0.900 & 1.000 & 1.000 & 1.000 & 0.998 & 0.990 & 0.986 \\
10 & 30 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 0.996 & 0.996 & 1.000 & 0.940 & 1.000 & 1.000 & 0.952 & 0.992 \\
10 & 30 & 0.5 & 0.1 & 1.000 & 0.998 & 1.000 & 0.932 & 0.938 & 0.880 & 1.000 & 0.990 & 1.000 & 1.000 & 0.980 & 0.964 \\
10 & 30 & 0.5 & 0.5 & 1.000 & 0.996 & 1.000 & 0.992 & 0.984 & 0.978 & 1.000 & 0.944 & 1.000 & 0.998 & 0.938 & 0.980 \\
10 & 50 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.990 & 0.956 & 0.964 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.998 \\
10 & 50 & 0.1 & 0.5 & 1.000 & 0.998 & 0.998 & 1.000 & 0.998 & 0.998 & 1.000 & 0.992 & 0.998 & 1.000 & 0.994 & 0.998 \\
10 & 50 & 0.3 & 0.1 & 1.000 & 1.000 & 1.000 & 0.954 & 0.936 & 0.932 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
10 & 50 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.982 & 1.000 & 1.000 & 0.986 & 1.000 \\
10 & 50 & 0.5 & 0.1 & 1.000 & 1.000 & 1.000 & 0.926 & 0.932 & 0.884 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 \\
10 & 50 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 0.990 & 0.998 & 0.998 & 0.956 & 1.000 & 1.000 & 0.952 & 0.996 \\
10 & 100 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.992 & 0.980 & 0.984 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
10 & 100 & 0.1 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 1.000 & 1.000 & 0.998 & 1.000 \\
10 & 100 & 0.3 & 0.1 & 1.000 & 1.000 & 1.000 & 0.964 & 0.958 & 0.946 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
10 & 100 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 1.000 & 1.000 & 0.998 & 1.000 \\
10 & 100 & 0.5 & 0.1 & 1.000 & 1.000 & 1.000 & 0.924 & 0.958 & 0.918 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
10 & 100 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.978 & 1.000 & 1.000 & 0.972 & 1.000 \\
10 & 200 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.992 & 1.000 & 0.996 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
10 & 200 & 0.1 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
10 & 200 & 0.3 & 0.1 & 0.998 & 1.000 & 1.000 & 0.992 & 0.976 & 0.980 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
10 & 200 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
10 & 200 & 0.5 & 0.1 & 1.000 & 1.000 & 1.000 & 0.940 & 0.952 & 0.940 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
10 & 200 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 1.000 & 1.000 & 0.998 & 1.000 \\
30 & 30 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.984 & 0.982 & 0.982 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 30 & 0.1 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.988 & 1.000 & 1.000 & 0.992 & 1.000 \\
30 & 30 & 0.3 & 0.1 & 1.000 & 1.000 & 1.000 & 0.956 & 0.940 & 0.934 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 \\
30 & 30 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.994 & 1.000 & 0.962 & 1.000 & 0.994 & 0.968 & 0.994 \\
30 & 30 & 0.5 & 0.1 & 1.000 & 1.000 & 1.000 & 0.894 & 0.932 & 0.902 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.982 \\
30 & 30 & 0.5 & 0.5 & 1.000 & 0.998 & 1.000 & 0.994 & 0.990 & 0.980 & 1.000 & 0.934 & 1.000 & 1.000 & 0.924 & 0.988 \\
30 & 50 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.990 & 0.992 & 0.992 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 50 & 0.1 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.992 & 1.000 & 1.000 & 0.992 & 1.000 \\
30 & 50 & 0.3 & 0.1 & 1.000 & 1.000 & 1.000 & 0.966 & 0.964 & 0.946 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 50 & 0.3 & 0.5 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.996 & 0.988 & 1.000 & 0.996 & 0.982 & 1.000 \\
30 & 50 & 0.5 & 0.1 & 1.000 & 1.000 & 1.000 & 0.908 & 0.948 & 0.914 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 50 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 0.996 & 1.000 & 0.998 & 1.000 & 0.972 & 1.000 & 1.000 & 0.962 & 1.000 \\
30 & 100 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.994 & 1.000 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 100 & 0.1 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 100 & 0.3 & 0.1 & 1.000 & 1.000 & 1.000 & 0.986 & 0.984 & 0.974 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 100 & 0.3 & 0.5 & 0.996 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.992 & 1.000 & 1.000 & 0.992 & 1.000 \\
30 & 100 & 0.5 & 0.1 & 1.000 & 1.000 & 1.000 & 0.928 & 0.954 & 0.936 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 100 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.982 & 1.000 & 1.000 & 0.986 & 1.000 \\
30 & 200 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 200 & 0.1 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 200 & 0.3 & 0.1 & 1.000 & 1.000 & 1.000 & 0.994 & 0.986 & 0.982 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 200 & 0.3 & 0.5 & 0.996 & 1.000 & 1.000 & 0.998 & 1.000 & 1.000 & 0.996 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 200 & 0.5 & 0.1 & 1.000 & 1.000 & 1.000 & 0.932 & 0.972 & 0.926 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 200 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 1.000 \\
\bottomrule
\end{tabular}
\end{table}
Admissibility rates are first subsetted to the converged models. So, the rates may seem misleading and not directly relatable across all conditions and models due to differences in convergence rates.
c.sim_results <- filter(sim_results, Converge == 1)
## first table summary table
c <- c.sim_results %>%
group_by(Model, Estimator) %>%
summarise(Admissible=mean(Admissible))
# Next make the columns the estimator factor
c1 <- cbind(c[ c$Model == 'C', 'Admissible'],
c[ c$Model == 'M1', 'Admissible'],
c[ c$Model == 'M2', 'Admissible'],
c[ c$Model == 'M12', 'Admissible'])
rownames(c1) <- c('MLR', 'ULSMV', 'WLSMV')
colnames(c1) <- c('C' ,'M1' ,'M2', 'M12')
## Print results in a nice looking table in HTML
kable(c1, format='html') %>%
kable_styling(full_width = T) %>%
add_header_above(c(' '= 1, 'Model Specification'=4))
C | M1 | M2 | M12 | |
---|---|---|---|---|
MLR | 0.8339955 | 0.7310608 | 0.8316339 | 0.8299344 |
ULSMV | 0.7650919 | 0.6100699 | 0.7719594 | 0.6409179 |
WLSMV | 0.7217437 | 0.5238466 | 0.7334611 | 0.6174741 |
## Print out in tex
print(xtable(c1, digits = 3), booktabs = T, include.rownames = T)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:48 2019
\begin{table}[ht]
\centering
\begin{tabular}{rrrrr}
\toprule
& C & M1 & M2 & M12 \\
\midrule
MLR & 0.834 & 0.731 & 0.832 & 0.830 \\
ULSMV & 0.765 & 0.610 & 0.772 & 0.641 \\
WLSMV & 0.722 & 0.524 & 0.733 & 0.617 \\
\bottomrule
\end{tabular}
\end{table}
## first table summary table
c <- c.sim_results %>%
group_by(Model, Estimator, ss_l1, ss_l2) %>%
summarise(Admissible=mean(Admissible))
# Next make the columns the estimator factor
c1 <- cbind(c[ c$Model == 'C', c('Estimator', 'ss_l1', 'ss_l2', 'Admissible')],
c[ c$Model == 'M1', 'Admissible'],
c[ c$Model == 'M2', 'Admissible'],
c[ c$Model == 'M12', 'Admissible'])
colnames(c1) <- c('Estimation', 'SS Level-1', 'SS Level-2', 'C' ,'M1' ,'M2', 'M12')
## Print results in a nice looking table in HTML
kable(c1, format='html') %>%
kable_styling(full_width = T) %>%
add_header_above(c(' '= 3, 'Model Specification'=4))
Estimation | SS Level-1 | SS Level-2 | C | M1 | M2 | M12 |
---|---|---|---|---|---|---|
MLR | 5 | 30 | 0.5753333 | 0.4680923 | 0.5728576 | 0.5475158 |
MLR | 5 | 50 | 0.6773333 | 0.5655849 | 0.6833333 | 0.6670000 |
MLR | 5 | 100 | 0.8056667 | 0.6096402 | 0.8023333 | 0.8113333 |
MLR | 5 | 200 | 0.9236412 | 0.6582150 | 0.9153333 | 0.9263333 |
MLR | 10 | 30 | 0.6846667 | 0.5935484 | 0.6846667 | 0.6771181 |
MLR | 10 | 50 | 0.7956667 | 0.6838160 | 0.7969323 | 0.7976667 |
MLR | 10 | 100 | 0.9200000 | 0.7979592 | 0.9093333 | 0.9163333 |
MLR | 10 | 200 | 0.9633211 | 0.8706955 | 0.9596667 | 0.9606667 |
MLR | 30 | 30 | 0.8383333 | 0.7700755 | 0.8406667 | 0.8398398 |
MLR | 30 | 50 | 0.9019673 | 0.8621160 | 0.8972648 | 0.8962642 |
MLR | 30 | 100 | 0.9462975 | 0.9343263 | 0.9466489 | 0.9473333 |
MLR | 30 | 200 | 0.9759840 | 0.9581364 | 0.9706471 | 0.9716667 |
ULSMV | 5 | 30 | 0.4051869 | 0.3605027 | 0.3992342 | 0.3705404 |
ULSMV | 5 | 50 | 0.5318439 | 0.4667595 | 0.5346232 | 0.4809736 |
ULSMV | 5 | 100 | 0.6920000 | 0.5737256 | 0.7051713 | 0.6039070 |
ULSMV | 5 | 200 | 0.8753333 | 0.6828030 | 0.8969313 | 0.7311541 |
ULSMV | 10 | 30 | 0.5735736 | 0.4946199 | 0.5872907 | 0.5113402 |
ULSMV | 10 | 50 | 0.7075692 | 0.5626290 | 0.7170320 | 0.6037099 |
ULSMV | 10 | 100 | 0.8730000 | 0.6682497 | 0.8865082 | 0.7114611 |
ULSMV | 10 | 200 | 0.9576667 | 0.7378543 | 0.9589863 | 0.7712571 |
ULSMV | 30 | 30 | 0.7622541 | 0.5773443 | 0.7705642 | 0.6284840 |
ULSMV | 30 | 50 | 0.8796667 | 0.6663279 | 0.8716398 | 0.6987871 |
ULSMV | 30 | 100 | 0.9446667 | 0.7329067 | 0.9413932 | 0.7604550 |
ULSMV | 30 | 200 | 0.9743333 | 0.7723304 | 0.9706667 | 0.7959320 |
WLSMV | 5 | 30 | 0.3558303 | 0.3142752 | 0.3606283 | 0.3346181 |
WLSMV | 5 | 50 | 0.4700000 | 0.3891643 | 0.4976667 | 0.4288147 |
WLSMV | 5 | 100 | 0.6646667 | 0.5078984 | 0.6813333 | 0.5736227 |
WLSMV | 5 | 200 | 0.8486667 | 0.6101292 | 0.8676667 | 0.7156667 |
WLSMV | 10 | 30 | 0.5080000 | 0.4121383 | 0.5296667 | 0.4659207 |
WLSMV | 10 | 50 | 0.6605535 | 0.5031163 | 0.6735579 | 0.5826377 |
WLSMV | 10 | 100 | 0.8243333 | 0.5704514 | 0.8400000 | 0.6970000 |
WLSMV | 10 | 200 | 0.9356667 | 0.6433401 | 0.9460000 | 0.7650000 |
WLSMV | 30 | 30 | 0.6883333 | 0.4709945 | 0.7013333 | 0.6014760 |
WLSMV | 30 | 50 | 0.8196667 | 0.5678632 | 0.8186667 | 0.6866667 |
WLSMV | 30 | 100 | 0.9110000 | 0.6205146 | 0.9143333 | 0.7586667 |
WLSMV | 30 | 200 | 0.9733333 | 0.6479350 | 0.9696667 | 0.7790000 |
## Print out in tex
print(xtable(c1, digits = 3), booktabs = T, include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:48 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllrrrr}
\toprule
Estimation & SS Level-1 & SS Level-2 & C & M1 & M2 & M12 \\
\midrule
MLR & 5 & 30 & 0.575 & 0.468 & 0.573 & 0.548 \\
MLR & 5 & 50 & 0.677 & 0.566 & 0.683 & 0.667 \\
MLR & 5 & 100 & 0.806 & 0.610 & 0.802 & 0.811 \\
MLR & 5 & 200 & 0.924 & 0.658 & 0.915 & 0.926 \\
MLR & 10 & 30 & 0.685 & 0.594 & 0.685 & 0.677 \\
MLR & 10 & 50 & 0.796 & 0.684 & 0.797 & 0.798 \\
MLR & 10 & 100 & 0.920 & 0.798 & 0.909 & 0.916 \\
MLR & 10 & 200 & 0.963 & 0.871 & 0.960 & 0.961 \\
MLR & 30 & 30 & 0.838 & 0.770 & 0.841 & 0.840 \\
MLR & 30 & 50 & 0.902 & 0.862 & 0.897 & 0.896 \\
MLR & 30 & 100 & 0.946 & 0.934 & 0.947 & 0.947 \\
MLR & 30 & 200 & 0.976 & 0.958 & 0.971 & 0.972 \\
ULSMV & 5 & 30 & 0.405 & 0.361 & 0.399 & 0.371 \\
ULSMV & 5 & 50 & 0.532 & 0.467 & 0.535 & 0.481 \\
ULSMV & 5 & 100 & 0.692 & 0.574 & 0.705 & 0.604 \\
ULSMV & 5 & 200 & 0.875 & 0.683 & 0.897 & 0.731 \\
ULSMV & 10 & 30 & 0.574 & 0.495 & 0.587 & 0.511 \\
ULSMV & 10 & 50 & 0.708 & 0.563 & 0.717 & 0.604 \\
ULSMV & 10 & 100 & 0.873 & 0.668 & 0.887 & 0.711 \\
ULSMV & 10 & 200 & 0.958 & 0.738 & 0.959 & 0.771 \\
ULSMV & 30 & 30 & 0.762 & 0.577 & 0.771 & 0.628 \\
ULSMV & 30 & 50 & 0.880 & 0.666 & 0.872 & 0.699 \\
ULSMV & 30 & 100 & 0.945 & 0.733 & 0.941 & 0.760 \\
ULSMV & 30 & 200 & 0.974 & 0.772 & 0.971 & 0.796 \\
WLSMV & 5 & 30 & 0.356 & 0.314 & 0.361 & 0.335 \\
WLSMV & 5 & 50 & 0.470 & 0.389 & 0.498 & 0.429 \\
WLSMV & 5 & 100 & 0.665 & 0.508 & 0.681 & 0.574 \\
WLSMV & 5 & 200 & 0.849 & 0.610 & 0.868 & 0.716 \\
WLSMV & 10 & 30 & 0.508 & 0.412 & 0.530 & 0.466 \\
WLSMV & 10 & 50 & 0.661 & 0.503 & 0.674 & 0.583 \\
WLSMV & 10 & 100 & 0.824 & 0.570 & 0.840 & 0.697 \\
WLSMV & 10 & 200 & 0.936 & 0.643 & 0.946 & 0.765 \\
WLSMV & 30 & 30 & 0.688 & 0.471 & 0.701 & 0.601 \\
WLSMV & 30 & 50 & 0.820 & 0.568 & 0.819 & 0.687 \\
WLSMV & 30 & 100 & 0.911 & 0.621 & 0.914 & 0.759 \\
WLSMV & 30 & 200 & 0.973 & 0.648 & 0.970 & 0.779 \\
\bottomrule
\end{tabular}
\end{table}
## first table summary table
c <- c.sim_results %>%
group_by(Model, Estimator, ss_l1, ss_l2, icc_ov, icc_lv) %>%
summarise(Admissible=mean(Admissible))
# Next make the columns the estimator factor
c1 <- cbind(c[ c$Model == 'C' & c$Estimator == 'MLR', c('ss_l1', 'ss_l2','icc_ov', 'icc_lv', 'Admissible')],
c[ c$Model == 'C' & c$Estimator == 'ULSMV', 'Admissible'],
c[ c$Model == 'C' & c$Estimator == 'WLSMV', 'Admissible'],
c[ c$Model == 'M1' & c$Estimator == 'MLR', 'Admissible'],
c[ c$Model == 'M1' & c$Estimator == 'ULSMV', 'Admissible'],
c[ c$Model == 'M1' & c$Estimator == 'WLSMV', 'Admissible'],
c[ c$Model == 'M2' & c$Estimator == 'MLR', 'Admissible'],
c[ c$Model == 'M2' & c$Estimator == 'ULSMV', 'Admissible'],
c[ c$Model == 'M2' & c$Estimator == 'WLSMV', 'Admissible'],
c[ c$Model == 'M12' & c$Estimator == 'MLR', 'Admissible'],
c[ c$Model == 'M12' & c$Estimator == 'ULSMV', 'Admissible'],
c[ c$Model == 'M12' & c$Estimator == 'WLSMV', 'Admissible'])
colnames(c1) <- c('SS Level-1', 'SS Level-2', 'ICC-OV', 'ICC-LV', rep(c('MLR', 'ULSMV', 'WLSMV'), 4))
## Print results in a nice looking table in HTML
kable(c1, format='html') %>%
kable_styling(full_width = T) %>%
add_header_above(c(' '= 4, 'Model C'=3, 'Model M1'=3, 'Model M2'=3, 'Model M12'=3))
SS Level-1 | SS Level-2 | ICC-OV | ICC-LV | MLR | ULSMV | WLSMV | MLR | ULSMV | WLSMV | MLR | ULSMV | WLSMV | MLR | ULSMV | WLSMV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 30 | 0.1 | 0.1 | 0.5220000 | 0.0300601 | 0.0483871 | 0.3265306 | 0.0411255 | 0.0461894 | 0.4960000 | 0.0460922 | 0.0583501 | 0.5100000 | 0.0409836 | 0.0669546 |
5 | 30 | 0.1 | 0.5 | 0.3720000 | 0.0360000 | 0.0240000 | 0.2660000 | 0.0122449 | 0.0082645 | 0.3820000 | 0.0511727 | 0.0440882 | 0.3380000 | 0.0233546 | 0.0389344 |
5 | 30 | 0.3 | 0.1 | 0.4680000 | 0.3567134 | 0.2500000 | 0.4012346 | 0.3766816 | 0.2707838 | 0.4380000 | 0.3682093 | 0.2369478 | 0.4100000 | 0.3634454 | 0.2494670 |
5 | 30 | 0.3 | 0.5 | 0.7920000 | 0.7300000 | 0.6740000 | 0.6285141 | 0.5422680 | 0.4708333 | 0.8220000 | 0.7087794 | 0.6940000 | 0.7640000 | 0.6212766 | 0.5884774 |
5 | 30 | 0.5 | 0.1 | 0.3600000 | 0.3354037 | 0.2244489 | 0.3995816 | 0.3741339 | 0.2933025 | 0.3540000 | 0.3409091 | 0.2104208 | 0.3446894 | 0.3234672 | 0.2016985 |
5 | 30 | 0.5 | 0.5 | 0.9380000 | 0.9528689 | 0.9136546 | 0.7834008 | 0.8230277 | 0.7847826 | 0.9458918 | 0.9212254 | 0.9178357 | 0.9180000 | 0.8830022 | 0.8532495 |
5 | 50 | 0.1 | 0.1 | 0.5600000 | 0.1380000 | 0.1460000 | 0.3024194 | 0.1158798 | 0.1412556 | 0.5620000 | 0.1540000 | 0.1700000 | 0.5520000 | 0.1497976 | 0.1618257 |
5 | 50 | 0.1 | 0.5 | 0.5000000 | 0.0920000 | 0.0520000 | 0.3206413 | 0.0220441 | 0.0060241 | 0.5500000 | 0.1446029 | 0.0940000 | 0.4940000 | 0.0657084 | 0.0724346 |
5 | 50 | 0.3 | 0.1 | 0.5480000 | 0.5420000 | 0.4040000 | 0.5082305 | 0.5327511 | 0.4225664 | 0.5380000 | 0.5500000 | 0.4240000 | 0.5480000 | 0.4979757 | 0.4106776 |
5 | 50 | 0.3 | 0.5 | 0.9720000 | 0.9380000 | 0.8680000 | 0.8180000 | 0.6606426 | 0.4949495 | 0.9780000 | 0.9192547 | 0.9100000 | 0.9300000 | 0.7510373 | 0.6489796 |
5 | 50 | 0.5 | 0.1 | 0.4880000 | 0.4829659 | 0.3580000 | 0.5240084 | 0.5371179 | 0.4387528 | 0.4760000 | 0.4860000 | 0.3920000 | 0.4920000 | 0.4969325 | 0.3668033 |
5 | 50 | 0.5 | 0.5 | 0.9960000 | 0.9980000 | 0.9920000 | 0.9156627 | 0.9251012 | 0.8264463 | 0.9960000 | 0.9851695 | 0.9960000 | 0.9860000 | 0.9469214 | 0.9105691 |
5 | 100 | 0.1 | 0.1 | 0.7520000 | 0.4940000 | 0.5560000 | 0.2708758 | 0.3933747 | 0.4213836 | 0.7640000 | 0.5140000 | 0.5500000 | 0.7520000 | 0.4529058 | 0.4618474 |
5 | 100 | 0.1 | 0.5 | 0.7260000 | 0.3140000 | 0.2380000 | 0.2740000 | 0.0260000 | 0.0100000 | 0.7720000 | 0.4268537 | 0.3280000 | 0.7760000 | 0.0662651 | 0.1080000 |
5 | 100 | 0.3 | 0.1 | 0.7600000 | 0.7580000 | 0.6820000 | 0.6111111 | 0.7091295 | 0.6575053 | 0.7020000 | 0.7360000 | 0.6820000 | 0.7460000 | 0.7300000 | 0.6660000 |
5 | 100 | 0.3 | 0.5 | 0.9960000 | 0.9900000 | 0.9820000 | 0.9060000 | 0.7080000 | 0.4620000 | 1.0000000 | 0.9878543 | 0.9960000 | 0.9880000 | 0.7955466 | 0.7080000 |
5 | 100 | 0.5 | 0.1 | 0.6000000 | 0.5960000 | 0.5320000 | 0.5987261 | 0.6226013 | 0.5751073 | 0.5760000 | 0.5820000 | 0.5320000 | 0.6080000 | 0.5991984 | 0.5320000 |
5 | 100 | 0.5 | 0.5 | 1.0000000 | 1.0000000 | 0.9980000 | 0.9919679 | 0.9880000 | 0.9334677 | 1.0000000 | 0.9958763 | 1.0000000 | 0.9980000 | 0.9958246 | 0.9678068 |
5 | 200 | 0.1 | 0.1 | 0.9520000 | 0.8900000 | 0.9000000 | 0.2429719 | 0.6835700 | 0.7195122 | 0.9260000 | 0.9200000 | 0.9200000 | 0.9360000 | 0.8200000 | 0.8360000 |
5 | 200 | 0.1 | 0.5 | 0.9560000 | 0.7280000 | 0.6140000 | 0.2500000 | 0.0020000 | 0.0000000 | 0.9740000 | 0.8200000 | 0.7160000 | 0.9820000 | 0.0680000 | 0.1380000 |
5 | 200 | 0.3 | 0.1 | 0.8900000 | 0.8800000 | 0.8620000 | 0.7137014 | 0.8708333 | 0.8553459 | 0.8600000 | 0.8880000 | 0.8500000 | 0.8860000 | 0.8800000 | 0.8400000 |
5 | 200 | 0.3 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9900000 | 0.8220000 | 0.4440000 | 1.0000000 | 0.9980000 | 1.0000000 | 1.0000000 | 0.8640000 | 0.7780000 |
5 | 200 | 0.5 | 0.1 | 0.7440000 | 0.7540000 | 0.7160000 | 0.7579618 | 0.7276507 | 0.6976744 | 0.7320000 | 0.7560000 | 0.7200000 | 0.7540000 | 0.7560000 | 0.7060000 |
5 | 200 | 0.5 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9620000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9960000 |
10 | 30 | 0.1 | 0.1 | 0.6080000 | 0.3520000 | 0.3640000 | 0.3850806 | 0.3248945 | 0.3130435 | 0.5800000 | 0.3720000 | 0.3780000 | 0.6020000 | 0.3515152 | 0.3706721 |
10 | 30 | 0.1 | 0.5 | 0.4940000 | 0.1340000 | 0.0800000 | 0.3640000 | 0.0180361 | 0.0100604 | 0.5300000 | 0.2061224 | 0.1180000 | 0.5280000 | 0.0618557 | 0.0643863 |
10 | 30 | 0.3 | 0.1 | 0.5840000 | 0.5740000 | 0.4180000 | 0.5564682 | 0.5701559 | 0.4355556 | 0.5740000 | 0.5840000 | 0.4100000 | 0.5911824 | 0.5595960 | 0.3914807 |
10 | 30 | 0.3 | 0.5 | 0.9880000 | 0.9520000 | 0.8540000 | 0.8780000 | 0.6485944 | 0.4939759 | 0.9860000 | 0.9531915 | 0.9080000 | 0.9460000 | 0.7415966 | 0.6895161 |
10 | 30 | 0.5 | 0.1 | 0.4460000 | 0.4488978 | 0.3580000 | 0.4742489 | 0.5074627 | 0.4045455 | 0.4560000 | 0.4747475 | 0.3900000 | 0.4320000 | 0.4346939 | 0.3838174 |
10 | 30 | 0.5 | 0.5 | 0.9880000 | 0.9819277 | 0.9740000 | 0.8951613 | 0.9044715 | 0.8159509 | 0.9820000 | 0.9682203 | 0.9740000 | 0.9639279 | 0.9402985 | 0.8979592 |
10 | 50 | 0.1 | 0.1 | 0.8320000 | 0.6680000 | 0.7260000 | 0.4525253 | 0.4937238 | 0.5809129 | 0.8020000 | 0.6960000 | 0.7260000 | 0.8280000 | 0.6272545 | 0.6513026 |
10 | 50 | 0.1 | 0.5 | 0.7620000 | 0.3867735 | 0.2184369 | 0.5140000 | 0.0200401 | 0.0060120 | 0.8060000 | 0.4717742 | 0.2725451 | 0.7860000 | 0.0845070 | 0.1202405 |
10 | 50 | 0.3 | 0.1 | 0.6980000 | 0.6980000 | 0.6180000 | 0.6645702 | 0.6965812 | 0.6223176 | 0.6940000 | 0.6880000 | 0.6140000 | 0.7000000 | 0.7020000 | 0.6220000 |
10 | 50 | 0.3 | 0.5 | 1.0000000 | 0.9940000 | 0.9760000 | 0.9400000 | 0.6580000 | 0.4380000 | 1.0000000 | 0.9775967 | 0.9900000 | 0.9880000 | 0.7687627 | 0.7120000 |
10 | 50 | 0.5 | 0.1 | 0.4820000 | 0.4980000 | 0.4240000 | 0.5507559 | 0.5515021 | 0.4886878 | 0.4800000 | 0.4940000 | 0.4380000 | 0.4860000 | 0.4820000 | 0.4348697 |
10 | 50 | 0.5 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9680000 | 0.9636364 | 0.8917836 | 1.0000000 | 0.9895397 | 1.0000000 | 0.9980000 | 0.9747899 | 0.9558233 |
10 | 100 | 0.1 | 0.1 | 0.9700000 | 0.9320000 | 0.9460000 | 0.5564516 | 0.7367347 | 0.7520325 | 0.9660000 | 0.9540000 | 0.9660000 | 0.9720000 | 0.8440000 | 0.8880000 |
10 | 100 | 0.1 | 0.5 | 0.9880000 | 0.7540000 | 0.5180000 | 0.7620000 | 0.0020000 | 0.0000000 | 0.9900000 | 0.8336673 | 0.6140000 | 0.9920000 | 0.0521042 | 0.1340000 |
10 | 100 | 0.3 | 0.1 | 0.8900000 | 0.8840000 | 0.8460000 | 0.7904564 | 0.8371608 | 0.8012685 | 0.8580000 | 0.8860000 | 0.8460000 | 0.8800000 | 0.8880000 | 0.8360000 |
10 | 100 | 0.3 | 0.5 | 1.0000000 | 1.0000000 | 0.9980000 | 0.9900000 | 0.7700000 | 0.3480000 | 1.0000000 | 0.9959920 | 1.0000000 | 1.0000000 | 0.8396794 | 0.7420000 |
10 | 100 | 0.5 | 0.1 | 0.6720000 | 0.6680000 | 0.6380000 | 0.6796537 | 0.6784969 | 0.6274510 | 0.6420000 | 0.6540000 | 0.6140000 | 0.6540000 | 0.6580000 | 0.6100000 |
10 | 100 | 0.5 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9980000 | 0.9940000 | 0.9140000 | 1.0000000 | 0.9979550 | 1.0000000 | 1.0000000 | 0.9938272 | 0.9720000 |
10 | 200 | 0.1 | 0.1 | 1.0000000 | 0.9980000 | 1.0000000 | 0.6391129 | 0.8340000 | 0.8775100 | 1.0000000 | 0.9980000 | 1.0000000 | 0.9980000 | 0.9380000 | 0.9620000 |
10 | 200 | 0.1 | 0.5 | 1.0000000 | 0.9780000 | 0.8560000 | 0.8960000 | 0.0000000 | 0.0000000 | 1.0000000 | 0.9820000 | 0.9220000 | 1.0000000 | 0.0160000 | 0.0820000 |
10 | 200 | 0.3 | 0.1 | 0.9839679 | 0.9800000 | 0.9800000 | 0.8951613 | 0.9467213 | 0.9387755 | 0.9720000 | 0.9760000 | 0.9740000 | 0.9800000 | 0.9760000 | 0.9700000 |
10 | 200 | 0.3 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.8580000 | 0.2800000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9040000 | 0.8020000 |
10 | 200 | 0.5 | 0.1 | 0.7960000 | 0.7900000 | 0.7780000 | 0.7872340 | 0.7962185 | 0.7872340 | 0.7860000 | 0.7980000 | 0.7800000 | 0.7860000 | 0.7940000 | 0.7740000 |
10 | 200 | 0.5 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9920000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 |
30 | 30 | 0.1 | 0.1 | 0.9500000 | 0.9020000 | 0.8900000 | 0.7642276 | 0.6965377 | 0.6904277 | 0.9360000 | 0.9220000 | 0.9140000 | 0.9440000 | 0.7800000 | 0.8420000 |
30 | 30 | 0.1 | 0.5 | 0.9380000 | 0.5180000 | 0.2340000 | 0.8520000 | 0.0080000 | 0.0040000 | 0.9520000 | 0.6052632 | 0.2620000 | 0.9380000 | 0.0846774 | 0.1380000 |
30 | 30 | 0.3 | 0.1 | 0.6880000 | 0.6900000 | 0.6360000 | 0.6464435 | 0.6723404 | 0.5802998 | 0.6740000 | 0.6760000 | 0.6380000 | 0.6940000 | 0.6860000 | 0.6392786 |
30 | 30 | 0.3 | 0.5 | 1.0000000 | 0.9900000 | 0.9500000 | 0.9340000 | 0.6660000 | 0.4004024 | 1.0000000 | 0.9667360 | 0.9700000 | 0.9839034 | 0.7871901 | 0.6861167 |
30 | 30 | 0.5 | 0.1 | 0.4600000 | 0.4820000 | 0.4320000 | 0.4832215 | 0.5128755 | 0.4456763 | 0.4840000 | 0.4840000 | 0.4340000 | 0.4980000 | 0.4980000 | 0.4297352 |
30 | 30 | 0.5 | 0.5 | 0.9940000 | 0.9919840 | 0.9880000 | 0.9054326 | 0.9151515 | 0.7183673 | 0.9980000 | 0.9892934 | 0.9900000 | 0.9820000 | 0.9610390 | 0.8744939 |
30 | 50 | 0.1 | 0.1 | 0.9960000 | 0.9880000 | 0.9900000 | 0.8545455 | 0.7923387 | 0.8346774 | 0.9960000 | 0.9940000 | 0.9940000 | 0.9920000 | 0.9060000 | 0.9500000 |
30 | 50 | 0.1 | 0.5 | 0.9940000 | 0.8440000 | 0.5520000 | 0.9760000 | 0.0020000 | 0.0000000 | 1.0000000 | 0.8568548 | 0.5480000 | 1.0000000 | 0.0564516 | 0.1620000 |
30 | 50 | 0.3 | 0.1 | 0.8300000 | 0.8480000 | 0.8160000 | 0.7639752 | 0.8049793 | 0.7843552 | 0.8260000 | 0.8280000 | 0.8200000 | 0.8360000 | 0.8380000 | 0.8060000 |
30 | 50 | 0.3 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9840000 | 0.7940000 | 0.3700000 | 1.0000000 | 0.9919028 | 1.0000000 | 0.9959839 | 0.8411405 | 0.7400000 |
30 | 50 | 0.5 | 0.1 | 0.5920000 | 0.5980000 | 0.5600000 | 0.5859031 | 0.6329114 | 0.5929978 | 0.5620000 | 0.5660000 | 0.5500000 | 0.5540000 | 0.5660000 | 0.5300000 |
30 | 50 | 0.5 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9799197 | 0.9760000 | 0.8416834 | 1.0000000 | 0.9979424 | 1.0000000 | 1.0000000 | 0.9937630 | 0.9320000 |
30 | 100 | 0.1 | 0.1 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9577465 | 0.8780000 | 0.8997996 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9700000 | 0.9900000 |
30 | 100 | 0.1 | 0.5 | 1.0000000 | 0.9700000 | 0.8120000 | 0.9980000 | 0.0000000 | 0.0000000 | 1.0000000 | 0.9659319 | 0.8380000 | 1.0000000 | 0.0100000 | 0.1100000 |
30 | 100 | 0.3 | 0.1 | 0.9620000 | 0.9600000 | 0.9620000 | 0.9026369 | 0.9329268 | 0.9158111 | 0.9620000 | 0.9660000 | 0.9560000 | 0.9700000 | 0.9700000 | 0.9640000 |
30 | 100 | 0.3 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.8340000 | 0.2580000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9012097 | 0.8120000 |
30 | 100 | 0.5 | 0.1 | 0.7160000 | 0.7380000 | 0.6920000 | 0.7327586 | 0.7568134 | 0.7179487 | 0.7180000 | 0.7180000 | 0.6920000 | 0.7140000 | 0.7160000 | 0.6860000 |
30 | 100 | 0.5 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9460000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9900000 |
30 | 200 | 0.1 | 0.1 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9900000 | 0.9440000 | 0.9620000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9980000 | 0.9980000 |
30 | 200 | 0.1 | 0.5 | 1.0000000 | 1.0000000 | 0.9820000 | 1.0000000 | 0.0000000 | 0.0000000 | 1.0000000 | 1.0000000 | 0.9960000 | 1.0000000 | 0.0000000 | 0.0360000 |
30 | 200 | 0.3 | 0.1 | 0.9980000 | 1.0000000 | 0.9980000 | 0.9476861 | 0.9756592 | 0.9837067 | 0.9920000 | 0.9920000 | 0.9940000 | 0.9940000 | 0.9920000 | 0.9960000 |
30 | 200 | 0.3 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9160000 | 0.1660000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9540000 | 0.8260000 |
30 | 200 | 0.5 | 0.1 | 0.8580000 | 0.8460000 | 0.8600000 | 0.8004292 | 0.8004115 | 0.8012959 | 0.8320000 | 0.8320000 | 0.8280000 | 0.8360000 | 0.8320000 | 0.8180000 |
30 | 200 | 0.5 | 0.5 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 0.9920000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000 |
## Print out in tex
print(xtable(c1, digits = 3), booktabs = T, include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:48 2019
\begin{table}[ht]
\centering
\begin{tabular}{llllrrrrrrrrrrrr}
\toprule
SS Level-1 & SS Level-2 & ICC-OV & ICC-LV & MLR & ULSMV & WLSMV & MLR & ULSMV & WLSMV & MLR & ULSMV & WLSMV & MLR & ULSMV & WLSMV \\
\midrule
5 & 30 & 0.1 & 0.1 & 0.522 & 0.030 & 0.048 & 0.327 & 0.041 & 0.046 & 0.496 & 0.046 & 0.058 & 0.510 & 0.041 & 0.067 \\
5 & 30 & 0.1 & 0.5 & 0.372 & 0.036 & 0.024 & 0.266 & 0.012 & 0.008 & 0.382 & 0.051 & 0.044 & 0.338 & 0.023 & 0.039 \\
5 & 30 & 0.3 & 0.1 & 0.468 & 0.357 & 0.250 & 0.401 & 0.377 & 0.271 & 0.438 & 0.368 & 0.237 & 0.410 & 0.363 & 0.249 \\
5 & 30 & 0.3 & 0.5 & 0.792 & 0.730 & 0.674 & 0.629 & 0.542 & 0.471 & 0.822 & 0.709 & 0.694 & 0.764 & 0.621 & 0.588 \\
5 & 30 & 0.5 & 0.1 & 0.360 & 0.335 & 0.224 & 0.400 & 0.374 & 0.293 & 0.354 & 0.341 & 0.210 & 0.345 & 0.323 & 0.202 \\
5 & 30 & 0.5 & 0.5 & 0.938 & 0.953 & 0.914 & 0.783 & 0.823 & 0.785 & 0.946 & 0.921 & 0.918 & 0.918 & 0.883 & 0.853 \\
5 & 50 & 0.1 & 0.1 & 0.560 & 0.138 & 0.146 & 0.302 & 0.116 & 0.141 & 0.562 & 0.154 & 0.170 & 0.552 & 0.150 & 0.162 \\
5 & 50 & 0.1 & 0.5 & 0.500 & 0.092 & 0.052 & 0.321 & 0.022 & 0.006 & 0.550 & 0.145 & 0.094 & 0.494 & 0.066 & 0.072 \\
5 & 50 & 0.3 & 0.1 & 0.548 & 0.542 & 0.404 & 0.508 & 0.533 & 0.423 & 0.538 & 0.550 & 0.424 & 0.548 & 0.498 & 0.411 \\
5 & 50 & 0.3 & 0.5 & 0.972 & 0.938 & 0.868 & 0.818 & 0.661 & 0.495 & 0.978 & 0.919 & 0.910 & 0.930 & 0.751 & 0.649 \\
5 & 50 & 0.5 & 0.1 & 0.488 & 0.483 & 0.358 & 0.524 & 0.537 & 0.439 & 0.476 & 0.486 & 0.392 & 0.492 & 0.497 & 0.367 \\
5 & 50 & 0.5 & 0.5 & 0.996 & 0.998 & 0.992 & 0.916 & 0.925 & 0.826 & 0.996 & 0.985 & 0.996 & 0.986 & 0.947 & 0.911 \\
5 & 100 & 0.1 & 0.1 & 0.752 & 0.494 & 0.556 & 0.271 & 0.393 & 0.421 & 0.764 & 0.514 & 0.550 & 0.752 & 0.453 & 0.462 \\
5 & 100 & 0.1 & 0.5 & 0.726 & 0.314 & 0.238 & 0.274 & 0.026 & 0.010 & 0.772 & 0.427 & 0.328 & 0.776 & 0.066 & 0.108 \\
5 & 100 & 0.3 & 0.1 & 0.760 & 0.758 & 0.682 & 0.611 & 0.709 & 0.658 & 0.702 & 0.736 & 0.682 & 0.746 & 0.730 & 0.666 \\
5 & 100 & 0.3 & 0.5 & 0.996 & 0.990 & 0.982 & 0.906 & 0.708 & 0.462 & 1.000 & 0.988 & 0.996 & 0.988 & 0.796 & 0.708 \\
5 & 100 & 0.5 & 0.1 & 0.600 & 0.596 & 0.532 & 0.599 & 0.623 & 0.575 & 0.576 & 0.582 & 0.532 & 0.608 & 0.599 & 0.532 \\
5 & 100 & 0.5 & 0.5 & 1.000 & 1.000 & 0.998 & 0.992 & 0.988 & 0.933 & 1.000 & 0.996 & 1.000 & 0.998 & 0.996 & 0.968 \\
5 & 200 & 0.1 & 0.1 & 0.952 & 0.890 & 0.900 & 0.243 & 0.684 & 0.720 & 0.926 & 0.920 & 0.920 & 0.936 & 0.820 & 0.836 \\
5 & 200 & 0.1 & 0.5 & 0.956 & 0.728 & 0.614 & 0.250 & 0.002 & 0.000 & 0.974 & 0.820 & 0.716 & 0.982 & 0.068 & 0.138 \\
5 & 200 & 0.3 & 0.1 & 0.890 & 0.880 & 0.862 & 0.714 & 0.871 & 0.855 & 0.860 & 0.888 & 0.850 & 0.886 & 0.880 & 0.840 \\
5 & 200 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 0.990 & 0.822 & 0.444 & 1.000 & 0.998 & 1.000 & 1.000 & 0.864 & 0.778 \\
5 & 200 & 0.5 & 0.1 & 0.744 & 0.754 & 0.716 & 0.758 & 0.728 & 0.698 & 0.732 & 0.756 & 0.720 & 0.754 & 0.756 & 0.706 \\
5 & 200 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.962 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.996 \\
10 & 30 & 0.1 & 0.1 & 0.608 & 0.352 & 0.364 & 0.385 & 0.325 & 0.313 & 0.580 & 0.372 & 0.378 & 0.602 & 0.352 & 0.371 \\
10 & 30 & 0.1 & 0.5 & 0.494 & 0.134 & 0.080 & 0.364 & 0.018 & 0.010 & 0.530 & 0.206 & 0.118 & 0.528 & 0.062 & 0.064 \\
10 & 30 & 0.3 & 0.1 & 0.584 & 0.574 & 0.418 & 0.556 & 0.570 & 0.436 & 0.574 & 0.584 & 0.410 & 0.591 & 0.560 & 0.391 \\
10 & 30 & 0.3 & 0.5 & 0.988 & 0.952 & 0.854 & 0.878 & 0.649 & 0.494 & 0.986 & 0.953 & 0.908 & 0.946 & 0.742 & 0.690 \\
10 & 30 & 0.5 & 0.1 & 0.446 & 0.449 & 0.358 & 0.474 & 0.507 & 0.405 & 0.456 & 0.475 & 0.390 & 0.432 & 0.435 & 0.384 \\
10 & 30 & 0.5 & 0.5 & 0.988 & 0.982 & 0.974 & 0.895 & 0.904 & 0.816 & 0.982 & 0.968 & 0.974 & 0.964 & 0.940 & 0.898 \\
10 & 50 & 0.1 & 0.1 & 0.832 & 0.668 & 0.726 & 0.453 & 0.494 & 0.581 & 0.802 & 0.696 & 0.726 & 0.828 & 0.627 & 0.651 \\
10 & 50 & 0.1 & 0.5 & 0.762 & 0.387 & 0.218 & 0.514 & 0.020 & 0.006 & 0.806 & 0.472 & 0.273 & 0.786 & 0.085 & 0.120 \\
10 & 50 & 0.3 & 0.1 & 0.698 & 0.698 & 0.618 & 0.665 & 0.697 & 0.622 & 0.694 & 0.688 & 0.614 & 0.700 & 0.702 & 0.622 \\
10 & 50 & 0.3 & 0.5 & 1.000 & 0.994 & 0.976 & 0.940 & 0.658 & 0.438 & 1.000 & 0.978 & 0.990 & 0.988 & 0.769 & 0.712 \\
10 & 50 & 0.5 & 0.1 & 0.482 & 0.498 & 0.424 & 0.551 & 0.552 & 0.489 & 0.480 & 0.494 & 0.438 & 0.486 & 0.482 & 0.435 \\
10 & 50 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 0.968 & 0.964 & 0.892 & 1.000 & 0.990 & 1.000 & 0.998 & 0.975 & 0.956 \\
10 & 100 & 0.1 & 0.1 & 0.970 & 0.932 & 0.946 & 0.556 & 0.737 & 0.752 & 0.966 & 0.954 & 0.966 & 0.972 & 0.844 & 0.888 \\
10 & 100 & 0.1 & 0.5 & 0.988 & 0.754 & 0.518 & 0.762 & 0.002 & 0.000 & 0.990 & 0.834 & 0.614 & 0.992 & 0.052 & 0.134 \\
10 & 100 & 0.3 & 0.1 & 0.890 & 0.884 & 0.846 & 0.790 & 0.837 & 0.801 & 0.858 & 0.886 & 0.846 & 0.880 & 0.888 & 0.836 \\
10 & 100 & 0.3 & 0.5 & 1.000 & 1.000 & 0.998 & 0.990 & 0.770 & 0.348 & 1.000 & 0.996 & 1.000 & 1.000 & 0.840 & 0.742 \\
10 & 100 & 0.5 & 0.1 & 0.672 & 0.668 & 0.638 & 0.680 & 0.678 & 0.627 & 0.642 & 0.654 & 0.614 & 0.654 & 0.658 & 0.610 \\
10 & 100 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 0.998 & 0.994 & 0.914 & 1.000 & 0.998 & 1.000 & 1.000 & 0.994 & 0.972 \\
10 & 200 & 0.1 & 0.1 & 1.000 & 0.998 & 1.000 & 0.639 & 0.834 & 0.878 & 1.000 & 0.998 & 1.000 & 0.998 & 0.938 & 0.962 \\
10 & 200 & 0.1 & 0.5 & 1.000 & 0.978 & 0.856 & 0.896 & 0.000 & 0.000 & 1.000 & 0.982 & 0.922 & 1.000 & 0.016 & 0.082 \\
10 & 200 & 0.3 & 0.1 & 0.984 & 0.980 & 0.980 & 0.895 & 0.947 & 0.939 & 0.972 & 0.976 & 0.974 & 0.980 & 0.976 & 0.970 \\
10 & 200 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 0.858 & 0.280 & 1.000 & 1.000 & 1.000 & 1.000 & 0.904 & 0.802 \\
10 & 200 & 0.5 & 0.1 & 0.796 & 0.790 & 0.778 & 0.787 & 0.796 & 0.787 & 0.786 & 0.798 & 0.780 & 0.786 & 0.794 & 0.774 \\
10 & 200 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.992 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
30 & 30 & 0.1 & 0.1 & 0.950 & 0.902 & 0.890 & 0.764 & 0.697 & 0.690 & 0.936 & 0.922 & 0.914 & 0.944 & 0.780 & 0.842 \\
30 & 30 & 0.1 & 0.5 & 0.938 & 0.518 & 0.234 & 0.852 & 0.008 & 0.004 & 0.952 & 0.605 & 0.262 & 0.938 & 0.085 & 0.138 \\
30 & 30 & 0.3 & 0.1 & 0.688 & 0.690 & 0.636 & 0.646 & 0.672 & 0.580 & 0.674 & 0.676 & 0.638 & 0.694 & 0.686 & 0.639 \\
30 & 30 & 0.3 & 0.5 & 1.000 & 0.990 & 0.950 & 0.934 & 0.666 & 0.400 & 1.000 & 0.967 & 0.970 & 0.984 & 0.787 & 0.686 \\
30 & 30 & 0.5 & 0.1 & 0.460 & 0.482 & 0.432 & 0.483 & 0.513 & 0.446 & 0.484 & 0.484 & 0.434 & 0.498 & 0.498 & 0.430 \\
30 & 30 & 0.5 & 0.5 & 0.994 & 0.992 & 0.988 & 0.905 & 0.915 & 0.718 & 0.998 & 0.989 & 0.990 & 0.982 & 0.961 & 0.874 \\
30 & 50 & 0.1 & 0.1 & 0.996 & 0.988 & 0.990 & 0.855 & 0.792 & 0.835 & 0.996 & 0.994 & 0.994 & 0.992 & 0.906 & 0.950 \\
30 & 50 & 0.1 & 0.5 & 0.994 & 0.844 & 0.552 & 0.976 & 0.002 & 0.000 & 1.000 & 0.857 & 0.548 & 1.000 & 0.056 & 0.162 \\
30 & 50 & 0.3 & 0.1 & 0.830 & 0.848 & 0.816 & 0.764 & 0.805 & 0.784 & 0.826 & 0.828 & 0.820 & 0.836 & 0.838 & 0.806 \\
30 & 50 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 0.984 & 0.794 & 0.370 & 1.000 & 0.992 & 1.000 & 0.996 & 0.841 & 0.740 \\
30 & 50 & 0.5 & 0.1 & 0.592 & 0.598 & 0.560 & 0.586 & 0.633 & 0.593 & 0.562 & 0.566 & 0.550 & 0.554 & 0.566 & 0.530 \\
30 & 50 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 0.980 & 0.976 & 0.842 & 1.000 & 0.998 & 1.000 & 1.000 & 0.994 & 0.932 \\
30 & 100 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.958 & 0.878 & 0.900 & 1.000 & 1.000 & 1.000 & 1.000 & 0.970 & 0.990 \\
30 & 100 & 0.1 & 0.5 & 1.000 & 0.970 & 0.812 & 0.998 & 0.000 & 0.000 & 1.000 & 0.966 & 0.838 & 1.000 & 0.010 & 0.110 \\
30 & 100 & 0.3 & 0.1 & 0.962 & 0.960 & 0.962 & 0.903 & 0.933 & 0.916 & 0.962 & 0.966 & 0.956 & 0.970 & 0.970 & 0.964 \\
30 & 100 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 0.834 & 0.258 & 1.000 & 1.000 & 1.000 & 1.000 & 0.901 & 0.812 \\
30 & 100 & 0.5 & 0.1 & 0.716 & 0.738 & 0.692 & 0.733 & 0.757 & 0.718 & 0.718 & 0.718 & 0.692 & 0.714 & 0.716 & 0.686 \\
30 & 100 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.946 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.990 \\
30 & 200 & 0.1 & 0.1 & 1.000 & 1.000 & 1.000 & 0.990 & 0.944 & 0.962 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.998 \\
30 & 200 & 0.1 & 0.5 & 1.000 & 1.000 & 0.982 & 1.000 & 0.000 & 0.000 & 1.000 & 1.000 & 0.996 & 1.000 & 0.000 & 0.036 \\
30 & 200 & 0.3 & 0.1 & 0.998 & 1.000 & 0.998 & 0.948 & 0.976 & 0.984 & 0.992 & 0.992 & 0.994 & 0.994 & 0.992 & 0.996 \\
30 & 200 & 0.3 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 0.916 & 0.166 & 1.000 & 1.000 & 1.000 & 1.000 & 0.954 & 0.826 \\
30 & 200 & 0.5 & 0.1 & 0.858 & 0.846 & 0.860 & 0.800 & 0.800 & 0.801 & 0.832 & 0.832 & 0.828 & 0.836 & 0.832 & 0.818 \\
30 & 200 & 0.5 & 0.5 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.992 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
\bottomrule
\end{tabular}
\end{table}
Now for the long process of making tables for the MANY conditions for the descriptive statistics. For this, we need to do this is steps so that all the information gets outputted in the correct manor for table. For each statistic under each condition, model, and estimator, the code below create a table that contains the average value and the standard deviation. Again, just like the descriptives above, a summary table was made to start.
These tables are made based only on the 1) converged models and 2) the admissible solutions.
The fit indices included are:
mydata <- filter(sim_results, Converge == 1 & Admissible == 1)
## first table summary table
a <- mydata %>%
group_by(Model, Estimator) %>%
summarise(
chi2=mean(Chi2_pvalue_decision, na.rm = T),
CFI.m =mean(CFI, na.rm = T), CFI.sd =sd(CFI, na.rm = T),
TLI.m =mean(TLI, na.rm = T), TLI.sd =sd(TLI, na.rm = T),
RMSEA.m =mean(RMSEA, na.rm = T), RMSEA.sd =sd(RMSEA, na.rm = T),
SRMRW.m =mean(SRMRW, na.rm = T), SRMRW.sd =sd(SRMRW, na.rm = T),
SRMRB.m =mean(SRMRB, na.rm = T), SRMRB.sd =sd(SRMRB, na.rm = T)
)
## Print results in a nice looking table in HTML
kable(a, format='html') %>%
kable_styling(full_width = T)
Model | Estimator | chi2 | CFI.m | CFI.sd | TLI.m | TLI.sd | RMSEA.m | RMSEA.sd | SRMRW.m | SRMRW.sd | SRMRB.m | SRMRB.sd |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | MLR | 0.8202745 | 0.9812052 | 0.0371156 | 0.9774462 | 0.0445387 | 0.0116853 | 0.0137071 | 0.0267436 | 0.0149748 | 0.1127033 | 0.0560528 |
C | ULSMV | 0.9768364 | 0.9893737 | 0.0304160 | 0.9872484 | 0.0364992 | 0.0043197 | 0.0069715 | 0.0374443 | 0.0219530 | 0.0824565 | 0.0464499 |
C | WLSMV | 0.9745022 | 0.9939143 | 0.0151637 | 0.9926972 | 0.0181964 | 0.0049618 | 0.0074547 | 0.0308598 | 0.0173622 | 0.0879603 | 0.0477328 |
M1 | MLR | 0.0598615 | 0.9095858 | 0.0452227 | 0.8915221 | 0.0539201 | 0.0359143 | 0.0096761 | 0.0493582 | 0.0110398 | 0.1123173 | 0.0500658 |
M1 | ULSMV | 0.4775854 | 0.9399431 | 0.0501061 | 0.9279318 | 0.0601273 | 0.0182307 | 0.0129284 | 0.0640931 | 0.0165727 | 0.0869087 | 0.0509335 |
M1 | WLSMV | 0.2267400 | 0.9366788 | 0.0326178 | 0.9240146 | 0.0391414 | 0.0275762 | 0.0097161 | 0.0594152 | 0.0126836 | 0.0939776 | 0.0759974 |
M2 | MLR | 0.5229346 | 0.9695725 | 0.0409948 | 0.9634997 | 0.0489183 | 0.0182297 | 0.0146701 | 0.0271783 | 0.0155180 | 0.1367468 | 0.0505995 |
M2 | ULSMV | 0.7160134 | 0.9542678 | 0.0645749 | 0.9451213 | 0.0774899 | 0.0114736 | 0.0114129 | 0.0410089 | 0.0218186 | 0.0968839 | 0.0424409 |
M2 | WLSMV | 0.7513266 | 0.9846025 | 0.0222259 | 0.9815230 | 0.0266711 | 0.0103058 | 0.0098072 | 0.0316043 | 0.0174071 | 0.1043579 | 0.0412210 |
M12 | MLR | 0.0441231 | 0.8985820 | 0.0458621 | 0.8799245 | 0.0538692 | 0.0386203 | 0.0105879 | 0.0490658 | 0.0112168 | 0.1308869 | 0.0509402 |
M12 | ULSMV | 0.4236863 | 0.9288116 | 0.0572006 | 0.9156980 | 0.0677375 | 0.0199017 | 0.0129339 | 0.0632456 | 0.0166762 | 0.0948095 | 0.0451347 |
M12 | WLSMV | 0.2105645 | 0.9331558 | 0.0339604 | 0.9208424 | 0.0402163 | 0.0281158 | 0.0096108 | 0.0590211 | 0.0124923 | 0.0994165 | 0.0444520 |
## make a copy of a to print into
a1 <- as_tibble(as.data.frame(matrix(NA, ncol=8,nrow=nrow(a))))
colnames(a1) <- c('Model', 'Estimation', "chi2", "CFI",'TLI', 'RMSEA', 'SRMRW', 'SRMRB')
i <- 1
for(i in 1:nrow(a)){
a1[i,3:8] <- unlist(c(
round(a[i,3],3),
paste0(round(a[i,4],3), ' (', round(a[i,5],2), ')'),
paste0(round(a[i,6],3), ' (', round(a[i,7],2), ')'),
paste0(round(a[i,8],3), ' (', round(a[i,9],2), ')'),
paste0(round(a[i,10],3), ' (', round(a[i,11],2), ')'),
paste0(round(a[i,12],3), ' (', round(a[i,12],2), ')')
))
}
a1[,1:2] <- a[,1:2]## add factors back
## Print out in tex
print(xtable(a1, digits = 3), booktabs = T, include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:48 2019
\begin{table}[ht]
\centering
\begin{tabular}{llllllll}
\toprule
Model & Estimation & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
C & MLR & 0.82 & 0.981 (0.04) & 0.977 (0.04) & 0.012 (0.01) & 0.027 (0.01) & 0.113 (0.11) \\
C & ULSMV & 0.977 & 0.989 (0.03) & 0.987 (0.04) & 0.004 (0.01) & 0.037 (0.02) & 0.082 (0.08) \\
C & WLSMV & 0.975 & 0.994 (0.02) & 0.993 (0.02) & 0.005 (0.01) & 0.031 (0.02) & 0.088 (0.09) \\
M1 & MLR & 0.06 & 0.91 (0.05) & 0.892 (0.05) & 0.036 (0.01) & 0.049 (0.01) & 0.112 (0.11) \\
M1 & ULSMV & 0.478 & 0.94 (0.05) & 0.928 (0.06) & 0.018 (0.01) & 0.064 (0.02) & 0.087 (0.09) \\
M1 & WLSMV & 0.227 & 0.937 (0.03) & 0.924 (0.04) & 0.028 (0.01) & 0.059 (0.01) & 0.094 (0.09) \\
M2 & MLR & 0.523 & 0.97 (0.04) & 0.963 (0.05) & 0.018 (0.01) & 0.027 (0.02) & 0.137 (0.14) \\
M2 & ULSMV & 0.716 & 0.954 (0.06) & 0.945 (0.08) & 0.011 (0.01) & 0.041 (0.02) & 0.097 (0.1) \\
M2 & WLSMV & 0.751 & 0.985 (0.02) & 0.982 (0.03) & 0.01 (0.01) & 0.032 (0.02) & 0.104 (0.1) \\
M12 & MLR & 0.044 & 0.899 (0.05) & 0.88 (0.05) & 0.039 (0.01) & 0.049 (0.01) & 0.131 (0.13) \\
M12 & ULSMV & 0.424 & 0.929 (0.06) & 0.916 (0.07) & 0.02 (0.01) & 0.063 (0.02) & 0.095 (0.09) \\
M12 & WLSMV & 0.211 & 0.933 (0.03) & 0.921 (0.04) & 0.028 (0.01) & 0.059 (0.01) & 0.099 (0.1) \\
\bottomrule
\end{tabular}
\end{table}
An interesting additonal column is added called Prop.Use, which is the total proportion of usable replications for each marginal cell of the design. Each row of the following table represents the marginal distribution of each fit statistic over the ICC conditions. The total number of possible replications is 3000 (500 rep. $$6 conditions). This gives a rough account of the admissibility of the estimation method across sample sizes.
mydata <- filter(sim_results, Converge == 1 & Admissible == 1)
## first table summary table
a <- mydata %>%
group_by(Model, Estimator, ss_l2, ss_l1) %>%
summarise(
Prop.Use=n()/3000,
chi2=mean(Chi2_pvalue_decision, na.rm = T),
CFI.m =mean(CFI, na.rm = T), CFI.sd =sd(CFI, na.rm = T),
TLI.m =mean(TLI, na.rm = T), TLI.sd =sd(TLI, na.rm = T),
RMSEA.m =mean(RMSEA, na.rm = T), RMSEA.sd =sd(RMSEA, na.rm = T),
SRMRW.m =mean(SRMRW, na.rm = T), SRMRW.sd =sd(SRMRW, na.rm = T),
SRMRB.m =mean(SRMRB, na.rm = T), SRMRB.sd =sd(SRMRB, na.rm = T)
)
## Print results in a nice looking table in HTML
kable(a, format='html') %>%
kable_styling(full_width = T)
Model | Estimator | ss_l2 | ss_l1 | Prop.Use | chi2 | CFI.m | CFI.sd | TLI.m | TLI.sd | RMSEA.m | RMSEA.sd | SRMRW.m | SRMRW.sd | SRMRB.m | SRMRB.sd |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | MLR | 30 | 5 | 0.5753333 | 0.5046350 | 0.8932985 | 0.0823341 | 0.8719582 | 0.0988009 | 0.0405051 | 0.0206701 | 0.0636427 | 0.0081998 | 0.2031333 | 0.0638188 |
C | MLR | 30 | 10 | 0.6846667 | 0.6183057 | 0.9516131 | 0.0392000 | 0.9419357 | 0.0470400 | 0.0249005 | 0.0142381 | 0.0418158 | 0.0055189 | 0.1709135 | 0.0473209 |
C | MLR | 30 | 30 | 0.8383333 | 0.6743539 | 0.9845929 | 0.0132663 | 0.9815114 | 0.0159196 | 0.0130712 | 0.0080568 | 0.0227393 | 0.0029658 | 0.1448123 | 0.0356252 |
C | MLR | 50 | 5 | 0.6773333 | 0.7337598 | 0.9571215 | 0.0418101 | 0.9485458 | 0.0501721 | 0.0221401 | 0.0159915 | 0.0493632 | 0.0065675 | 0.1597397 | 0.0549686 |
C | MLR | 50 | 10 | 0.7956667 | 0.7813155 | 0.9794866 | 0.0207334 | 0.9753839 | 0.0248801 | 0.0144655 | 0.0108222 | 0.0324331 | 0.0042679 | 0.1353715 | 0.0429718 |
C | MLR | 50 | 30 | 0.9016667 | 0.8473198 | 0.9939626 | 0.0065780 | 0.9927551 | 0.0078936 | 0.0072079 | 0.0059472 | 0.0175935 | 0.0022846 | 0.1106368 | 0.0269979 |
C | MLR | 100 | 5 | 0.8056667 | 0.8634671 | 0.9847650 | 0.0181757 | 0.9817180 | 0.0218109 | 0.0115672 | 0.0103175 | 0.0349806 | 0.0045561 | 0.1190202 | 0.0483755 |
C | MLR | 100 | 10 | 0.9200000 | 0.9094203 | 0.9932192 | 0.0082911 | 0.9918630 | 0.0099493 | 0.0074047 | 0.0068392 | 0.0230136 | 0.0029498 | 0.0956019 | 0.0326032 |
C | MLR | 100 | 30 | 0.9456667 | 0.9139937 | 0.9977692 | 0.0029064 | 0.9973231 | 0.0034877 | 0.0039914 | 0.0039469 | 0.0124694 | 0.0016427 | 0.0778343 | 0.0186974 |
C | MLR | 200 | 5 | 0.9233333 | 0.9173285 | 0.9939687 | 0.0080929 | 0.9927624 | 0.0097115 | 0.0067031 | 0.0067363 | 0.0248031 | 0.0032101 | 0.0876249 | 0.0391772 |
C | MLR | 200 | 10 | 0.9630000 | 0.9224645 | 0.9971589 | 0.0040648 | 0.9965907 | 0.0048778 | 0.0043523 | 0.0047177 | 0.0161595 | 0.0021331 | 0.0675193 | 0.0222516 |
C | MLR | 200 | 30 | 0.9753333 | 0.9371155 | 0.9990867 | 0.0013090 | 0.9989041 | 0.0015708 | 0.0023794 | 0.0026531 | 0.0087901 | 0.0011544 | 0.0547267 | 0.0130280 |
C | ULSMV | 30 | 5 | 0.4010000 | 0.9890756 | 0.9454461 | 0.0874627 | 0.9345353 | 0.1049552 | 0.0107766 | 0.0127331 | 0.0940581 | 0.0187408 | 0.1437741 | 0.0472604 |
C | ULSMV | 30 | 10 | 0.5730000 | 0.9941759 | 0.9832451 | 0.0397025 | 0.9798941 | 0.0476430 | 0.0049432 | 0.0079180 | 0.0630602 | 0.0151495 | 0.1308273 | 0.0529347 |
C | ULSMV | 30 | 30 | 0.7620000 | 0.9991251 | 0.9989324 | 0.0038866 | 0.9987189 | 0.0046639 | 0.0011944 | 0.0033515 | 0.0385429 | 0.0142576 | 0.1087197 | 0.0325369 |
C | ULSMV | 50 | 5 | 0.5316667 | 0.9774295 | 0.9647630 | 0.0524855 | 0.9577156 | 0.0629826 | 0.0102355 | 0.0112933 | 0.0698603 | 0.0132705 | 0.1186968 | 0.0593424 |
C | ULSMV | 50 | 10 | 0.7073333 | 0.9844486 | 0.9833106 | 0.0300769 | 0.9799727 | 0.0360923 | 0.0062335 | 0.0075432 | 0.0471195 | 0.0115804 | 0.1054053 | 0.0446192 |
C | ULSMV | 50 | 30 | 0.8796667 | 0.9954528 | 0.9987028 | 0.0044795 | 0.9984434 | 0.0053754 | 0.0013230 | 0.0030596 | 0.0290815 | 0.0103994 | 0.0814828 | 0.0242640 |
C | ULSMV | 100 | 5 | 0.6920000 | 0.9701349 | 0.9835891 | 0.0247387 | 0.9803069 | 0.0296864 | 0.0076592 | 0.0083623 | 0.0476319 | 0.0093270 | 0.0938483 | 0.0522473 |
C | ULSMV | 100 | 10 | 0.8730000 | 0.9648721 | 0.9907426 | 0.0168573 | 0.9888912 | 0.0202287 | 0.0050159 | 0.0058859 | 0.0322581 | 0.0072826 | 0.0733091 | 0.0293011 |
C | ULSMV | 100 | 30 | 0.9446667 | 0.9876500 | 0.9985521 | 0.0042864 | 0.9982626 | 0.0051437 | 0.0013400 | 0.0026252 | 0.0202040 | 0.0072211 | 0.0570341 | 0.0168804 |
C | ULSMV | 200 | 5 | 0.8753333 | 0.9508759 | 0.9925862 | 0.0123017 | 0.9911035 | 0.0147620 | 0.0052801 | 0.0061754 | 0.0329136 | 0.0062563 | 0.0697868 | 0.0378112 |
C | ULSMV | 200 | 10 | 0.9576667 | 0.9470936 | 0.9949812 | 0.0088710 | 0.9939774 | 0.0106452 | 0.0037695 | 0.0043763 | 0.0226012 | 0.0051646 | 0.0509646 | 0.0192118 |
C | ULSMV | 200 | 30 | 0.9743333 | 0.9791310 | 0.9983751 | 0.0038216 | 0.9980501 | 0.0045860 | 0.0014283 | 0.0021999 | 0.0141136 | 0.0049309 | 0.0400727 | 0.0117348 |
C | WLSMV | 30 | 5 | 0.3550000 | 0.9800190 | 0.9668167 | 0.0428512 | 0.9601800 | 0.0514214 | 0.0145736 | 0.0139307 | 0.0792162 | 0.0108543 | 0.1580229 | 0.0465658 |
C | WLSMV | 30 | 10 | 0.5080000 | 0.9895013 | 0.9898077 | 0.0176223 | 0.9877692 | 0.0211467 | 0.0068601 | 0.0088506 | 0.0518724 | 0.0070620 | 0.1432885 | 0.0762484 |
C | WLSMV | 30 | 30 | 0.6883333 | 0.9980630 | 0.9987074 | 0.0036447 | 0.9984488 | 0.0043736 | 0.0016198 | 0.0038659 | 0.0289064 | 0.0040449 | 0.1200868 | 0.0250014 |
C | WLSMV | 50 | 5 | 0.4700000 | 0.9695035 | 0.9786915 | 0.0271873 | 0.9744298 | 0.0326248 | 0.0120139 | 0.0115607 | 0.0611043 | 0.0083854 | 0.1249717 | 0.0473309 |
C | WLSMV | 50 | 10 | 0.6603333 | 0.9798082 | 0.9910403 | 0.0123614 | 0.9892484 | 0.0148337 | 0.0074499 | 0.0078938 | 0.0397920 | 0.0053735 | 0.1145602 | 0.0414510 |
C | WLSMV | 50 | 30 | 0.8196667 | 0.9955266 | 0.9989983 | 0.0024830 | 0.9987979 | 0.0029796 | 0.0016069 | 0.0033358 | 0.0220497 | 0.0029613 | 0.0896034 | 0.0194144 |
C | WLSMV | 100 | 5 | 0.6646667 | 0.9638917 | 0.9894180 | 0.0142140 | 0.9873016 | 0.0170568 | 0.0083205 | 0.0085951 | 0.0426039 | 0.0057673 | 0.1004546 | 0.0518476 |
C | WLSMV | 100 | 10 | 0.8243333 | 0.9656288 | 0.9955280 | 0.0062126 | 0.9946336 | 0.0074551 | 0.0055033 | 0.0058379 | 0.0280509 | 0.0036185 | 0.0784487 | 0.0263732 |
C | WLSMV | 100 | 30 | 0.9110000 | 0.9857300 | 0.9992901 | 0.0015954 | 0.9991481 | 0.0019144 | 0.0015406 | 0.0027663 | 0.0154768 | 0.0021092 | 0.0619890 | 0.0137278 |
C | WLSMV | 200 | 5 | 0.8486667 | 0.9481540 | 0.9949855 | 0.0071701 | 0.9939826 | 0.0086041 | 0.0056892 | 0.0062064 | 0.0299979 | 0.0040167 | 0.0729840 | 0.0358455 |
C | WLSMV | 200 | 10 | 0.9356667 | 0.9515497 | 0.9977034 | 0.0033198 | 0.9972441 | 0.0039838 | 0.0039304 | 0.0043703 | 0.0197049 | 0.0026053 | 0.0541746 | 0.0170661 |
C | WLSMV | 200 | 30 | 0.9733333 | 0.9784247 | 0.9995363 | 0.0009171 | 0.9994436 | 0.0011005 | 0.0014136 | 0.0021738 | 0.0108560 | 0.0014413 | 0.0432125 | 0.0096334 |
M1 | MLR | 30 | 5 | 0.4596667 | 0.2719362 | 0.8279448 | 0.1038494 | 0.7937454 | 0.1231198 | 0.0537087 | 0.0200521 | 0.0757545 | 0.0154374 | 0.1978938 | 0.0606371 |
M1 | MLR | 30 | 10 | 0.5826667 | 0.1401602 | 0.8795338 | 0.0619563 | 0.8555550 | 0.0728614 | 0.0427529 | 0.0126111 | 0.0578834 | 0.0088208 | 0.1677090 | 0.0431786 |
M1 | MLR | 30 | 30 | 0.7480000 | 0.0013369 | 0.9061395 | 0.0258827 | 0.8873674 | 0.0310592 | 0.0372108 | 0.0057018 | 0.0460096 | 0.0057624 | 0.1447929 | 0.0313018 |
M1 | MLR | 50 | 5 | 0.5576667 | 0.3287507 | 0.8981393 | 0.0602647 | 0.8777671 | 0.0723177 | 0.0381660 | 0.0146017 | 0.0636215 | 0.0089219 | 0.1565018 | 0.0527934 |
M1 | MLR | 50 | 10 | 0.6690000 | 0.0563029 | 0.9094790 | 0.0360598 | 0.8913748 | 0.0432718 | 0.0362868 | 0.0082390 | 0.0515803 | 0.0068527 | 0.1323486 | 0.0361130 |
M1 | MLR | 50 | 30 | 0.8420000 | 0.0000000 | 0.9154093 | 0.0231617 | 0.8984922 | 0.0277590 | 0.0346816 | 0.0042685 | 0.0437228 | 0.0043392 | 0.1133781 | 0.0223251 |
M1 | MLR | 100 | 5 | 0.5986667 | 0.1375278 | 0.9229975 | 0.0359734 | 0.9075970 | 0.0431681 | 0.0325719 | 0.0085964 | 0.0536799 | 0.0073109 | 0.1137741 | 0.0419142 |
M1 | MLR | 100 | 10 | 0.7820000 | 0.0012788 | 0.9215794 | 0.0241065 | 0.9058953 | 0.0289278 | 0.0335419 | 0.0052091 | 0.0468181 | 0.0055537 | 0.0964331 | 0.0282805 |
M1 | MLR | 100 | 30 | 0.9200000 | 0.0000000 | 0.9179311 | 0.0147859 | 0.9015174 | 0.0177431 | 0.0339103 | 0.0029876 | 0.0421127 | 0.0034376 | 0.0843857 | 0.0145124 |
M1 | MLR | 200 | 5 | 0.6490000 | 0.0056497 | 0.9285557 | 0.0239519 | 0.9142668 | 0.0287422 | 0.0311465 | 0.0050364 | 0.0478174 | 0.0055974 | 0.0839134 | 0.0320091 |
M1 | MLR | 200 | 10 | 0.8596667 | 0.0000000 | 0.9246596 | 0.0158180 | 0.9095916 | 0.0189816 | 0.0328584 | 0.0034157 | 0.0440500 | 0.0044707 | 0.0727541 | 0.0206507 |
M1 | MLR | 200 | 30 | 0.9460000 | 0.0000000 | 0.9189001 | 0.0085301 | 0.9026801 | 0.0102361 | 0.0336105 | 0.0021532 | 0.0412574 | 0.0027771 | 0.0645938 | 0.0101504 |
M1 | ULSMV | 30 | 5 | 0.3346667 | 0.9696970 | 0.9073943 | 0.1044099 | 0.8888731 | 0.1252919 | 0.0174782 | 0.0142945 | 0.1047616 | 0.0190994 | 0.1497136 | 0.1136820 |
M1 | ULSMV | 30 | 10 | 0.4750000 | 0.8903725 | 0.9462343 | 0.0647959 | 0.9354812 | 0.0777551 | 0.0132841 | 0.0127143 | 0.0800463 | 0.0149260 | 0.1344491 | 0.0646932 |
M1 | ULSMV | 30 | 30 | 0.5623333 | 0.7848251 | 0.9800241 | 0.0316037 | 0.9760289 | 0.0379244 | 0.0080622 | 0.0128189 | 0.0633565 | 0.0124231 | 0.1135873 | 0.0274332 |
M1 | ULSMV | 50 | 5 | 0.4470000 | 0.8575690 | 0.9172491 | 0.0737221 | 0.9006989 | 0.0884665 | 0.0200700 | 0.0129166 | 0.0855089 | 0.0142693 | 0.1182543 | 0.0579931 |
M1 | ULSMV | 50 | 10 | 0.5450000 | 0.6495413 | 0.9319071 | 0.0524389 | 0.9182885 | 0.0629266 | 0.0188332 | 0.0118942 | 0.0685087 | 0.0114979 | 0.1066408 | 0.0411526 |
M1 | ULSMV | 50 | 30 | 0.6556667 | 0.6578546 | 0.9716646 | 0.0332382 | 0.9659975 | 0.0398858 | 0.0107650 | 0.0136268 | 0.0577916 | 0.0087566 | 0.0875164 | 0.0195622 |
M1 | ULSMV | 100 | 5 | 0.5590000 | 0.5080501 | 0.9267744 | 0.0435493 | 0.9121292 | 0.0522592 | 0.0231327 | 0.0099313 | 0.0687324 | 0.0105225 | 0.0938491 | 0.0495554 |
M1 | ULSMV | 100 | 10 | 0.6566667 | 0.2994924 | 0.9289709 | 0.0355471 | 0.9147651 | 0.0426566 | 0.0225724 | 0.0102018 | 0.0590466 | 0.0079209 | 0.0772215 | 0.0266596 |
M1 | ULSMV | 100 | 30 | 0.7253333 | 0.4154412 | 0.9560404 | 0.0344288 | 0.9472485 | 0.0413145 | 0.0145168 | 0.0136608 | 0.0535876 | 0.0058511 | 0.0634259 | 0.0130710 |
M1 | ULSMV | 200 | 5 | 0.6723333 | 0.1333664 | 0.9296839 | 0.0274694 | 0.9156207 | 0.0329633 | 0.0253275 | 0.0078386 | 0.0593315 | 0.0076708 | 0.0715381 | 0.0359275 |
M1 | ULSMV | 200 | 10 | 0.7290000 | 0.0470965 | 0.9274715 | 0.0248166 | 0.9129658 | 0.0297799 | 0.0243513 | 0.0091773 | 0.0542042 | 0.0057894 | 0.0558310 | 0.0174003 |
M1 | ULSMV | 200 | 30 | 0.7666667 | 0.1873913 | 0.9371040 | 0.0287456 | 0.9245248 | 0.0344948 | 0.0181344 | 0.0122186 | 0.0514797 | 0.0041080 | 0.0465557 | 0.0088666 |
M1 | WLSMV | 30 | 5 | 0.2840000 | 0.8545888 | 0.9189596 | 0.0659712 | 0.9027516 | 0.0791655 | 0.0274477 | 0.0152448 | 0.0922661 | 0.0132521 | 0.1573806 | 0.0418333 |
M1 | WLSMV | 30 | 10 | 0.3893333 | 0.6915167 | 0.9393435 | 0.0423451 | 0.9272123 | 0.0508142 | 0.0246788 | 0.0111527 | 0.0711664 | 0.0096520 | 0.1506691 | 0.2482949 |
M1 | WLSMV | 30 | 30 | 0.4546667 | 0.5476540 | 0.9672782 | 0.0310901 | 0.9607339 | 0.0373081 | 0.0147945 | 0.0128011 | 0.0574748 | 0.0067499 | 0.1237206 | 0.0222551 |
M1 | WLSMV | 50 | 5 | 0.3663333 | 0.6323931 | 0.9240718 | 0.0514137 | 0.9088861 | 0.0616965 | 0.0284971 | 0.0123555 | 0.0778598 | 0.0108183 | 0.1265593 | 0.0471844 |
M1 | WLSMV | 50 | 10 | 0.4843333 | 0.2436339 | 0.9323828 | 0.0310196 | 0.9188594 | 0.0372236 | 0.0288184 | 0.0074252 | 0.0624854 | 0.0079416 | 0.1175497 | 0.0408589 |
M1 | WLSMV | 50 | 30 | 0.5536667 | 0.2829621 | 0.9532182 | 0.0248902 | 0.9438619 | 0.0298683 | 0.0209310 | 0.0100254 | 0.0537301 | 0.0053369 | 0.0954668 | 0.0157112 |
M1 | WLSMV | 100 | 5 | 0.4930000 | 0.2143340 | 0.9293181 | 0.0339205 | 0.9151817 | 0.0407046 | 0.0296656 | 0.0078239 | 0.0641684 | 0.0084442 | 0.1007401 | 0.0482194 |
M1 | WLSMV | 100 | 10 | 0.5560000 | 0.0053957 | 0.9314496 | 0.0218091 | 0.9177396 | 0.0261709 | 0.0311011 | 0.0049609 | 0.0555240 | 0.0060314 | 0.0833994 | 0.0248467 |
M1 | WLSMV | 100 | 30 | 0.6110000 | 0.0000000 | 0.9405006 | 0.0149149 | 0.9286007 | 0.0178979 | 0.0268681 | 0.0065361 | 0.0509208 | 0.0036706 | 0.0685730 | 0.0108172 |
M1 | WLSMV | 200 | 5 | 0.5983333 | 0.0027855 | 0.9304711 | 0.0220219 | 0.9165654 | 0.0264263 | 0.0308497 | 0.0050272 | 0.0565740 | 0.0064400 | 0.0770224 | 0.0356701 |
M1 | WLSMV | 200 | 10 | 0.6343333 | 0.0000000 | 0.9309639 | 0.0155415 | 0.9171567 | 0.0186498 | 0.0325573 | 0.0034691 | 0.0517302 | 0.0044779 | 0.0602821 | 0.0162349 |
M1 | WLSMV | 200 | 30 | 0.6380000 | 0.0000000 | 0.9352503 | 0.0109519 | 0.9223004 | 0.0131422 | 0.0307719 | 0.0043826 | 0.0494035 | 0.0025627 | 0.0502531 | 0.0078150 |
M2 | MLR | 30 | 5 | 0.5726667 | 0.4208382 | 0.8768868 | 0.0853363 | 0.8524864 | 0.1003233 | 0.0454019 | 0.0209482 | 0.0648371 | 0.0144530 | 0.2142905 | 0.0628831 |
M2 | MLR | 30 | 10 | 0.6846667 | 0.5141188 | 0.9394119 | 0.0418715 | 0.9272943 | 0.0502458 | 0.0291665 | 0.0146850 | 0.0418724 | 0.0056009 | 0.1845507 | 0.0423258 |
M2 | MLR | 30 | 30 | 0.8406667 | 0.4976209 | 0.9768239 | 0.0166290 | 0.9721887 | 0.0199548 | 0.0170544 | 0.0087010 | 0.0227204 | 0.0029506 | 0.1653603 | 0.0271548 |
M2 | MLR | 50 | 5 | 0.6833333 | 0.5975610 | 0.9424306 | 0.0455495 | 0.9309167 | 0.0546594 | 0.0279804 | 0.0169842 | 0.0500009 | 0.0068203 | 0.1759554 | 0.0528066 |
M2 | MLR | 50 | 10 | 0.7966667 | 0.5669456 | 0.9658055 | 0.0261056 | 0.9589666 | 0.0313268 | 0.0208794 | 0.0122474 | 0.0326685 | 0.0043425 | 0.1551570 | 0.0379620 |
M2 | MLR | 50 | 30 | 0.8966667 | 0.5613383 | 0.9868622 | 0.0113048 | 0.9842347 | 0.0135657 | 0.0119606 | 0.0075891 | 0.0176248 | 0.0022920 | 0.1348196 | 0.0212810 |
M2 | MLR | 100 | 5 | 0.8023333 | 0.5961778 | 0.9692922 | 0.0245319 | 0.9631507 | 0.0294383 | 0.0198589 | 0.0124892 | 0.0359699 | 0.0049588 | 0.1416916 | 0.0460302 |
M2 | MLR | 100 | 10 | 0.9093333 | 0.5546188 | 0.9800927 | 0.0172118 | 0.9761112 | 0.0206542 | 0.0152660 | 0.0103069 | 0.0232723 | 0.0030261 | 0.1217249 | 0.0302883 |
M2 | MLR | 100 | 30 | 0.9463333 | 0.5265939 | 0.9907999 | 0.0090406 | 0.9889599 | 0.0108487 | 0.0097267 | 0.0067564 | 0.0125287 | 0.0016545 | 0.1073089 | 0.0220481 |
M2 | MLR | 200 | 5 | 0.9153333 | 0.5149308 | 0.9783773 | 0.0182503 | 0.9740528 | 0.0219003 | 0.0163294 | 0.0112542 | 0.0261184 | 0.0039480 | 0.1155436 | 0.0394663 |
M2 | MLR | 200 | 10 | 0.9596667 | 0.4831539 | 0.9844525 | 0.0149561 | 0.9813430 | 0.0179473 | 0.0131158 | 0.0097141 | 0.0165422 | 0.0022726 | 0.0978743 | 0.0273643 |
M2 | MLR | 200 | 30 | 0.9700000 | 0.4402062 | 0.9921578 | 0.0084937 | 0.9905893 | 0.0101924 | 0.0088152 | 0.0064968 | 0.0088860 | 0.0011759 | 0.0886444 | 0.0262954 |
M2 | ULSMV | 30 | 5 | 0.3823333 | 0.9868074 | 0.9264214 | 0.0967748 | 0.9117057 | 0.1161297 | 0.0140636 | 0.0137196 | 0.0943324 | 0.0193981 | 0.1519312 | 0.0512032 |
M2 | ULSMV | 30 | 10 | 0.5730000 | 0.9784508 | 0.9668766 | 0.0581189 | 0.9602519 | 0.0697426 | 0.0081142 | 0.0099281 | 0.0643076 | 0.0165428 | 0.1384124 | 0.0502489 |
M2 | ULSMV | 30 | 30 | 0.7556667 | 0.9823555 | 0.9919844 | 0.0238393 | 0.9903813 | 0.0286072 | 0.0027527 | 0.0051926 | 0.0407429 | 0.0159208 | 0.1198659 | 0.0286560 |
M2 | ULSMV | 50 | 5 | 0.5250000 | 0.9180952 | 0.9427773 | 0.0663777 | 0.9313328 | 0.0796533 | 0.0151046 | 0.0127881 | 0.0711857 | 0.0144865 | 0.1260666 | 0.0516593 |
M2 | ULSMV | 50 | 10 | 0.7086667 | 0.8480715 | 0.9534984 | 0.0570345 | 0.9441981 | 0.0684414 | 0.0125772 | 0.0104281 | 0.0494179 | 0.0133196 | 0.1168586 | 0.0438318 |
M2 | ULSMV | 50 | 30 | 0.8646667 | 0.8430995 | 0.9749747 | 0.0531008 | 0.9699696 | 0.0637209 | 0.0053262 | 0.0075118 | 0.0329672 | 0.0135000 | 0.0961203 | 0.0203675 |
M2 | ULSMV | 100 | 5 | 0.7000000 | 0.7223810 | 0.9504737 | 0.0499822 | 0.9405685 | 0.0599786 | 0.0164645 | 0.0116254 | 0.0505291 | 0.0117531 | 0.1051609 | 0.0502177 |
M2 | ULSMV | 100 | 10 | 0.8826667 | 0.6076284 | 0.9470276 | 0.0591298 | 0.9364332 | 0.0709558 | 0.0146684 | 0.0113022 | 0.0361078 | 0.0105281 | 0.0888733 | 0.0273949 |
M2 | ULSMV | 100 | 30 | 0.9370000 | 0.6627535 | 0.9535552 | 0.0756336 | 0.9442662 | 0.0907603 | 0.0081699 | 0.0091489 | 0.0255416 | 0.0117089 | 0.0756964 | 0.0161622 |
M2 | ULSMV | 200 | 5 | 0.8963333 | 0.5135738 | 0.9537313 | 0.0467093 | 0.9444776 | 0.0560512 | 0.0165402 | 0.0123953 | 0.0368798 | 0.0097533 | 0.0855435 | 0.0362861 |
M2 | ULSMV | 200 | 10 | 0.9586667 | 0.4680111 | 0.9443404 | 0.0603178 | 0.9332085 | 0.0723814 | 0.0152573 | 0.0120317 | 0.0277382 | 0.0096519 | 0.0701240 | 0.0205928 |
M2 | ULSMV | 200 | 30 | 0.9706667 | 0.5065247 | 0.9369822 | 0.0862658 | 0.9243786 | 0.1035189 | 0.0102084 | 0.0095388 | 0.0208021 | 0.0107966 | 0.0619948 | 0.0168042 |
M2 | WLSMV | 30 | 5 | 0.3596667 | 0.9681051 | 0.9591080 | 0.0471423 | 0.9509296 | 0.0565707 | 0.0172070 | 0.0143739 | 0.0795665 | 0.0110994 | 0.1652995 | 0.0447009 |
M2 | WLSMV | 30 | 10 | 0.5296667 | 0.9836272 | 0.9857805 | 0.0205927 | 0.9829366 | 0.0247113 | 0.0089647 | 0.0096746 | 0.0519500 | 0.0071831 | 0.1501391 | 0.0438445 |
M2 | WLSMV | 30 | 30 | 0.7013333 | 0.9947719 | 0.9979767 | 0.0048825 | 0.9975720 | 0.0058590 | 0.0022790 | 0.0045687 | 0.0290990 | 0.0041329 | 0.1316784 | 0.0223058 |
M2 | WLSMV | 50 | 5 | 0.4976667 | 0.9296718 | 0.9689022 | 0.0329686 | 0.9626827 | 0.0395623 | 0.0158590 | 0.0123343 | 0.0615267 | 0.0085039 | 0.1346153 | 0.0486574 |
M2 | WLSMV | 50 | 10 | 0.6733333 | 0.9242574 | 0.9836566 | 0.0175404 | 0.9803879 | 0.0210485 | 0.0116228 | 0.0088297 | 0.0401239 | 0.0054389 | 0.1253863 | 0.0378966 |
M2 | WLSMV | 50 | 30 | 0.8186667 | 0.9429967 | 0.9964640 | 0.0065366 | 0.9957568 | 0.0078439 | 0.0037314 | 0.0051852 | 0.0222908 | 0.0030045 | 0.1055758 | 0.0168203 |
M2 | WLSMV | 100 | 5 | 0.6813333 | 0.7832681 | 0.9755103 | 0.0233066 | 0.9706123 | 0.0279680 | 0.0151498 | 0.0103333 | 0.0434504 | 0.0060392 | 0.1114324 | 0.0470169 |
M2 | WLSMV | 100 | 10 | 0.8400000 | 0.6801587 | 0.9834910 | 0.0176504 | 0.9801892 | 0.0211805 | 0.0123715 | 0.0085628 | 0.0286676 | 0.0037662 | 0.0949750 | 0.0249364 |
M2 | WLSMV | 100 | 30 | 0.9143333 | 0.7141816 | 0.9931811 | 0.0102629 | 0.9918173 | 0.0123155 | 0.0062363 | 0.0062334 | 0.0158115 | 0.0021682 | 0.0839499 | 0.0173962 |
M2 | WLSMV | 200 | 5 | 0.8676667 | 0.5532078 | 0.9771855 | 0.0227883 | 0.9726226 | 0.0273460 | 0.0148311 | 0.0102331 | 0.0312747 | 0.0046371 | 0.0896961 | 0.0343056 |
M2 | WLSMV | 200 | 10 | 0.9460000 | 0.4834390 | 0.9818385 | 0.0203680 | 0.9782062 | 0.0244416 | 0.0130322 | 0.0090693 | 0.0207342 | 0.0030618 | 0.0755724 | 0.0207490 |
M2 | WLSMV | 200 | 30 | 0.9696667 | 0.5084221 | 0.9909249 | 0.0123258 | 0.9891099 | 0.0147909 | 0.0080355 | 0.0064509 | 0.0113358 | 0.0015741 | 0.0697180 | 0.0210749 |
M12 | MLR | 30 | 5 | 0.5473333 | 0.2186358 | 0.8122564 | 0.1050549 | 0.7781211 | 0.1212436 | 0.0574015 | 0.0199415 | 0.0757239 | 0.0174724 | 0.2109369 | 0.0617553 |
M12 | MLR | 30 | 10 | 0.6766667 | 0.1108374 | 0.8698080 | 0.0551897 | 0.8458252 | 0.0653562 | 0.0451135 | 0.0126302 | 0.0574990 | 0.0079218 | 0.1825757 | 0.0435619 |
M12 | MLR | 30 | 30 | 0.8390000 | 0.0007946 | 0.9010196 | 0.0248010 | 0.8827864 | 0.0293697 | 0.0380411 | 0.0058893 | 0.0454899 | 0.0050897 | 0.1620194 | 0.0301549 |
M12 | MLR | 50 | 5 | 0.6670000 | 0.2353823 | 0.8780417 | 0.0621108 | 0.8555757 | 0.0735523 | 0.0433740 | 0.0152759 | 0.0632914 | 0.0087184 | 0.1715667 | 0.0518652 |
M12 | MLR | 50 | 10 | 0.7976667 | 0.0384455 | 0.8969962 | 0.0361292 | 0.8780218 | 0.0427846 | 0.0394144 | 0.0091658 | 0.0510261 | 0.0066060 | 0.1512124 | 0.0383161 |
M12 | MLR | 50 | 30 | 0.8956667 | 0.0000000 | 0.9113025 | 0.0177182 | 0.8949635 | 0.0209821 | 0.0353560 | 0.0044104 | 0.0431673 | 0.0041295 | 0.1296369 | 0.0221478 |
M12 | MLR | 100 | 5 | 0.8113333 | 0.0661463 | 0.9023798 | 0.0360181 | 0.8843972 | 0.0426530 | 0.0385858 | 0.0100967 | 0.0530380 | 0.0067296 | 0.1351073 | 0.0444233 |
M12 | MLR | 100 | 10 | 0.9163333 | 0.0007275 | 0.9096490 | 0.0227230 | 0.8930054 | 0.0269089 | 0.0363592 | 0.0065496 | 0.0458809 | 0.0051455 | 0.1159149 | 0.0294768 |
M12 | MLR | 100 | 30 | 0.9473333 | 0.0000000 | 0.9138584 | 0.0121888 | 0.8979902 | 0.0144341 | 0.0345671 | 0.0033846 | 0.0415303 | 0.0031746 | 0.1005420 | 0.0205126 |
M12 | MLR | 200 | 5 | 0.9263333 | 0.0021591 | 0.9104595 | 0.0226503 | 0.8939652 | 0.0268227 | 0.0366745 | 0.0076823 | 0.0467959 | 0.0053940 | 0.1081184 | 0.0371831 |
M12 | MLR | 200 | 10 | 0.9606667 | 0.0000000 | 0.9129963 | 0.0152327 | 0.8969693 | 0.0180388 | 0.0354119 | 0.0053128 | 0.0428842 | 0.0038452 | 0.0909054 | 0.0247797 |
M12 | MLR | 200 | 30 | 0.9716667 | 0.0000000 | 0.9147422 | 0.0085218 | 0.8990368 | 0.0100916 | 0.0342528 | 0.0028611 | 0.0406357 | 0.0024238 | 0.0808753 | 0.0234726 |
M12 | ULSMV | 30 | 5 | 0.3496667 | 0.9615014 | 0.8929173 | 0.1117543 | 0.8731916 | 0.1323406 | 0.0193149 | 0.0142984 | 0.1055940 | 0.0195633 | 0.1524434 | 0.0504126 |
M12 | ULSMV | 30 | 10 | 0.4960000 | 0.8633917 | 0.9349710 | 0.0729470 | 0.9229920 | 0.0863846 | 0.0150679 | 0.0129723 | 0.0797289 | 0.0153221 | 0.1413475 | 0.0526934 |
M12 | ULSMV | 30 | 30 | 0.6163333 | 0.7620335 | 0.9764866 | 0.0358736 | 0.9721552 | 0.0424819 | 0.0087562 | 0.0129682 | 0.0627361 | 0.0120926 | 0.1209981 | 0.0280917 |
M12 | ULSMV | 50 | 5 | 0.4676667 | 0.8068425 | 0.9056477 | 0.0780119 | 0.8882670 | 0.0923826 | 0.0220752 | 0.0129666 | 0.0849297 | 0.0143446 | 0.1270214 | 0.0549684 |
M12 | ULSMV | 50 | 10 | 0.5966667 | 0.5592179 | 0.9190078 | 0.0578230 | 0.9040882 | 0.0684746 | 0.0212568 | 0.0115508 | 0.0674124 | 0.0113188 | 0.1172690 | 0.0447423 |
M12 | ULSMV | 50 | 30 | 0.6913333 | 0.6142719 | 0.9644024 | 0.0393945 | 0.9578449 | 0.0466514 | 0.0122135 | 0.0136551 | 0.0570140 | 0.0083236 | 0.0942241 | 0.0197557 |
M12 | ULSMV | 100 | 5 | 0.5976667 | 0.3898494 | 0.9124454 | 0.0492565 | 0.8963169 | 0.0583301 | 0.0256472 | 0.0094146 | 0.0678399 | 0.0100662 | 0.1033590 | 0.0516531 |
M12 | ULSMV | 100 | 10 | 0.7076667 | 0.2190297 | 0.9156575 | 0.0441456 | 0.9001207 | 0.0522777 | 0.0245811 | 0.0097402 | 0.0580464 | 0.0073321 | 0.0852262 | 0.0272494 |
M12 | ULSMV | 100 | 30 | 0.7576667 | 0.3752750 | 0.9471744 | 0.0416849 | 0.9374434 | 0.0493636 | 0.0156615 | 0.0134813 | 0.0526453 | 0.0051173 | 0.0701375 | 0.0127914 |
M12 | ULSMV | 200 | 5 | 0.7306667 | 0.0903285 | 0.9168927 | 0.0353834 | 0.9015835 | 0.0419013 | 0.0273698 | 0.0077926 | 0.0581552 | 0.0072850 | 0.0809653 | 0.0372992 |
M12 | ULSMV | 200 | 10 | 0.7710000 | 0.0272374 | 0.9146034 | 0.0370768 | 0.8988724 | 0.0439067 | 0.0259418 | 0.0089017 | 0.0530784 | 0.0050690 | 0.0635525 | 0.0177569 |
M12 | ULSMV | 200 | 30 | 0.7956667 | 0.1051529 | 0.9249346 | 0.0379465 | 0.9111067 | 0.0449366 | 0.0190353 | 0.0116796 | 0.0502841 | 0.0031674 | 0.0537948 | 0.0098609 |
M12 | WLSMV | 30 | 5 | 0.3183333 | 0.8483563 | 0.9139667 | 0.0655161 | 0.8981185 | 0.0775849 | 0.0287698 | 0.0144873 | 0.0926543 | 0.0133104 | 0.1670900 | 0.0481952 |
M12 | WLSMV | 30 | 10 | 0.4580000 | 0.6924198 | 0.9377671 | 0.0430470 | 0.9263032 | 0.0509767 | 0.0249148 | 0.0110225 | 0.0707198 | 0.0095559 | 0.1509541 | 0.0467082 |
M12 | WLSMV | 30 | 30 | 0.5976667 | 0.5237033 | 0.9650444 | 0.0315736 | 0.9586052 | 0.0373898 | 0.0153373 | 0.0124542 | 0.0572708 | 0.0067354 | 0.1298915 | 0.0231663 |
M12 | WLSMV | 50 | 5 | 0.4196667 | 0.6084194 | 0.9200406 | 0.0514383 | 0.9053112 | 0.0609138 | 0.0295396 | 0.0118873 | 0.0778411 | 0.0110315 | 0.1343776 | 0.0497305 |
M12 | WLSMV | 50 | 10 | 0.5816667 | 0.2126074 | 0.9287980 | 0.0326966 | 0.9156819 | 0.0387197 | 0.0294168 | 0.0073772 | 0.0621519 | 0.0080141 | 0.1230980 | 0.0398964 |
M12 | WLSMV | 50 | 30 | 0.6866667 | 0.2509709 | 0.9500310 | 0.0265563 | 0.9408262 | 0.0314482 | 0.0214510 | 0.0097060 | 0.0535905 | 0.0052167 | 0.1005716 | 0.0167004 |
M12 | WLSMV | 100 | 5 | 0.5726667 | 0.1647264 | 0.9233434 | 0.0345696 | 0.9092224 | 0.0409377 | 0.0309663 | 0.0074938 | 0.0641541 | 0.0083080 | 0.1076600 | 0.0483367 |
M12 | WLSMV | 100 | 10 | 0.6970000 | 0.0043042 | 0.9268466 | 0.0249744 | 0.9133710 | 0.0295750 | 0.0317602 | 0.0051385 | 0.0554555 | 0.0060234 | 0.0892887 | 0.0255312 |
M12 | WLSMV | 100 | 30 | 0.7586667 | 0.0000000 | 0.9369300 | 0.0189741 | 0.9253118 | 0.0224693 | 0.0272624 | 0.0062509 | 0.0508182 | 0.0036739 | 0.0739779 | 0.0121518 |
M12 | WLSMV | 200 | 5 | 0.7156667 | 0.0023288 | 0.9254905 | 0.0245777 | 0.9117651 | 0.0291052 | 0.0317410 | 0.0053603 | 0.0563204 | 0.0065315 | 0.0839725 | 0.0361022 |
M12 | WLSMV | 200 | 10 | 0.7650000 | 0.0000000 | 0.9265558 | 0.0194881 | 0.9130267 | 0.0230780 | 0.0330855 | 0.0037924 | 0.0516664 | 0.0044090 | 0.0660142 | 0.0173355 |
M12 | WLSMV | 200 | 30 | 0.7790000 | 0.0000000 | 0.9318765 | 0.0147567 | 0.9193274 | 0.0174750 | 0.0309352 | 0.0041469 | 0.0493448 | 0.0025864 | 0.0557039 | 0.0103781 |
## make a copy of a to print into
a1 <- as_tibble(as.data.frame(matrix(NA, ncol=11,nrow=nrow(a))))
colnames(a1) <- c('Model', 'Estimation', "N2", "N1", "Prop.Use", "chi2", "CFI",'TLI', 'RMSEA', 'SRMRW', 'SRMRB')
i <- 1
for(i in 1:nrow(a)){
a1[i,5:11] <- unlist(c(
round(a[i,5],3), round(a[i,6],3),
paste0(round(a[i,7],3), ' (', round(a[i,8],2), ')'),
paste0(round(a[i,9],3), ' (', round(a[i,10],2), ')'),
paste0(round(a[i,11],3), ' (', round(a[i,12],2), ')'),
paste0(round(a[i,13],3), ' (', round(a[i,14],2), ')'),
paste0(round(a[i,15],3), ' (', round(a[i,16],2), ')')
))
}
a1[,1:4] <- a[,1:4]## add factors back
## Print out in tex
print(xtable(a1, digits = 3), booktabs = T, include.rownames = F)
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllllll}
\toprule
Model & Estimation & N2 & N1 & Prop.Use & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
C & MLR & 30 & 5 & 0.575 & 0.505 & 0.893 (0.08) & 0.872 (0.1) & 0.041 (0.02) & 0.064 (0.01) & 0.203 (0.06) \\
C & MLR & 30 & 10 & 0.685 & 0.618 & 0.952 (0.04) & 0.942 (0.05) & 0.025 (0.01) & 0.042 (0.01) & 0.171 (0.05) \\
C & MLR & 30 & 30 & 0.838 & 0.674 & 0.985 (0.01) & 0.982 (0.02) & 0.013 (0.01) & 0.023 (0) & 0.145 (0.04) \\
C & MLR & 50 & 5 & 0.677 & 0.734 & 0.957 (0.04) & 0.949 (0.05) & 0.022 (0.02) & 0.049 (0.01) & 0.16 (0.05) \\
C & MLR & 50 & 10 & 0.796 & 0.781 & 0.979 (0.02) & 0.975 (0.02) & 0.014 (0.01) & 0.032 (0) & 0.135 (0.04) \\
C & MLR & 50 & 30 & 0.902 & 0.847 & 0.994 (0.01) & 0.993 (0.01) & 0.007 (0.01) & 0.018 (0) & 0.111 (0.03) \\
C & MLR & 100 & 5 & 0.806 & 0.863 & 0.985 (0.02) & 0.982 (0.02) & 0.012 (0.01) & 0.035 (0) & 0.119 (0.05) \\
C & MLR & 100 & 10 & 0.92 & 0.909 & 0.993 (0.01) & 0.992 (0.01) & 0.007 (0.01) & 0.023 (0) & 0.096 (0.03) \\
C & MLR & 100 & 30 & 0.946 & 0.914 & 0.998 (0) & 0.997 (0) & 0.004 (0) & 0.012 (0) & 0.078 (0.02) \\
C & MLR & 200 & 5 & 0.923 & 0.917 & 0.994 (0.01) & 0.993 (0.01) & 0.007 (0.01) & 0.025 (0) & 0.088 (0.04) \\
C & MLR & 200 & 10 & 0.963 & 0.922 & 0.997 (0) & 0.997 (0) & 0.004 (0) & 0.016 (0) & 0.068 (0.02) \\
C & MLR & 200 & 30 & 0.975 & 0.937 & 0.999 (0) & 0.999 (0) & 0.002 (0) & 0.009 (0) & 0.055 (0.01) \\
C & ULSMV & 30 & 5 & 0.401 & 0.989 & 0.945 (0.09) & 0.935 (0.1) & 0.011 (0.01) & 0.094 (0.02) & 0.144 (0.05) \\
C & ULSMV & 30 & 10 & 0.573 & 0.994 & 0.983 (0.04) & 0.98 (0.05) & 0.005 (0.01) & 0.063 (0.02) & 0.131 (0.05) \\
C & ULSMV & 30 & 30 & 0.762 & 0.999 & 0.999 (0) & 0.999 (0) & 0.001 (0) & 0.039 (0.01) & 0.109 (0.03) \\
C & ULSMV & 50 & 5 & 0.532 & 0.977 & 0.965 (0.05) & 0.958 (0.06) & 0.01 (0.01) & 0.07 (0.01) & 0.119 (0.06) \\
C & ULSMV & 50 & 10 & 0.707 & 0.984 & 0.983 (0.03) & 0.98 (0.04) & 0.006 (0.01) & 0.047 (0.01) & 0.105 (0.04) \\
C & ULSMV & 50 & 30 & 0.88 & 0.995 & 0.999 (0) & 0.998 (0.01) & 0.001 (0) & 0.029 (0.01) & 0.081 (0.02) \\
C & ULSMV & 100 & 5 & 0.692 & 0.97 & 0.984 (0.02) & 0.98 (0.03) & 0.008 (0.01) & 0.048 (0.01) & 0.094 (0.05) \\
C & ULSMV & 100 & 10 & 0.873 & 0.965 & 0.991 (0.02) & 0.989 (0.02) & 0.005 (0.01) & 0.032 (0.01) & 0.073 (0.03) \\
C & ULSMV & 100 & 30 & 0.945 & 0.988 & 0.999 (0) & 0.998 (0.01) & 0.001 (0) & 0.02 (0.01) & 0.057 (0.02) \\
C & ULSMV & 200 & 5 & 0.875 & 0.951 & 0.993 (0.01) & 0.991 (0.01) & 0.005 (0.01) & 0.033 (0.01) & 0.07 (0.04) \\
C & ULSMV & 200 & 10 & 0.958 & 0.947 & 0.995 (0.01) & 0.994 (0.01) & 0.004 (0) & 0.023 (0.01) & 0.051 (0.02) \\
C & ULSMV & 200 & 30 & 0.974 & 0.979 & 0.998 (0) & 0.998 (0) & 0.001 (0) & 0.014 (0) & 0.04 (0.01) \\
C & WLSMV & 30 & 5 & 0.355 & 0.98 & 0.967 (0.04) & 0.96 (0.05) & 0.015 (0.01) & 0.079 (0.01) & 0.158 (0.05) \\
C & WLSMV & 30 & 10 & 0.508 & 0.99 & 0.99 (0.02) & 0.988 (0.02) & 0.007 (0.01) & 0.052 (0.01) & 0.143 (0.08) \\
C & WLSMV & 30 & 30 & 0.688 & 0.998 & 0.999 (0) & 0.998 (0) & 0.002 (0) & 0.029 (0) & 0.12 (0.03) \\
C & WLSMV & 50 & 5 & 0.47 & 0.97 & 0.979 (0.03) & 0.974 (0.03) & 0.012 (0.01) & 0.061 (0.01) & 0.125 (0.05) \\
C & WLSMV & 50 & 10 & 0.66 & 0.98 & 0.991 (0.01) & 0.989 (0.01) & 0.007 (0.01) & 0.04 (0.01) & 0.115 (0.04) \\
C & WLSMV & 50 & 30 & 0.82 & 0.996 & 0.999 (0) & 0.999 (0) & 0.002 (0) & 0.022 (0) & 0.09 (0.02) \\
C & WLSMV & 100 & 5 & 0.665 & 0.964 & 0.989 (0.01) & 0.987 (0.02) & 0.008 (0.01) & 0.043 (0.01) & 0.1 (0.05) \\
C & WLSMV & 100 & 10 & 0.824 & 0.966 & 0.996 (0.01) & 0.995 (0.01) & 0.006 (0.01) & 0.028 (0) & 0.078 (0.03) \\
C & WLSMV & 100 & 30 & 0.911 & 0.986 & 0.999 (0) & 0.999 (0) & 0.002 (0) & 0.015 (0) & 0.062 (0.01) \\
C & WLSMV & 200 & 5 & 0.849 & 0.948 & 0.995 (0.01) & 0.994 (0.01) & 0.006 (0.01) & 0.03 (0) & 0.073 (0.04) \\
C & WLSMV & 200 & 10 & 0.936 & 0.952 & 0.998 (0) & 0.997 (0) & 0.004 (0) & 0.02 (0) & 0.054 (0.02) \\
C & WLSMV & 200 & 30 & 0.973 & 0.978 & 1 (0) & 0.999 (0) & 0.001 (0) & 0.011 (0) & 0.043 (0.01) \\
M1 & MLR & 30 & 5 & 0.46 & 0.272 & 0.828 (0.1) & 0.794 (0.12) & 0.054 (0.02) & 0.076 (0.02) & 0.198 (0.06) \\
M1 & MLR & 30 & 10 & 0.583 & 0.14 & 0.88 (0.06) & 0.856 (0.07) & 0.043 (0.01) & 0.058 (0.01) & 0.168 (0.04) \\
M1 & MLR & 30 & 30 & 0.748 & 0.001 & 0.906 (0.03) & 0.887 (0.03) & 0.037 (0.01) & 0.046 (0.01) & 0.145 (0.03) \\
M1 & MLR & 50 & 5 & 0.558 & 0.329 & 0.898 (0.06) & 0.878 (0.07) & 0.038 (0.01) & 0.064 (0.01) & 0.157 (0.05) \\
M1 & MLR & 50 & 10 & 0.669 & 0.056 & 0.909 (0.04) & 0.891 (0.04) & 0.036 (0.01) & 0.052 (0.01) & 0.132 (0.04) \\
M1 & MLR & 50 & 30 & 0.842 & 0 & 0.915 (0.02) & 0.898 (0.03) & 0.035 (0) & 0.044 (0) & 0.113 (0.02) \\
M1 & MLR & 100 & 5 & 0.599 & 0.138 & 0.923 (0.04) & 0.908 (0.04) & 0.033 (0.01) & 0.054 (0.01) & 0.114 (0.04) \\
M1 & MLR & 100 & 10 & 0.782 & 0.001 & 0.922 (0.02) & 0.906 (0.03) & 0.034 (0.01) & 0.047 (0.01) & 0.096 (0.03) \\
M1 & MLR & 100 & 30 & 0.92 & 0 & 0.918 (0.01) & 0.902 (0.02) & 0.034 (0) & 0.042 (0) & 0.084 (0.01) \\
M1 & MLR & 200 & 5 & 0.649 & 0.006 & 0.929 (0.02) & 0.914 (0.03) & 0.031 (0.01) & 0.048 (0.01) & 0.084 (0.03) \\
M1 & MLR & 200 & 10 & 0.86 & 0 & 0.925 (0.02) & 0.91 (0.02) & 0.033 (0) & 0.044 (0) & 0.073 (0.02) \\
M1 & MLR & 200 & 30 & 0.946 & 0 & 0.919 (0.01) & 0.903 (0.01) & 0.034 (0) & 0.041 (0) & 0.065 (0.01) \\
M1 & ULSMV & 30 & 5 & 0.335 & 0.97 & 0.907 (0.1) & 0.889 (0.13) & 0.017 (0.01) & 0.105 (0.02) & 0.15 (0.11) \\
M1 & ULSMV & 30 & 10 & 0.475 & 0.89 & 0.946 (0.06) & 0.935 (0.08) & 0.013 (0.01) & 0.08 (0.01) & 0.134 (0.06) \\
M1 & ULSMV & 30 & 30 & 0.562 & 0.785 & 0.98 (0.03) & 0.976 (0.04) & 0.008 (0.01) & 0.063 (0.01) & 0.114 (0.03) \\
M1 & ULSMV & 50 & 5 & 0.447 & 0.858 & 0.917 (0.07) & 0.901 (0.09) & 0.02 (0.01) & 0.086 (0.01) & 0.118 (0.06) \\
M1 & ULSMV & 50 & 10 & 0.545 & 0.65 & 0.932 (0.05) & 0.918 (0.06) & 0.019 (0.01) & 0.069 (0.01) & 0.107 (0.04) \\
M1 & ULSMV & 50 & 30 & 0.656 & 0.658 & 0.972 (0.03) & 0.966 (0.04) & 0.011 (0.01) & 0.058 (0.01) & 0.088 (0.02) \\
M1 & ULSMV & 100 & 5 & 0.559 & 0.508 & 0.927 (0.04) & 0.912 (0.05) & 0.023 (0.01) & 0.069 (0.01) & 0.094 (0.05) \\
M1 & ULSMV & 100 & 10 & 0.657 & 0.299 & 0.929 (0.04) & 0.915 (0.04) & 0.023 (0.01) & 0.059 (0.01) & 0.077 (0.03) \\
M1 & ULSMV & 100 & 30 & 0.725 & 0.415 & 0.956 (0.03) & 0.947 (0.04) & 0.015 (0.01) & 0.054 (0.01) & 0.063 (0.01) \\
M1 & ULSMV & 200 & 5 & 0.672 & 0.133 & 0.93 (0.03) & 0.916 (0.03) & 0.025 (0.01) & 0.059 (0.01) & 0.072 (0.04) \\
M1 & ULSMV & 200 & 10 & 0.729 & 0.047 & 0.927 (0.02) & 0.913 (0.03) & 0.024 (0.01) & 0.054 (0.01) & 0.056 (0.02) \\
M1 & ULSMV & 200 & 30 & 0.767 & 0.187 & 0.937 (0.03) & 0.925 (0.03) & 0.018 (0.01) & 0.051 (0) & 0.047 (0.01) \\
M1 & WLSMV & 30 & 5 & 0.284 & 0.855 & 0.919 (0.07) & 0.903 (0.08) & 0.027 (0.02) & 0.092 (0.01) & 0.157 (0.04) \\
M1 & WLSMV & 30 & 10 & 0.389 & 0.692 & 0.939 (0.04) & 0.927 (0.05) & 0.025 (0.01) & 0.071 (0.01) & 0.151 (0.25) \\
M1 & WLSMV & 30 & 30 & 0.455 & 0.548 & 0.967 (0.03) & 0.961 (0.04) & 0.015 (0.01) & 0.057 (0.01) & 0.124 (0.02) \\
M1 & WLSMV & 50 & 5 & 0.366 & 0.632 & 0.924 (0.05) & 0.909 (0.06) & 0.028 (0.01) & 0.078 (0.01) & 0.127 (0.05) \\
M1 & WLSMV & 50 & 10 & 0.484 & 0.244 & 0.932 (0.03) & 0.919 (0.04) & 0.029 (0.01) & 0.062 (0.01) & 0.118 (0.04) \\
M1 & WLSMV & 50 & 30 & 0.554 & 0.283 & 0.953 (0.02) & 0.944 (0.03) & 0.021 (0.01) & 0.054 (0.01) & 0.095 (0.02) \\
M1 & WLSMV & 100 & 5 & 0.493 & 0.214 & 0.929 (0.03) & 0.915 (0.04) & 0.03 (0.01) & 0.064 (0.01) & 0.101 (0.05) \\
M1 & WLSMV & 100 & 10 & 0.556 & 0.005 & 0.931 (0.02) & 0.918 (0.03) & 0.031 (0) & 0.056 (0.01) & 0.083 (0.02) \\
M1 & WLSMV & 100 & 30 & 0.611 & 0 & 0.941 (0.01) & 0.929 (0.02) & 0.027 (0.01) & 0.051 (0) & 0.069 (0.01) \\
M1 & WLSMV & 200 & 5 & 0.598 & 0.003 & 0.93 (0.02) & 0.917 (0.03) & 0.031 (0.01) & 0.057 (0.01) & 0.077 (0.04) \\
M1 & WLSMV & 200 & 10 & 0.634 & 0 & 0.931 (0.02) & 0.917 (0.02) & 0.033 (0) & 0.052 (0) & 0.06 (0.02) \\
M1 & WLSMV & 200 & 30 & 0.638 & 0 & 0.935 (0.01) & 0.922 (0.01) & 0.031 (0) & 0.049 (0) & 0.05 (0.01) \\
M2 & MLR & 30 & 5 & 0.573 & 0.421 & 0.877 (0.09) & 0.852 (0.1) & 0.045 (0.02) & 0.065 (0.01) & 0.214 (0.06) \\
M2 & MLR & 30 & 10 & 0.685 & 0.514 & 0.939 (0.04) & 0.927 (0.05) & 0.029 (0.01) & 0.042 (0.01) & 0.185 (0.04) \\
M2 & MLR & 30 & 30 & 0.841 & 0.498 & 0.977 (0.02) & 0.972 (0.02) & 0.017 (0.01) & 0.023 (0) & 0.165 (0.03) \\
M2 & MLR & 50 & 5 & 0.683 & 0.598 & 0.942 (0.05) & 0.931 (0.05) & 0.028 (0.02) & 0.05 (0.01) & 0.176 (0.05) \\
M2 & MLR & 50 & 10 & 0.797 & 0.567 & 0.966 (0.03) & 0.959 (0.03) & 0.021 (0.01) & 0.033 (0) & 0.155 (0.04) \\
M2 & MLR & 50 & 30 & 0.897 & 0.561 & 0.987 (0.01) & 0.984 (0.01) & 0.012 (0.01) & 0.018 (0) & 0.135 (0.02) \\
M2 & MLR & 100 & 5 & 0.802 & 0.596 & 0.969 (0.02) & 0.963 (0.03) & 0.02 (0.01) & 0.036 (0) & 0.142 (0.05) \\
M2 & MLR & 100 & 10 & 0.909 & 0.555 & 0.98 (0.02) & 0.976 (0.02) & 0.015 (0.01) & 0.023 (0) & 0.122 (0.03) \\
M2 & MLR & 100 & 30 & 0.946 & 0.527 & 0.991 (0.01) & 0.989 (0.01) & 0.01 (0.01) & 0.013 (0) & 0.107 (0.02) \\
M2 & MLR & 200 & 5 & 0.915 & 0.515 & 0.978 (0.02) & 0.974 (0.02) & 0.016 (0.01) & 0.026 (0) & 0.116 (0.04) \\
M2 & MLR & 200 & 10 & 0.96 & 0.483 & 0.984 (0.01) & 0.981 (0.02) & 0.013 (0.01) & 0.017 (0) & 0.098 (0.03) \\
M2 & MLR & 200 & 30 & 0.97 & 0.44 & 0.992 (0.01) & 0.991 (0.01) & 0.009 (0.01) & 0.009 (0) & 0.089 (0.03) \\
M2 & ULSMV & 30 & 5 & 0.382 & 0.987 & 0.926 (0.1) & 0.912 (0.12) & 0.014 (0.01) & 0.094 (0.02) & 0.152 (0.05) \\
M2 & ULSMV & 30 & 10 & 0.573 & 0.978 & 0.967 (0.06) & 0.96 (0.07) & 0.008 (0.01) & 0.064 (0.02) & 0.138 (0.05) \\
M2 & ULSMV & 30 & 30 & 0.756 & 0.982 & 0.992 (0.02) & 0.99 (0.03) & 0.003 (0.01) & 0.041 (0.02) & 0.12 (0.03) \\
M2 & ULSMV & 50 & 5 & 0.525 & 0.918 & 0.943 (0.07) & 0.931 (0.08) & 0.015 (0.01) & 0.071 (0.01) & 0.126 (0.05) \\
M2 & ULSMV & 50 & 10 & 0.709 & 0.848 & 0.953 (0.06) & 0.944 (0.07) & 0.013 (0.01) & 0.049 (0.01) & 0.117 (0.04) \\
M2 & ULSMV & 50 & 30 & 0.865 & 0.843 & 0.975 (0.05) & 0.97 (0.06) & 0.005 (0.01) & 0.033 (0.01) & 0.096 (0.02) \\
M2 & ULSMV & 100 & 5 & 0.7 & 0.722 & 0.95 (0.05) & 0.941 (0.06) & 0.016 (0.01) & 0.051 (0.01) & 0.105 (0.05) \\
M2 & ULSMV & 100 & 10 & 0.883 & 0.608 & 0.947 (0.06) & 0.936 (0.07) & 0.015 (0.01) & 0.036 (0.01) & 0.089 (0.03) \\
M2 & ULSMV & 100 & 30 & 0.937 & 0.663 & 0.954 (0.08) & 0.944 (0.09) & 0.008 (0.01) & 0.026 (0.01) & 0.076 (0.02) \\
M2 & ULSMV & 200 & 5 & 0.896 & 0.514 & 0.954 (0.05) & 0.944 (0.06) & 0.017 (0.01) & 0.037 (0.01) & 0.086 (0.04) \\
M2 & ULSMV & 200 & 10 & 0.959 & 0.468 & 0.944 (0.06) & 0.933 (0.07) & 0.015 (0.01) & 0.028 (0.01) & 0.07 (0.02) \\
M2 & ULSMV & 200 & 30 & 0.971 & 0.507 & 0.937 (0.09) & 0.924 (0.1) & 0.01 (0.01) & 0.021 (0.01) & 0.062 (0.02) \\
M2 & WLSMV & 30 & 5 & 0.36 & 0.968 & 0.959 (0.05) & 0.951 (0.06) & 0.017 (0.01) & 0.08 (0.01) & 0.165 (0.04) \\
M2 & WLSMV & 30 & 10 & 0.53 & 0.984 & 0.986 (0.02) & 0.983 (0.02) & 0.009 (0.01) & 0.052 (0.01) & 0.15 (0.04) \\
M2 & WLSMV & 30 & 30 & 0.701 & 0.995 & 0.998 (0) & 0.998 (0.01) & 0.002 (0) & 0.029 (0) & 0.132 (0.02) \\
M2 & WLSMV & 50 & 5 & 0.498 & 0.93 & 0.969 (0.03) & 0.963 (0.04) & 0.016 (0.01) & 0.062 (0.01) & 0.135 (0.05) \\
M2 & WLSMV & 50 & 10 & 0.673 & 0.924 & 0.984 (0.02) & 0.98 (0.02) & 0.012 (0.01) & 0.04 (0.01) & 0.125 (0.04) \\
M2 & WLSMV & 50 & 30 & 0.819 & 0.943 & 0.996 (0.01) & 0.996 (0.01) & 0.004 (0.01) & 0.022 (0) & 0.106 (0.02) \\
M2 & WLSMV & 100 & 5 & 0.681 & 0.783 & 0.976 (0.02) & 0.971 (0.03) & 0.015 (0.01) & 0.043 (0.01) & 0.111 (0.05) \\
M2 & WLSMV & 100 & 10 & 0.84 & 0.68 & 0.983 (0.02) & 0.98 (0.02) & 0.012 (0.01) & 0.029 (0) & 0.095 (0.02) \\
M2 & WLSMV & 100 & 30 & 0.914 & 0.714 & 0.993 (0.01) & 0.992 (0.01) & 0.006 (0.01) & 0.016 (0) & 0.084 (0.02) \\
M2 & WLSMV & 200 & 5 & 0.868 & 0.553 & 0.977 (0.02) & 0.973 (0.03) & 0.015 (0.01) & 0.031 (0) & 0.09 (0.03) \\
M2 & WLSMV & 200 & 10 & 0.946 & 0.483 & 0.982 (0.02) & 0.978 (0.02) & 0.013 (0.01) & 0.021 (0) & 0.076 (0.02) \\
M2 & WLSMV & 200 & 30 & 0.97 & 0.508 & 0.991 (0.01) & 0.989 (0.01) & 0.008 (0.01) & 0.011 (0) & 0.07 (0.02) \\
M12 & MLR & 30 & 5 & 0.547 & 0.219 & 0.812 (0.11) & 0.778 (0.12) & 0.057 (0.02) & 0.076 (0.02) & 0.211 (0.06) \\
M12 & MLR & 30 & 10 & 0.677 & 0.111 & 0.87 (0.06) & 0.846 (0.07) & 0.045 (0.01) & 0.057 (0.01) & 0.183 (0.04) \\
M12 & MLR & 30 & 30 & 0.839 & 0.001 & 0.901 (0.02) & 0.883 (0.03) & 0.038 (0.01) & 0.045 (0.01) & 0.162 (0.03) \\
M12 & MLR & 50 & 5 & 0.667 & 0.235 & 0.878 (0.06) & 0.856 (0.07) & 0.043 (0.02) & 0.063 (0.01) & 0.172 (0.05) \\
M12 & MLR & 50 & 10 & 0.798 & 0.038 & 0.897 (0.04) & 0.878 (0.04) & 0.039 (0.01) & 0.051 (0.01) & 0.151 (0.04) \\
M12 & MLR & 50 & 30 & 0.896 & 0 & 0.911 (0.02) & 0.895 (0.02) & 0.035 (0) & 0.043 (0) & 0.13 (0.02) \\
M12 & MLR & 100 & 5 & 0.811 & 0.066 & 0.902 (0.04) & 0.884 (0.04) & 0.039 (0.01) & 0.053 (0.01) & 0.135 (0.04) \\
M12 & MLR & 100 & 10 & 0.916 & 0.001 & 0.91 (0.02) & 0.893 (0.03) & 0.036 (0.01) & 0.046 (0.01) & 0.116 (0.03) \\
M12 & MLR & 100 & 30 & 0.947 & 0 & 0.914 (0.01) & 0.898 (0.01) & 0.035 (0) & 0.042 (0) & 0.101 (0.02) \\
M12 & MLR & 200 & 5 & 0.926 & 0.002 & 0.91 (0.02) & 0.894 (0.03) & 0.037 (0.01) & 0.047 (0.01) & 0.108 (0.04) \\
M12 & MLR & 200 & 10 & 0.961 & 0 & 0.913 (0.02) & 0.897 (0.02) & 0.035 (0.01) & 0.043 (0) & 0.091 (0.02) \\
M12 & MLR & 200 & 30 & 0.972 & 0 & 0.915 (0.01) & 0.899 (0.01) & 0.034 (0) & 0.041 (0) & 0.081 (0.02) \\
M12 & ULSMV & 30 & 5 & 0.35 & 0.962 & 0.893 (0.11) & 0.873 (0.13) & 0.019 (0.01) & 0.106 (0.02) & 0.152 (0.05) \\
M12 & ULSMV & 30 & 10 & 0.496 & 0.863 & 0.935 (0.07) & 0.923 (0.09) & 0.015 (0.01) & 0.08 (0.02) & 0.141 (0.05) \\
M12 & ULSMV & 30 & 30 & 0.616 & 0.762 & 0.976 (0.04) & 0.972 (0.04) & 0.009 (0.01) & 0.063 (0.01) & 0.121 (0.03) \\
M12 & ULSMV & 50 & 5 & 0.468 & 0.807 & 0.906 (0.08) & 0.888 (0.09) & 0.022 (0.01) & 0.085 (0.01) & 0.127 (0.05) \\
M12 & ULSMV & 50 & 10 & 0.597 & 0.559 & 0.919 (0.06) & 0.904 (0.07) & 0.021 (0.01) & 0.067 (0.01) & 0.117 (0.04) \\
M12 & ULSMV & 50 & 30 & 0.691 & 0.614 & 0.964 (0.04) & 0.958 (0.05) & 0.012 (0.01) & 0.057 (0.01) & 0.094 (0.02) \\
M12 & ULSMV & 100 & 5 & 0.598 & 0.39 & 0.912 (0.05) & 0.896 (0.06) & 0.026 (0.01) & 0.068 (0.01) & 0.103 (0.05) \\
M12 & ULSMV & 100 & 10 & 0.708 & 0.219 & 0.916 (0.04) & 0.9 (0.05) & 0.025 (0.01) & 0.058 (0.01) & 0.085 (0.03) \\
M12 & ULSMV & 100 & 30 & 0.758 & 0.375 & 0.947 (0.04) & 0.937 (0.05) & 0.016 (0.01) & 0.053 (0.01) & 0.07 (0.01) \\
M12 & ULSMV & 200 & 5 & 0.731 & 0.09 & 0.917 (0.04) & 0.902 (0.04) & 0.027 (0.01) & 0.058 (0.01) & 0.081 (0.04) \\
M12 & ULSMV & 200 & 10 & 0.771 & 0.027 & 0.915 (0.04) & 0.899 (0.04) & 0.026 (0.01) & 0.053 (0.01) & 0.064 (0.02) \\
M12 & ULSMV & 200 & 30 & 0.796 & 0.105 & 0.925 (0.04) & 0.911 (0.04) & 0.019 (0.01) & 0.05 (0) & 0.054 (0.01) \\
M12 & WLSMV & 30 & 5 & 0.318 & 0.848 & 0.914 (0.07) & 0.898 (0.08) & 0.029 (0.01) & 0.093 (0.01) & 0.167 (0.05) \\
M12 & WLSMV & 30 & 10 & 0.458 & 0.692 & 0.938 (0.04) & 0.926 (0.05) & 0.025 (0.01) & 0.071 (0.01) & 0.151 (0.05) \\
M12 & WLSMV & 30 & 30 & 0.598 & 0.524 & 0.965 (0.03) & 0.959 (0.04) & 0.015 (0.01) & 0.057 (0.01) & 0.13 (0.02) \\
M12 & WLSMV & 50 & 5 & 0.42 & 0.608 & 0.92 (0.05) & 0.905 (0.06) & 0.03 (0.01) & 0.078 (0.01) & 0.134 (0.05) \\
M12 & WLSMV & 50 & 10 & 0.582 & 0.213 & 0.929 (0.03) & 0.916 (0.04) & 0.029 (0.01) & 0.062 (0.01) & 0.123 (0.04) \\
M12 & WLSMV & 50 & 30 & 0.687 & 0.251 & 0.95 (0.03) & 0.941 (0.03) & 0.021 (0.01) & 0.054 (0.01) & 0.101 (0.02) \\
M12 & WLSMV & 100 & 5 & 0.573 & 0.165 & 0.923 (0.03) & 0.909 (0.04) & 0.031 (0.01) & 0.064 (0.01) & 0.108 (0.05) \\
M12 & WLSMV & 100 & 10 & 0.697 & 0.004 & 0.927 (0.02) & 0.913 (0.03) & 0.032 (0.01) & 0.055 (0.01) & 0.089 (0.03) \\
M12 & WLSMV & 100 & 30 & 0.759 & 0 & 0.937 (0.02) & 0.925 (0.02) & 0.027 (0.01) & 0.051 (0) & 0.074 (0.01) \\
M12 & WLSMV & 200 & 5 & 0.716 & 0.002 & 0.925 (0.02) & 0.912 (0.03) & 0.032 (0.01) & 0.056 (0.01) & 0.084 (0.04) \\
M12 & WLSMV & 200 & 10 & 0.765 & 0 & 0.927 (0.02) & 0.913 (0.02) & 0.033 (0) & 0.052 (0) & 0.066 (0.02) \\
M12 & WLSMV & 200 & 30 & 0.779 & 0 & 0.932 (0.01) & 0.919 (0.02) & 0.031 (0) & 0.049 (0) & 0.056 (0.01) \\
\bottomrule
\end{tabular}
\end{table}
## Now, create MANY subset tables to breakdown these relationships
## loop around these iterators
for(M in mods){
for(E in ests){
### subset tothe model (M) and estimator (E)
#M <- 'C'
#E <- 'MLR'
cat('\n\n ===============================\n')
cat('\nModel:\t', M)
cat('\nEstimator:\t', E, '\n')
sub_dat <- mydata[ mydata$Model == M & mydata$Estimator == E,]
a <- sub_dat %>%
group_by(ss_l1, ss_l2, icc_ov, icc_lv) %>%
summarise(
N = n(),
chi2=mean(Chi2_pvalue_decision, na.rm = T),
CFI.m =mean(CFI, na.rm = T), CFI.sd =sd(CFI, na.rm = T),
TLI.m =mean(TLI, na.rm = T), TLI.sd =sd(TLI, na.rm = T),
RMSEA.m =mean(RMSEA, na.rm = T), RMSEA.sd =sd(RMSEA, na.rm = T),
SRMRW.m =mean(SRMRW, na.rm = T), SRMRW.sd =sd(SRMRW, na.rm = T),
SRMRB.m =mean(SRMRB, na.rm = T), SRMRB.sd =sd(SRMRB, na.rm = T)
)
#print(xtable(a, digits = 3), booktabs = T, include.rownames = F)
## Now, create subsets of this results matrix for outputting into small(ish) tables
## Subset by ICC conditions
ICCO <- unique(a$icc_ov)
ICCL <- unique(a$icc_lv)
icco <- ICCO[1]
iccl <- ICCL[1]
for(icco in ICCO){
for(iccl in ICCL){
### subset tothe model (M) and estimator (E)
#M <- 'C'
#E <- 'MLR'
cat('\n===============================\n')
cat('\nModel:\t', M)
cat('\nEstimator:\t', E)
cat('\nICC Obs. Var.:\t', icco)
cat('\nICC Lat. Var.:\t', iccl,'\n')
a_s <- filter(a, icc_ov == icco, icc_lv == iccl)
## make a copy of a to print into
a1 <- as_tibble(as.data.frame(matrix(NA, ncol=9,nrow=nrow(a_s))))
colnames(a1) <- c('N2', 'N1', 'Num_Rep', "chi2", "CFI",'TLI', 'RMSEA', 'SRMRW', 'SRMRB')
i <- 1
for(i in 1:nrow(a_s)){
a1[i,3:9] <- unlist(c(
round(a_s[i,5],2),
round(a_s[i,6],2),
paste0(round(a_s[i,7],2), '(', round(a_s[i,8],2), ')'),
paste0(round(a_s[i,9],2), '(', round(a_s[i,10],2), ')'),
paste0(round(a_s[i,11],2), '(', round(a_s[i,12],2), ')'),
paste0(round(a_s[i,13],2), '(', round(a_s[i,14],2), ')'),
paste0(round(a_s[i,15],2), '(', round(a_s[i,16],2), ')')
))
}
a1[,1:2] <- a_s[,c(2,1)]## add factors back with diff. order
## Print out in tex
print(xtable(a1,
caption = paste0('Summary of Fit Statistics Across Conditions: Model ',
M,', Estimator ',E,', ICC_O ',icco,' and ICC_L ', iccl)),
booktabs = T, include.rownames = F)
}
}## End subset table printing
}
} ## End loops..
===============================
Model: C
Estimator: MLR
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 261 & 0.35 & 0.88(0.09) & 0.85(0.11) & 0.05(0.02) & 0.06(0.01) & 0.32(0.05) \\
50 & 5 & 280 & 0.53 & 0.94(0.04) & 0.93(0.05) & 0.03(0.02) & 0.05(0.01) & 0.27(0.04) \\
100 & 5 & 376 & 0.7 & 0.98(0.02) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.22(0.03) \\
200 & 5 & 476 & 0.9 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.17(0.02) \\
30 & 10 & 304 & 0.44 & 0.94(0.04) & 0.93(0.04) & 0.03(0.01) & 0.04(0.01) & 0.25(0.04) \\
50 & 10 & 416 & 0.68 & 0.97(0.02) & 0.97(0.03) & 0.02(0.01) & 0.03(0) & 0.21(0.03) \\
100 & 10 & 485 & 0.88 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.15(0.02) \\
200 & 10 & 500 & 0.91 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.11(0.02) \\
30 & 30 & 475 & 0.61 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.19(0.03) \\
50 & 30 & 498 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.14(0.02) \\
100 & 30 & 500 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.1(0.01) \\
200 & 30 & 500 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 186 & 0.44 & 0.93(0.04) & 0.92(0.05) & 0.04(0.02) & 0.07(0.01) & 0.16(0.04) \\
50 & 5 & 250 & 0.69 & 0.97(0.03) & 0.97(0.03) & 0.03(0.02) & 0.05(0.01) & 0.12(0.02) \\
100 & 5 & 363 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.09(0.02) \\
200 & 5 & 478 & 0.9 & 1(0) & 1(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 247 & 0.49 & 0.96(0.03) & 0.95(0.03) & 0.03(0.01) & 0.04(0.01) & 0.12(0.03) \\
50 & 10 & 381 & 0.71 & 0.98(0.02) & 0.98(0.02) & 0.02(0.01) & 0.03(0) & 0.1(0.02) \\
100 & 10 & 494 & 0.89 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\
200 & 10 & 500 & 0.92 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 469 & 0.62 & 0.99(0.01) & 0.98(0.01) & 0.01(0.01) & 0.02(0) & 0.1(0.02) \\
50 & 30 & 497 & 0.85 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\
100 & 30 & 500 & 0.9 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
200 & 30 & 500 & 0.93 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.04(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 234 & 0.5 & 0.88(0.09) & 0.85(0.11) & 0.04(0.02) & 0.06(0.01) & 0.23(0.03) \\
50 & 5 & 274 & 0.75 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.05(0.01) & 0.19(0.02) \\
100 & 5 & 380 & 0.91 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.03(0) & 0.14(0.02) \\
200 & 5 & 445 & 0.9 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.09(0.01) \\
30 & 10 & 292 & 0.63 & 0.95(0.04) & 0.93(0.05) & 0.02(0.01) & 0.04(0.01) & 0.2(0.02) \\
50 & 10 & 349 & 0.8 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.03(0) & 0.15(0.02) \\
100 & 10 & 445 & 0.88 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.11(0.01) \\
200 & 10 & 491 & 0.93 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\
30 & 30 & 344 & 0.7 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\
50 & 30 & 415 & 0.82 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.13(0.01) \\
100 & 30 & 481 & 0.92 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.09(0.01) \\
200 & 30 & 499 & 0.92 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 396 & 0.49 & 0.91(0.06) & 0.89(0.08) & 0.04(0.02) & 0.07(0.01) & 0.17(0.03) \\
50 & 5 & 486 & 0.73 & 0.96(0.04) & 0.95(0.04) & 0.02(0.02) & 0.05(0.01) & 0.13(0.02) \\
100 & 5 & 498 & 0.91 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.09(0.01) \\
200 & 5 & 500 & 0.93 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 494 & 0.65 & 0.96(0.04) & 0.95(0.04) & 0.02(0.01) & 0.04(0.01) & 0.15(0.02) \\
50 & 10 & 500 & 0.82 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.03(0) & 0.11(0.02) \\
100 & 10 & 500 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.08(0.01) \\
200 & 10 & 500 & 0.93 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 500 & 0.71 & 0.99(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.13(0.02) \\
50 & 30 & 499 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 498 & 0.92 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.07(0.01) \\
200 & 30 & 498 & 0.95 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 180 & 0.59 & 0.87(0.1) & 0.84(0.12) & 0.04(0.02) & 0.06(0.01) & 0.19(0.02) \\
50 & 5 & 244 & 0.83 & 0.95(0.05) & 0.94(0.05) & 0.02(0.01) & 0.05(0.01) & 0.15(0.02) \\
100 & 5 & 300 & 0.92 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.1(0.01) \\
200 & 5 & 372 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\
30 & 10 & 223 & 0.71 & 0.95(0.05) & 0.94(0.06) & 0.02(0.01) & 0.04(0.01) & 0.17(0.02) \\
50 & 10 & 241 & 0.85 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.13(0.01) \\
100 & 10 & 336 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.09(0.01) \\
200 & 10 & 398 & 0.93 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 230 & 0.7 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\
50 & 30 & 296 & 0.89 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.01) \\
100 & 30 & 358 & 0.93 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\
200 & 30 & 429 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 469 & 0.6 & 0.89(0.08) & 0.87(0.1) & 0.04(0.02) & 0.06(0.01) & 0.17(0.03) \\
50 & 5 & 498 & 0.82 & 0.96(0.04) & 0.95(0.05) & 0.02(0.02) & 0.05(0.01) & 0.13(0.02) \\
100 & 5 & 500 & 0.88 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0) & 0.09(0.01) \\
200 & 5 & 499 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.06(0.01) \\
30 & 10 & 494 & 0.71 & 0.95(0.04) & 0.95(0.05) & 0.02(0.01) & 0.04(0.01) & 0.15(0.02) \\
50 & 10 & 500 & 0.83 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.12(0.02) \\
100 & 10 & 500 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.08(0.01) \\
200 & 10 & 500 & 0.92 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 497 & 0.73 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.14(0.02) \\
50 & 30 & 500 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.11(0.01) \\
100 & 30 & 500 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\
200 & 30 & 500 & 0.93 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator MLR, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: ULSMV
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 15 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.07(0.01) & 0.35(0.06) \\
50 & 5 & 69 & 0.99 & 0.99(0.02) & 0.99(0.03) & 0.01(0.01) & 0.06(0.01) & 0.32(0.13) \\
100 & 5 & 247 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.22(0.05) \\
200 & 5 & 445 & 0.95 & 1(0.01) & 1(0.01) & 0(0.01) & 0.03(0) & 0.15(0.03) \\
30 & 10 & 176 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.25(0.06) \\
50 & 10 & 334 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.19(0.04) \\
100 & 10 & 466 & 0.97 & 1(0) & 1(0.01) & 0.01(0.01) & 0.03(0) & 0.13(0.02) \\
200 & 10 & 499 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.09(0.01) \\
30 & 30 & 451 & 1 & 1(0) & 1(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.02) \\
50 & 30 & 494 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.11(0.01) \\
100 & 30 & 500 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\
200 & 30 & 500 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 18 & 1 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.09(0.01) & 0.13(0.03) \\
50 & 5 & 46 & 1 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.07(0.01) & 0.1(0.02) \\
100 & 5 & 157 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.07(0.02) \\
200 & 5 & 364 & 0.96 & 0.99(0.01) & 0.99(0.01) & 0(0.01) & 0.03(0) & 0.05(0.01) \\
30 & 10 & 67 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.06(0.01) & 0.09(0.02) \\
50 & 10 & 193 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.04(0.01) & 0.07(0.02) \\
100 & 10 & 377 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0(0.01) & 0.03(0) & 0.05(0.01) \\
200 & 10 & 489 & 0.96 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.03(0.01) \\
30 & 30 & 259 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.07(0.02) \\
50 & 30 & 422 & 1 & 1(0) & 1(0.01) & 0(0) & 0.03(0) & 0.05(0.01) \\
100 & 30 & 485 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.04(0.01) \\
200 & 30 & 500 & 0.98 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.02(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 178 & 0.99 & 0.96(0.05) & 0.96(0.06) & 0.01(0.01) & 0.08(0.01) & 0.21(0.04) \\
50 & 5 & 271 & 0.97 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.16(0.03) \\
100 & 5 & 379 & 0.98 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\
200 & 5 & 440 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
30 & 10 & 287 & 0.99 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 10 & 349 & 0.98 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\
100 & 10 & 442 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
200 & 10 & 490 & 0.95 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 345 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.03(0) & 0.13(0.01) \\
50 & 30 & 424 & 0.99 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 480 & 0.97 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 500 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 365 & 0.99 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.09(0.01) & 0.13(0.03) \\
50 & 5 & 469 & 0.97 & 0.97(0.04) & 0.97(0.05) & 0.01(0.01) & 0.07(0.01) & 0.1(0.02) \\
100 & 5 & 495 & 0.97 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.05(0.01) & 0.07(0.01) \\
200 & 5 & 500 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.05(0.01) \\
30 & 10 & 476 & 0.99 & 0.98(0.04) & 0.98(0.05) & 0(0.01) & 0.06(0.01) & 0.1(0.02) \\
50 & 10 & 497 & 0.97 & 0.98(0.03) & 0.98(0.03) & 0.01(0.01) & 0.05(0.01) & 0.08(0.01) \\
100 & 10 & 500 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0(0.01) & 0.04(0) & 0.05(0.01) \\
200 & 10 & 500 & 0.95 & 1(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.04(0.01) \\
30 & 30 & 495 & 1 & 1(0) & 1(0) & 0(0) & 0.04(0.01) & 0.09(0.02) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.07(0.01) \\
100 & 30 & 500 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.05(0.01) \\
200 & 30 & 500 & 0.99 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.03(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 162 & 0.97 & 0.91(0.13) & 0.89(0.15) & 0.01(0.01) & 0.09(0.02) & 0.15(0.02) \\
50 & 5 & 241 & 0.96 & 0.95(0.07) & 0.94(0.08) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 5 & 298 & 0.98 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 5 & 377 & 0.95 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 224 & 1 & 0.97(0.06) & 0.97(0.07) & 0(0.01) & 0.06(0.01) & 0.13(0.02) \\
50 & 10 & 249 & 0.99 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\
100 & 10 & 334 & 0.95 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
200 & 10 & 395 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 241 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.12(0.01) \\
50 & 30 & 299 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.09(0.01) \\
100 & 30 & 369 & 1 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 423 & 0.99 & 1(0.01) & 1(0.01) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 465 & 1 & 0.94(0.1) & 0.92(0.11) & 0.01(0.01) & 0.11(0.02) & 0.12(0.02) \\
50 & 5 & 499 & 0.99 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.08(0.01) & 0.09(0.01) \\
100 & 5 & 500 & 0.97 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.06(0.01) \\
200 & 5 & 500 & 0.95 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.04(0.01) \\
30 & 10 & 489 & 1 & 0.99(0.04) & 0.99(0.05) & 0(0) & 0.08(0.01) & 0.1(0.02) \\
50 & 10 & 500 & 0.99 & 0.98(0.04) & 0.98(0.05) & 0(0.01) & 0.06(0.01) & 0.08(0.01) \\
100 & 10 & 500 & 0.97 & 0.98(0.03) & 0.98(0.03) & 0(0.01) & 0.04(0.01) & 0.06(0.01) \\
200 & 10 & 500 & 0.94 & 0.99(0.01) & 0.99(0.02) & 0(0) & 0.03(0) & 0.04(0) \\
30 & 30 & 495 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.01) & 0.09(0.01) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.05(0.01) & 0.07(0.01) \\
100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.05(0.01) \\
200 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: WLSMV
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 24 & 1 & 0.99(0.02) & 0.99(0.03) & 0.01(0.01) & 0.07(0.01) & 0.34(0.05) \\
50 & 5 & 73 & 1 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.29(0.05) \\
100 & 5 & 278 & 0.95 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.22(0.05) \\
200 & 5 & 450 & 0.95 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.14(0.03) \\
30 & 10 & 182 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.26(0.18) \\
50 & 10 & 363 & 0.96 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.19(0.04) \\
100 & 10 & 473 & 0.97 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.12(0.02) \\
200 & 10 & 500 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\
30 & 30 & 445 & 0.99 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.02) \\
50 & 30 & 495 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.11(0.01) \\
100 & 30 & 500 & 0.96 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\
200 & 30 & 500 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 12 & 1 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.07(0.01) & 0.16(0.04) \\
50 & 5 & 26 & 1 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.06(0.01) & 0.12(0.02) \\
100 & 5 & 119 & 0.96 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.02) \\
200 & 5 & 307 & 0.96 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 40 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.12(0.03) \\
50 & 10 & 109 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.08(0.02) \\
100 & 10 & 259 & 0.97 & 1(0.01) & 1(0.01) & 0(0.01) & 0.03(0) & 0.06(0.01) \\
200 & 10 & 428 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0.01) \\
30 & 30 & 117 & 1 & 1(0) & 1(0.01) & 0(0) & 0.03(0) & 0.08(0.01) \\
50 & 30 & 276 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.06(0.01) \\
100 & 30 & 406 & 0.98 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0.01) \\
200 & 30 & 491 & 0.97 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.03(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 125 & 0.98 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.07(0.01) & 0.21(0.06) \\
50 & 5 & 202 & 0.96 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.15(0.02) \\
100 & 5 & 341 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\
200 & 5 & 431 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
30 & 10 & 209 & 0.97 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.05(0.01) & 0.15(0.02) \\
50 & 10 & 309 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\
100 & 10 & 423 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
200 & 10 & 490 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 318 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.13(0.01) \\
50 & 30 & 408 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 481 & 0.98 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 499 & 0.96 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 337 & 0.97 & 0.97(0.05) & 0.96(0.05) & 0.02(0.01) & 0.08(0.01) & 0.15(0.02) \\
50 & 5 & 434 & 0.96 & 0.98(0.03) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.11(0.02) \\
100 & 5 & 491 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 5 & 500 & 0.95 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.05(0.01) \\
30 & 10 & 427 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.12(0.02) \\
50 & 10 & 488 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.09(0.01) \\
100 & 10 & 499 & 0.97 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
200 & 10 & 500 & 0.96 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.04(0.01) \\
30 & 30 & 475 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.1(0.01) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\
100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
200 & 30 & 500 & 0.99 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.04(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 112 & 0.96 & 0.95(0.05) & 0.94(0.06) & 0.02(0.01) & 0.08(0.01) & 0.16(0.02) \\
50 & 5 & 179 & 0.97 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 5 & 266 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 5 & 358 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 179 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.13(0.02) \\
50 & 10 & 212 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\
100 & 10 & 319 & 0.97 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
200 & 10 & 389 & 0.96 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 216 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.01) \\
50 & 30 & 280 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.09(0.01) \\
100 & 30 & 346 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 430 & 1 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: C
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 455 & 0.99 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.08(0.01) & 0.14(0.02) \\
50 & 5 & 496 & 0.98 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 5 & 499 & 0.95 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.07(0.01) \\
200 & 5 & 500 & 0.95 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.05(0.01) \\
30 & 10 & 487 & 1 & 0.99(0.01) & 0.99(0.02) & 0(0.01) & 0.05(0.01) & 0.12(0.02) \\
50 & 10 & 500 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0.01) & 0.09(0.01) \\
100 & 10 & 500 & 0.96 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
200 & 10 & 500 & 0.95 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 494 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.11(0.01) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\
100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.06(0.01) \\
200 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.04(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model C, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: MLR
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 160 & 0.11 & 0.78(0.14) & 0.74(0.16) & 0.07(0.02) & 0.08(0.03) & 0.32(0.06) \\
50 & 5 & 150 & 0.15 & 0.88(0.07) & 0.85(0.08) & 0.05(0.01) & 0.06(0.01) & 0.29(0.05) \\
100 & 5 & 133 & 0.05 & 0.91(0.03) & 0.89(0.04) & 0.04(0.01) & 0.05(0.01) & 0.24(0.04) \\
200 & 5 & 121 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.19(0.03) \\
30 & 10 & 191 & 0.04 & 0.86(0.08) & 0.83(0.09) & 0.05(0.02) & 0.06(0.01) & 0.25(0.04) \\
50 & 10 & 224 & 0.01 & 0.9(0.03) & 0.88(0.04) & 0.04(0.01) & 0.05(0.01) & 0.21(0.03) \\
100 & 10 & 276 & 0 & 0.92(0.02) & 0.9(0.03) & 0.03(0.01) & 0.05(0) & 0.16(0.02) \\
200 & 10 & 317 & 0 & 0.92(0.01) & 0.91(0.02) & 0.03(0) & 0.04(0) & 0.12(0.02) \\
30 & 30 & 376 & 0 & 0.9(0.03) & 0.88(0.04) & 0.04(0.01) & 0.05(0.01) & 0.18(0.03) \\
50 & 30 & 423 & 0 & 0.91(0.04) & 0.89(0.05) & 0.04(0.01) & 0.04(0) & 0.14(0.02) \\
100 & 30 & 476 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.1(0.01) \\
200 & 30 & 495 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 133 & 0.12 & 0.88(0.06) & 0.85(0.07) & 0.06(0.02) & 0.08(0.01) & 0.16(0.03) \\
50 & 5 & 160 & 0.15 & 0.92(0.04) & 0.91(0.04) & 0.05(0.01) & 0.07(0.01) & 0.13(0.03) \\
100 & 5 & 137 & 0.02 & 0.95(0.02) & 0.93(0.02) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\
200 & 5 & 125 & 0 & 0.95(0.01) & 0.94(0.02) & 0.03(0.01) & 0.05(0.01) & 0.08(0.01) \\
30 & 10 & 182 & 0.05 & 0.9(0.04) & 0.88(0.05) & 0.05(0.01) & 0.06(0.01) & 0.13(0.03) \\
50 & 10 & 257 & 0.01 & 0.92(0.02) & 0.91(0.03) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\
100 & 10 & 381 & 0 & 0.94(0.01) & 0.92(0.02) & 0.04(0) & 0.05(0) & 0.08(0.01) \\
200 & 10 & 448 & 0 & 0.94(0.01) & 0.93(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 426 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0.01) & 0.05(0.01) & 0.11(0.02) \\
50 & 30 & 488 & 0 & 0.92(0.01) & 0.91(0.02) & 0.04(0) & 0.05(0) & 0.09(0.02) \\
100 & 30 & 499 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 500 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 195 & 0.27 & 0.8(0.12) & 0.76(0.14) & 0.05(0.02) & 0.07(0.02) & 0.23(0.03) \\
50 & 5 & 247 & 0.36 & 0.89(0.06) & 0.87(0.08) & 0.04(0.01) & 0.06(0.01) & 0.19(0.02) \\
100 & 5 & 297 & 0.19 & 0.92(0.04) & 0.9(0.05) & 0.03(0.01) & 0.05(0.01) & 0.14(0.02) \\
200 & 5 & 349 & 0.01 & 0.92(0.02) & 0.9(0.03) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\
30 & 10 & 271 & 0.14 & 0.87(0.06) & 0.84(0.08) & 0.04(0.01) & 0.06(0.01) & 0.19(0.03) \\
50 & 10 & 317 & 0.07 & 0.9(0.04) & 0.88(0.05) & 0.04(0.01) & 0.05(0.01) & 0.15(0.02) \\
100 & 10 & 381 & 0.01 & 0.91(0.03) & 0.89(0.03) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\
200 & 10 & 444 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.07(0.01) \\
30 & 30 & 309 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 30 & 369 & 0 & 0.91(0.02) & 0.89(0.02) & 0.03(0) & 0.04(0) & 0.12(0.01) \\
100 & 30 & 445 & 0 & 0.91(0.01) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
200 & 30 & 471 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 313 & 0.26 & 0.85(0.08) & 0.83(0.09) & 0.05(0.02) & 0.08(0.01) & 0.17(0.03) \\
50 & 5 & 409 & 0.31 & 0.91(0.05) & 0.89(0.06) & 0.04(0.01) & 0.07(0.01) & 0.14(0.02) \\
100 & 5 & 453 & 0.1 & 0.93(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
200 & 5 & 495 & 0.01 & 0.94(0.02) & 0.93(0.02) & 0.03(0) & 0.05(0.01) & 0.07(0.01) \\
30 & 10 & 439 & 0.12 & 0.89(0.04) & 0.87(0.05) & 0.04(0.01) & 0.06(0.01) & 0.15(0.02) \\
50 & 10 & 470 & 0.04 & 0.92(0.03) & 0.9(0.04) & 0.04(0.01) & 0.05(0.01) & 0.12(0.02) \\
100 & 10 & 495 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0.01) & 0.09(0.01) \\
200 & 10 & 500 & 0 & 0.93(0.01) & 0.91(0.01) & 0.03(0) & 0.04(0) & 0.07(0.01) \\
30 & 30 & 467 & 0 & 0.91(0.02) & 0.89(0.03) & 0.04(0.01) & 0.05(0) & 0.13(0.02) \\
50 & 30 & 492 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.11(0.02) \\
100 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
200 & 30 & 499 & 0 & 0.92(0.01) & 0.91(0.01) & 0.03(0) & 0.04(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 191 & 0.34 & 0.8(0.1) & 0.76(0.13) & 0.05(0.02) & 0.07(0.01) & 0.19(0.02) \\
50 & 5 & 251 & 0.42 & 0.89(0.07) & 0.87(0.08) & 0.03(0.01) & 0.06(0.01) & 0.15(0.02) \\
100 & 5 & 282 & 0.23 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\
200 & 5 & 357 & 0.01 & 0.91(0.03) & 0.9(0.03) & 0.03(0.01) & 0.05(0.01) & 0.07(0.01) \\
30 & 10 & 221 & 0.22 & 0.88(0.06) & 0.85(0.08) & 0.04(0.01) & 0.06(0.01) & 0.17(0.02) \\
50 & 10 & 255 & 0.09 & 0.9(0.04) & 0.88(0.05) & 0.03(0.01) & 0.05(0.01) & 0.13(0.01) \\
100 & 10 & 314 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0.01) & 0.04(0) & 0.09(0.01) \\
200 & 10 & 370 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
30 & 30 & 216 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0) & 0.05(0.01) & 0.15(0.02) \\
50 & 30 & 266 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.01) \\
100 & 30 & 340 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
200 & 30 & 373 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 387 & 0.37 & 0.84(0.09) & 0.8(0.11) & 0.05(0.02) & 0.07(0.01) & 0.17(0.02) \\
50 & 5 & 456 & 0.4 & 0.9(0.06) & 0.88(0.07) & 0.04(0.01) & 0.06(0.01) & 0.13(0.02) \\
100 & 5 & 494 & 0.15 & 0.92(0.03) & 0.9(0.04) & 0.03(0.01) & 0.05(0.01) & 0.09(0.01) \\
200 & 5 & 500 & 0 & 0.93(0.02) & 0.91(0.03) & 0.03(0) & 0.05(0.01) & 0.07(0.01) \\
30 & 10 & 444 & 0.2 & 0.88(0.07) & 0.86(0.08) & 0.04(0.01) & 0.06(0.01) & 0.15(0.02) \\
50 & 10 & 484 & 0.09 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.12(0.02) \\
100 & 10 & 499 & 0 & 0.92(0.02) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
200 & 10 & 500 & 0 & 0.92(0.02) & 0.91(0.02) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
30 & 30 & 450 & 0 & 0.91(0.03) & 0.89(0.03) & 0.03(0.01) & 0.04(0) & 0.14(0.02) \\
50 & 30 & 488 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.11(0.01) \\
100 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
200 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator MLR, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: ULSMV
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 19 & 1 & 0.96(0.05) & 0.95(0.06) & 0.02(0.02) & 0.09(0.01) & 0.52(0.68) \\
50 & 5 & 54 & 0.65 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.32(0.14) \\
100 & 5 & 190 & 0.09 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.22(0.05) \\
200 & 5 & 337 & 0 & 0.92(0.02) & 0.91(0.03) & 0.04(0.01) & 0.05(0.01) & 0.14(0.03) \\
30 & 10 & 154 & 0.44 & 0.93(0.04) & 0.92(0.04) & 0.03(0.01) & 0.07(0.01) & 0.26(0.12) \\
50 & 10 & 236 & 0.05 & 0.92(0.03) & 0.91(0.04) & 0.04(0.01) & 0.06(0.01) & 0.19(0.04) \\
100 & 10 & 361 & 0 & 0.92(0.02) & 0.91(0.03) & 0.04(0.01) & 0.05(0.01) & 0.13(0.02) \\
200 & 10 & 417 & 0 & 0.92(0.01) & 0.91(0.02) & 0.04(0) & 0.05(0) & 0.09(0.01) \\
30 & 30 & 342 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0.01) & 0.05(0.01) & 0.15(0.02) \\
50 & 30 & 393 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.11(0.01) \\
100 & 30 & 439 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.08(0.01) \\
200 & 30 & 472 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 6 & 1 & 0.97(0.05) & 0.96(0.06) & 0.01(0.01) & 0.09(0.02) & 0.13(0.04) \\
50 & 5 & 11 & 0.55 & 0.91(0.06) & 0.89(0.07) & 0.03(0.01) & 0.09(0.01) & 0.1(0.03) \\
100 & 5 & 13 & 0.31 & 0.92(0.04) & 0.9(0.05) & 0.03(0.01) & 0.07(0.01) & 0.07(0.01) \\
200 & 5 & 1 & 0 & 0.95(NA) & 0.94(NA) & 0.02(NA) & 0.06(NA) & 0.04(NA) \\
30 & 10 & 9 & 0.78 & 0.91(0.08) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.09(0.02) \\
50 & 10 & 10 & 0.2 & 0.88(0.05) & 0.85(0.06) & 0.03(0.01) & 0.07(0.01) & 0.07(0.02) \\
100 & 10 & 1 & 0 & 0.9(NA) & 0.88(NA) & 0.03(NA) & 0.05(NA) & 0.06(NA) \\
30 & 30 & 4 & 0.5 & 0.92(0.05) & 0.91(0.05) & 0.02(0.01) & 0.06(0) & 0.08(0.03) \\
50 & 30 & 1 & 0 & 0.82(NA) & 0.78(NA) & 0.02(NA) & 0.06(NA) & 0.06(NA) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 168 & 0.93 & 0.91(0.08) & 0.9(0.09) & 0.02(0.01) & 0.09(0.01) & 0.21(0.04) \\
50 & 5 & 244 & 0.76 & 0.93(0.05) & 0.91(0.06) & 0.02(0.01) & 0.07(0.01) & 0.15(0.03) \\
100 & 5 & 334 & 0.3 & 0.93(0.04) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
200 & 5 & 418 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
30 & 10 & 256 & 0.82 & 0.92(0.05) & 0.91(0.06) & 0.02(0.01) & 0.07(0.01) & 0.15(0.02) \\
50 & 10 & 326 & 0.38 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 10 & 401 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\
200 & 10 & 462 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 316 & 0.93 & 0.97(0.03) & 0.96(0.03) & 0.01(0.01) & 0.06(0.01) & 0.13(0.01) \\
50 & 30 & 388 & 0.3 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0) & 0.1(0.01) \\
100 & 30 & 459 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 481 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 263 & 0.97 & 0.91(0.09) & 0.9(0.11) & 0.02(0.01) & 0.1(0.01) & 0.13(0.03) \\
50 & 5 & 329 & 0.79 & 0.91(0.07) & 0.89(0.08) & 0.02(0.01) & 0.09(0.01) & 0.1(0.02) \\
100 & 5 & 354 & 0.4 & 0.92(0.04) & 0.9(0.05) & 0.03(0.01) & 0.07(0.01) & 0.07(0.01) \\
200 & 5 & 411 & 0.01 & 0.92(0.03) & 0.9(0.03) & 0.03(0) & 0.06(0.01) & 0.05(0.01) \\
30 & 10 & 323 & 0.95 & 0.93(0.07) & 0.91(0.09) & 0.02(0.01) & 0.08(0.01) & 0.11(0.02) \\
50 & 10 & 329 & 0.67 & 0.91(0.06) & 0.89(0.07) & 0.02(0.01) & 0.07(0.01) & 0.08(0.01) \\
100 & 10 & 385 & 0.08 & 0.91(0.04) & 0.89(0.04) & 0.02(0) & 0.06(0.01) & 0.06(0.01) \\
200 & 10 & 429 & 0 & 0.9(0.02) & 0.88(0.03) & 0.02(0) & 0.06(0) & 0.05(0.01) \\
30 & 30 & 333 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.07(0.01) & 0.09(0.01) \\
50 & 30 & 397 & 0.98 & 0.98(0.03) & 0.98(0.03) & 0(0) & 0.06(0.01) & 0.07(0.01) \\
100 & 30 & 417 & 0.11 & 0.93(0.03) & 0.92(0.03) & 0.01(0) & 0.06(0) & 0.05(0.01) \\
200 & 30 & 458 & 0 & 0.9(0.02) & 0.88(0.02) & 0.02(0) & 0.05(0) & 0.04(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:49 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 162 & 0.97 & 0.88(0.13) & 0.85(0.16) & 0.02(0.01) & 0.1(0.02) & 0.15(0.02) \\
50 & 5 & 246 & 0.94 & 0.91(0.08) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.11(0.01) \\
100 & 5 & 292 & 0.77 & 0.93(0.05) & 0.92(0.06) & 0.02(0.01) & 0.06(0.01) & 0.08(0.01) \\
200 & 5 & 350 & 0.34 & 0.94(0.03) & 0.93(0.03) & 0.02(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 238 & 0.99 & 0.95(0.07) & 0.94(0.09) & 0.01(0.01) & 0.07(0.01) & 0.13(0.01) \\
50 & 10 & 257 & 0.93 & 0.94(0.06) & 0.92(0.07) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 10 & 325 & 0.66 & 0.94(0.04) & 0.93(0.04) & 0.01(0.01) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 379 & 0.12 & 0.94(0.02) & 0.93(0.02) & 0.02(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 239 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.01) & 0.12(0.01) \\
50 & 30 & 300 & 1 & 1(0) & 1(0.01) & 0(0) & 0.05(0) & 0.09(0.01) \\
100 & 30 & 361 & 0.99 & 0.98(0.02) & 0.98(0.02) & 0(0) & 0.05(0) & 0.06(0.01) \\
200 & 30 & 389 & 0.23 & 0.96(0.01) & 0.95(0.02) & 0.01(0) & 0.05(0) & 0.05(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 386 & 0.99 & 0.91(0.11) & 0.89(0.13) & 0.01(0.01) & 0.12(0.02) & 0.12(0.02) \\
50 & 5 & 457 & 0.95 & 0.92(0.08) & 0.9(0.1) & 0.02(0.01) & 0.09(0.01) & 0.09(0.01) \\
100 & 5 & 494 & 0.73 & 0.93(0.05) & 0.91(0.06) & 0.02(0.01) & 0.08(0.01) & 0.06(0.01) \\
200 & 5 & 500 & 0.27 & 0.93(0.03) & 0.92(0.03) & 0.02(0) & 0.07(0.01) & 0.05(0.01) \\
30 & 10 & 445 & 1 & 0.98(0.06) & 0.97(0.07) & 0(0.01) & 0.09(0.01) & 0.1(0.02) \\
50 & 10 & 477 & 0.97 & 0.95(0.06) & 0.94(0.07) & 0.01(0.01) & 0.08(0.01) & 0.08(0.01) \\
100 & 10 & 497 & 0.68 & 0.94(0.04) & 0.92(0.05) & 0.01(0.01) & 0.07(0.01) & 0.06(0.01) \\
200 & 10 & 500 & 0.12 & 0.93(0.03) & 0.92(0.03) & 0.02(0) & 0.06(0.01) & 0.04(0) \\
30 & 30 & 453 & 1 & 1(0) & 1(0) & 0(0) & 0.08(0.01) & 0.09(0.01) \\
50 & 30 & 488 & 1 & 1(0) & 1(0) & 0(0) & 0.07(0.01) & 0.07(0.01) \\
100 & 30 & 500 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.06(0.01) & 0.05(0.01) \\
200 & 30 & 500 & 0.68 & 0.97(0.02) & 0.96(0.02) & 0.01(0) & 0.06(0) & 0.04(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: WLSMV
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 20 & 0.9 & 0.94(0.06) & 0.93(0.07) & 0.02(0.02) & 0.09(0.01) & 0.33(0.04) \\
50 & 5 & 63 & 0.68 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.28(0.05) \\
100 & 5 & 201 & 0.2 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.21(0.04) \\
200 & 5 & 354 & 0 & 0.93(0.02) & 0.91(0.03) & 0.03(0.01) & 0.05(0.01) & 0.14(0.02) \\
30 & 10 & 144 & 0.51 & 0.93(0.04) & 0.92(0.05) & 0.03(0.01) & 0.07(0.01) & 0.3(0.69) \\
50 & 10 & 280 & 0.15 & 0.93(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.19(0.04) \\
100 & 10 & 370 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0.01) & 0.12(0.02) \\
200 & 10 & 437 & 0 & 0.93(0.01) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.09(0.01) \\
30 & 30 & 339 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0.01) & 0.15(0.02) \\
50 & 30 & 414 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.11(0.01) \\
100 & 30 & 449 & 0 & 0.93(0.01) & 0.91(0.01) & 0.03(0) & 0.05(0) & 0.08(0.01) \\
200 & 30 & 481 & 0 & 0.93(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 4 & 1 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.08(0.01) & 0.14(0.05) \\
50 & 5 & 3 & 0 & 0.86(0.01) & 0.83(0.01) & 0.04(0) & 0.09(0.01) & 0.14(0.07) \\
100 & 5 & 5 & 0.4 & 0.93(0.04) & 0.91(0.05) & 0.03(0.01) & 0.06(0.01) & 0.08(0.02) \\
30 & 10 & 5 & 0.4 & 0.91(0.06) & 0.9(0.07) & 0.03(0.01) & 0.07(0.01) & 0.14(0.03) \\
50 & 10 & 3 & 0 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.07(0.02) & 0.1(0.03) \\
30 & 30 & 2 & 0.5 & 0.96(0.03) & 0.95(0.04) & 0.02(0.01) & 0.05(0.01) & 0.08(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 114 & 0.87 & 0.92(0.07) & 0.9(0.08) & 0.03(0.02) & 0.09(0.01) & 0.2(0.03) \\
50 & 5 & 191 & 0.59 & 0.92(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.15(0.02) \\
100 & 5 & 311 & 0.21 & 0.93(0.03) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
200 & 5 & 408 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.07(0.01) \\
30 & 10 & 196 & 0.51 & 0.92(0.05) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.15(0.02) \\
50 & 10 & 290 & 0.13 & 0.93(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 10 & 379 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\
200 & 10 & 460 & 0 & 0.94(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 271 & 0.12 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.06(0.01) & 0.13(0.01) \\
50 & 30 & 371 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.1(0.01) \\
100 & 30 & 446 & 0 & 0.94(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 483 & 0 & 0.94(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 226 & 0.81 & 0.91(0.07) & 0.9(0.08) & 0.03(0.02) & 0.09(0.01) & 0.15(0.03) \\
50 & 5 & 245 & 0.56 & 0.92(0.06) & 0.9(0.07) & 0.03(0.01) & 0.08(0.01) & 0.11(0.02) \\
100 & 5 & 231 & 0.18 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\
200 & 5 & 222 & 0 & 0.93(0.02) & 0.91(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 246 & 0.56 & 0.93(0.04) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.13(0.02) \\
50 & 10 & 219 & 0.15 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.09(0.01) \\
100 & 10 & 174 & 0 & 0.92(0.03) & 0.9(0.03) & 0.03(0.01) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 140 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 199 & 0.8 & 0.97(0.02) & 0.97(0.02) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\
50 & 30 & 185 & 0.04 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0.01) & 0.08(0.01) \\
100 & 30 & 129 & 0 & 0.93(0.01) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
200 & 30 & 83 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 127 & 0.82 & 0.91(0.07) & 0.89(0.08) & 0.03(0.02) & 0.09(0.01) & 0.15(0.02) \\
50 & 5 & 197 & 0.71 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.11(0.01) \\
100 & 5 & 268 & 0.28 & 0.94(0.03) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\
200 & 5 & 330 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 178 & 0.8 & 0.95(0.04) & 0.93(0.05) & 0.02(0.01) & 0.07(0.01) & 0.13(0.02) \\
50 & 10 & 216 & 0.3 & 0.94(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 10 & 288 & 0 & 0.94(0.02) & 0.92(0.02) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 370 & 0 & 0.94(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 201 & 0.99 & 0.99(0.01) & 0.99(0.02) & 0(0.01) & 0.06(0.01) & 0.12(0.01) \\
50 & 30 & 271 & 0.37 & 0.97(0.01) & 0.96(0.02) & 0.01(0) & 0.05(0.01) & 0.09(0.01) \\
100 & 30 & 336 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.06(0.01) \\
200 & 30 & 371 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M1
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 361 & 0.89 & 0.93(0.06) & 0.91(0.07) & 0.03(0.01) & 0.09(0.01) & 0.14(0.02) \\
50 & 5 & 400 & 0.66 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.1(0.01) \\
100 & 5 & 463 & 0.2 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.07(0.01) & 0.07(0.01) \\
200 & 5 & 481 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.05(0.01) \\
30 & 10 & 399 & 0.88 & 0.96(0.04) & 0.95(0.05) & 0.02(0.01) & 0.07(0.01) & 0.12(0.02) \\
50 & 10 & 445 & 0.4 & 0.94(0.03) & 0.93(0.04) & 0.03(0.01) & 0.06(0.01) & 0.09(0.01) \\
100 & 10 & 457 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 496 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 352 & 1 & 1(0) & 1(0.01) & 0(0) & 0.06(0.01) & 0.11(0.01) \\
50 & 30 & 420 & 0.86 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.06(0.01) & 0.09(0.01) \\
100 & 30 & 473 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.06(0.01) \\
200 & 30 & 496 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M1, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: MLR
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 248 & 0.35 & 0.87(0.11) & 0.84(0.12) & 0.05(0.02) & 0.06(0.03) & 0.33(0.06) \\
50 & 5 & 281 & 0.52 & 0.94(0.04) & 0.93(0.05) & 0.03(0.02) & 0.05(0.01) & 0.28(0.04) \\
100 & 5 & 382 & 0.69 & 0.98(0.02) & 0.97(0.03) & 0.02(0.01) & 0.03(0) & 0.23(0.03) \\
200 & 5 & 463 & 0.84 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.18(0.03) \\
30 & 10 & 290 & 0.42 & 0.94(0.04) & 0.92(0.05) & 0.03(0.01) & 0.04(0.01) & 0.26(0.04) \\
50 & 10 & 401 & 0.6 & 0.97(0.02) & 0.96(0.03) & 0.02(0.01) & 0.03(0) & 0.22(0.03) \\
100 & 10 & 483 & 0.81 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.17(0.02) \\
200 & 10 & 500 & 0.79 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.02) \\
30 & 30 & 468 & 0.56 & 0.98(0.01) & 0.98(0.02) & 0.02(0.01) & 0.02(0) & 0.2(0.03) \\
50 & 30 & 498 & 0.72 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.15(0.02) \\
100 & 30 & 500 & 0.74 & 1(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.12(0.01) \\
200 & 30 & 500 & 0.59 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.09(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 191 & 0.2 & 0.89(0.06) & 0.87(0.07) & 0.06(0.02) & 0.07(0.01) & 0.21(0.05) \\
50 & 5 & 275 & 0.2 & 0.93(0.03) & 0.91(0.04) & 0.04(0.01) & 0.05(0.01) & 0.18(0.03) \\
100 & 5 & 386 & 0.09 & 0.95(0.02) & 0.94(0.03) & 0.03(0.01) & 0.04(0) & 0.16(0.03) \\
200 & 5 & 487 & 0 & 0.96(0.01) & 0.95(0.02) & 0.03(0.01) & 0.03(0) & 0.14(0.02) \\
30 & 10 & 265 & 0.15 & 0.92(0.04) & 0.91(0.04) & 0.04(0.01) & 0.04(0.01) & 0.17(0.04) \\
50 & 10 & 403 & 0.09 & 0.94(0.02) & 0.93(0.03) & 0.03(0.01) & 0.04(0) & 0.16(0.03) \\
100 & 10 & 495 & 0 & 0.96(0.01) & 0.95(0.01) & 0.03(0) & 0.03(0) & 0.14(0.02) \\
200 & 10 & 500 & 0 & 0.96(0.01) & 0.95(0.01) & 0.03(0) & 0.02(0) & 0.13(0.01) \\
30 & 30 & 476 & 0.08 & 0.96(0.02) & 0.95(0.02) & 0.03(0.01) & 0.02(0) & 0.16(0.03) \\
50 & 30 & 500 & 0.03 & 0.97(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.15(0.02) \\
100 & 30 & 500 & 0 & 0.98(0.01) & 0.97(0.01) & 0.02(0) & 0.01(0) & 0.14(0.02) \\
200 & 30 & 500 & 0 & 0.98(0) & 0.97(0) & 0.02(0) & 0.01(0) & 0.13(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 219 & 0.47 & 0.87(0.09) & 0.85(0.11) & 0.04(0.02) & 0.06(0.01) & 0.23(0.03) \\
50 & 5 & 269 & 0.78 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.05(0.01) & 0.19(0.02) \\
100 & 5 & 351 & 0.88 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.03(0) & 0.14(0.02) \\
200 & 5 & 430 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.1(0.01) \\
30 & 10 & 287 & 0.63 & 0.94(0.04) & 0.93(0.05) & 0.02(0.01) & 0.04(0.01) & 0.2(0.02) \\
50 & 10 & 347 & 0.77 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.03(0) & 0.16(0.02) \\
100 & 10 & 429 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.11(0.01) \\
200 & 10 & 486 & 0.88 & 1(0) & 1(0.01) & 0.01(0) & 0.02(0) & 0.08(0.01) \\
30 & 30 & 337 & 0.71 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\
50 & 30 & 413 & 0.8 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.13(0.01) \\
100 & 30 & 481 & 0.88 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.09(0.01) \\
200 & 30 & 496 & 0.88 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 411 & 0.37 & 0.88(0.07) & 0.86(0.08) & 0.05(0.02) & 0.07(0.01) & 0.19(0.03) \\
50 & 5 & 489 & 0.52 & 0.94(0.04) & 0.93(0.05) & 0.03(0.02) & 0.05(0.01) & 0.16(0.02) \\
100 & 5 & 500 & 0.46 & 0.96(0.02) & 0.96(0.03) & 0.02(0.01) & 0.04(0) & 0.12(0.02) \\
200 & 5 & 500 & 0.14 & 0.97(0.01) & 0.96(0.02) & 0.02(0.01) & 0.03(0) & 0.11(0.01) \\
30 & 10 & 493 & 0.47 & 0.94(0.04) & 0.92(0.05) & 0.03(0.01) & 0.04(0.01) & 0.17(0.03) \\
50 & 10 & 500 & 0.5 & 0.96(0.02) & 0.96(0.03) & 0.02(0.01) & 0.03(0) & 0.14(0.02) \\
100 & 10 & 500 & 0.26 & 0.97(0.01) & 0.97(0.02) & 0.02(0.01) & 0.02(0) & 0.11(0.01) \\
200 & 10 & 500 & 0.02 & 0.98(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.1(0.01) \\
30 & 30 & 500 & 0.49 & 0.98(0.02) & 0.97(0.02) & 0.02(0.01) & 0.02(0) & 0.16(0.02) \\
50 & 30 & 498 & 0.43 & 0.98(0.01) & 0.98(0.01) & 0.01(0.01) & 0.02(0) & 0.13(0.02) \\
100 & 30 & 499 & 0.19 & 0.99(0.01) & 0.99(0.01) & 0.01(0) & 0.01(0) & 0.11(0.01) \\
200 & 30 & 498 & 0 & 0.99(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.1(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 177 & 0.57 & 0.87(0.1) & 0.84(0.12) & 0.04(0.02) & 0.06(0.01) & 0.19(0.02) \\
50 & 5 & 238 & 0.83 & 0.95(0.05) & 0.94(0.05) & 0.02(0.01) & 0.05(0.01) & 0.15(0.02) \\
100 & 5 & 288 & 0.92 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.11(0.01) \\
200 & 5 & 366 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.07(0.01) \\
30 & 10 & 228 & 0.75 & 0.95(0.04) & 0.94(0.05) & 0.02(0.01) & 0.04(0.01) & 0.17(0.02) \\
50 & 10 & 240 & 0.85 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.03(0) & 0.13(0.01) \\
100 & 10 & 321 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.09(0.01) \\
200 & 10 & 393 & 0.92 & 1(0) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\
30 & 30 & 242 & 0.69 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.16(0.02) \\
50 & 30 & 281 & 0.87 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.01) \\
100 & 30 & 359 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.08(0.01) \\
200 & 30 & 416 & 0.94 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 472 & 0.51 & 0.88(0.09) & 0.85(0.1) & 0.04(0.02) & 0.06(0.01) & 0.18(0.03) \\
50 & 5 & 498 & 0.73 & 0.95(0.05) & 0.94(0.06) & 0.02(0.02) & 0.05(0.01) & 0.14(0.02) \\
100 & 5 & 500 & 0.67 & 0.97(0.03) & 0.96(0.03) & 0.02(0.01) & 0.04(0) & 0.11(0.01) \\
200 & 5 & 500 & 0.48 & 0.98(0.01) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.08(0.01) \\
30 & 10 & 491 & 0.64 & 0.94(0.04) & 0.93(0.05) & 0.02(0.01) & 0.04(0.01) & 0.16(0.02) \\
50 & 10 & 499 & 0.71 & 0.97(0.03) & 0.96(0.03) & 0.02(0.01) & 0.03(0) & 0.13(0.02) \\
100 & 10 & 500 & 0.64 & 0.98(0.01) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.1(0.01) \\
200 & 10 & 500 & 0.39 & 0.99(0.01) & 0.98(0.01) & 0.01(0) & 0.02(0) & 0.08(0.01) \\
30 & 30 & 499 & 0.62 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.02(0) & 0.15(0.02) \\
50 & 30 & 500 & 0.7 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.02(0) & 0.12(0.02) \\
100 & 30 & 500 & 0.56 & 0.99(0) & 0.99(0.01) & 0.01(0) & 0.01(0) & 0.1(0.01) \\
200 & 30 & 500 & 0.32 & 0.99(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.08(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator MLR, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: ULSMV
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 23 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.07(0.01) & 0.36(0.06) \\
50 & 5 & 77 & 0.99 & 0.99(0.02) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.31(0.06) \\
100 & 5 & 257 & 0.94 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.22(0.05) \\
200 & 5 & 460 & 0.93 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.03) \\
30 & 10 & 186 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.26(0.04) \\
50 & 10 & 348 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0) & 0.2(0.04) \\
100 & 10 & 477 & 0.94 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.14(0.02) \\
200 & 10 & 499 & 0.87 & 1(0) & 1(0) & 0.01(0) & 0.02(0) & 0.1(0.01) \\
30 & 30 & 461 & 0.99 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.16(0.02) \\
50 & 30 & 497 & 0.96 & 1(0) & 1(0) & 0.01(0) & 0.02(0) & 0.12(0.02) \\
100 & 30 & 500 & 0.84 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.09(0.01) \\
200 & 30 & 500 & 0.62 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 24 & 1 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.08(0.01) & 0.15(0.04) \\
50 & 5 & 71 & 0.79 & 0.93(0.06) & 0.91(0.07) & 0.02(0.01) & 0.07(0.01) & 0.13(0.03) \\
100 & 5 & 213 & 0.25 & 0.92(0.05) & 0.9(0.06) & 0.03(0.01) & 0.05(0.01) & 0.11(0.02) \\
200 & 5 & 410 & 0 & 0.9(0.04) & 0.88(0.04) & 0.03(0.01) & 0.04(0.01) & 0.1(0.01) \\
30 & 10 & 101 & 0.87 & 0.93(0.08) & 0.91(0.1) & 0.02(0.01) & 0.06(0.01) & 0.13(0.03) \\
50 & 10 & 234 & 0.34 & 0.89(0.06) & 0.87(0.07) & 0.03(0.01) & 0.05(0.01) & 0.11(0.02) \\
100 & 10 & 416 & 0 & 0.87(0.05) & 0.84(0.06) & 0.03(0.01) & 0.04(0.01) & 0.1(0.02) \\
200 & 10 & 491 & 0 & 0.85(0.04) & 0.82(0.05) & 0.03(0) & 0.03(0) & 0.09(0.01) \\
30 & 30 & 299 & 0.88 & 0.95(0.05) & 0.94(0.06) & 0.01(0.01) & 0.04(0.01) & 0.11(0.02) \\
50 & 30 & 425 & 0.12 & 0.87(0.06) & 0.85(0.07) & 0.02(0) & 0.03(0.01) & 0.1(0.02) \\
100 & 30 & 482 & 0 & 0.81(0.06) & 0.77(0.07) & 0.03(0) & 0.03(0.01) & 0.09(0.01) \\
200 & 30 & 500 & 0 & 0.77(0.05) & 0.73(0.06) & 0.03(0) & 0.03(0) & 0.09(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 183 & 0.99 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.08(0.01) & 0.21(0.04) \\
50 & 5 & 275 & 0.97 & 0.97(0.04) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.16(0.02) \\
100 & 5 & 368 & 0.97 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\
200 & 5 & 444 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
30 & 10 & 292 & 0.99 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 10 & 344 & 0.98 & 0.98(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\
100 & 10 & 443 & 0.95 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
200 & 10 & 488 & 0.92 & 1(0) & 1(0.01) & 0.01(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 338 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.03(0) & 0.13(0.01) \\
50 & 30 & 414 & 0.99 & 1(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 483 & 0.96 & 1(0.01) & 1(0.01) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 496 & 0.87 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 331 & 0.98 & 0.93(0.08) & 0.92(0.09) & 0.02(0.01) & 0.09(0.01) & 0.14(0.03) \\
50 & 5 & 444 & 0.84 & 0.93(0.06) & 0.92(0.08) & 0.02(0.01) & 0.07(0.01) & 0.11(0.02) \\
100 & 5 & 488 & 0.46 & 0.93(0.05) & 0.91(0.06) & 0.02(0.01) & 0.06(0.01) & 0.09(0.01) \\
200 & 5 & 499 & 0.05 & 0.92(0.03) & 0.9(0.04) & 0.03(0.01) & 0.04(0.01) & 0.07(0.01) \\
30 & 10 & 448 & 0.96 & 0.95(0.07) & 0.93(0.08) & 0.01(0.01) & 0.07(0.01) & 0.12(0.02) \\
50 & 10 & 480 & 0.72 & 0.93(0.06) & 0.91(0.07) & 0.02(0.01) & 0.05(0.01) & 0.09(0.02) \\
100 & 10 & 497 & 0.17 & 0.91(0.05) & 0.89(0.06) & 0.02(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 10 & 500 & 0 & 0.9(0.03) & 0.89(0.04) & 0.02(0) & 0.04(0.01) & 0.07(0.01) \\
30 & 30 & 465 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.05(0.01) & 0.1(0.02) \\
50 & 30 & 490 & 0.99 & 0.99(0.03) & 0.98(0.03) & 0(0) & 0.04(0.01) & 0.08(0.01) \\
100 & 30 & 496 & 0.26 & 0.93(0.04) & 0.92(0.04) & 0.01(0) & 0.03(0.01) & 0.07(0.01) \\
200 & 30 & 500 & 0 & 0.9(0.03) & 0.88(0.03) & 0.02(0) & 0.03(0.01) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 165 & 0.96 & 0.9(0.13) & 0.88(0.16) & 0.01(0.01) & 0.09(0.02) & 0.15(0.02) \\
50 & 5 & 243 & 0.97 & 0.95(0.07) & 0.94(0.08) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 5 & 291 & 0.97 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 5 & 378 & 0.94 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 235 & 1 & 0.97(0.06) & 0.97(0.07) & 0(0.01) & 0.06(0.01) & 0.13(0.02) \\
50 & 10 & 247 & 0.99 & 0.97(0.04) & 0.96(0.05) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\
100 & 10 & 327 & 0.95 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
200 & 10 & 399 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 242 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0.01) & 0.12(0.01) \\
50 & 30 & 283 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.09(0.01) \\
100 & 30 & 359 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 416 & 0.99 & 1(0.01) & 1(0.01) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 421 & 0.99 & 0.91(0.11) & 0.89(0.13) & 0.01(0.01) & 0.11(0.02) & 0.12(0.02) \\
50 & 5 & 465 & 0.95 & 0.93(0.08) & 0.92(0.1) & 0.01(0.01) & 0.08(0.01) & 0.09(0.01) \\
100 & 5 & 483 & 0.74 & 0.93(0.05) & 0.92(0.06) & 0.02(0.01) & 0.06(0.01) & 0.07(0.01) \\
200 & 5 & 498 & 0.33 & 0.93(0.04) & 0.92(0.05) & 0.02(0.01) & 0.05(0.01) & 0.06(0.01) \\
30 & 10 & 457 & 1 & 0.98(0.05) & 0.98(0.06) & 0(0.01) & 0.08(0.02) & 0.11(0.02) \\
50 & 10 & 473 & 0.96 & 0.96(0.06) & 0.95(0.07) & 0.01(0.01) & 0.06(0.01) & 0.09(0.01) \\
100 & 10 & 488 & 0.71 & 0.94(0.05) & 0.93(0.06) & 0.01(0.01) & 0.05(0.01) & 0.06(0.01) \\
200 & 10 & 499 & 0.19 & 0.93(0.03) & 0.92(0.04) & 0.02(0) & 0.04(0.01) & 0.05(0.01) \\
30 & 30 & 462 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.02) & 0.1(0.01) \\
50 & 30 & 485 & 1 & 1(0) & 1(0) & 0(0) & 0.05(0.01) & 0.08(0.01) \\
100 & 30 & 491 & 1 & 1(0.01) & 1(0.01) & 0(0) & 0.04(0.01) & 0.06(0.01) \\
200 & 30 & 500 & 0.65 & 0.97(0.03) & 0.96(0.03) & 0.01(0) & 0.03(0.01) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: WLSMV
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 29 & 1 & 0.98(0.03) & 0.98(0.04) & 0.01(0.01) & 0.07(0.01) & 0.35(0.06) \\
50 & 5 & 85 & 1 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.06(0.01) & 0.3(0.06) \\
100 & 5 & 275 & 0.93 & 0.99(0.02) & 0.98(0.02) & 0.01(0.01) & 0.04(0.01) & 0.22(0.04) \\
200 & 5 & 460 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.15(0.03) \\
30 & 10 & 189 & 1 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.25(0.04) \\
50 & 10 & 363 & 0.96 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.19(0.03) \\
100 & 10 & 483 & 0.93 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.13(0.02) \\
200 & 10 & 500 & 0.83 & 1(0) & 0.99(0.01) & 0.01(0) & 0.02(0) & 0.1(0.01) \\
30 & 30 & 457 & 0.98 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.16(0.02) \\
50 & 30 & 497 & 0.95 & 1(0) & 0.99(0.01) & 0.01(0) & 0.02(0) & 0.12(0.02) \\
100 & 30 & 500 & 0.79 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.09(0.01) \\
200 & 30 & 500 & 0.49 & 1(0) & 1(0) & 0.01(0) & 0.01(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 22 & 1 & 0.97(0.03) & 0.97(0.04) & 0.01(0.01) & 0.07(0.01) & 0.19(0.05) \\
50 & 5 & 47 & 0.74 & 0.95(0.04) & 0.94(0.05) & 0.02(0.01) & 0.06(0.01) & 0.15(0.02) \\
100 & 5 & 164 & 0.43 & 0.95(0.03) & 0.94(0.03) & 0.02(0.01) & 0.05(0.01) & 0.12(0.02) \\
200 & 5 & 358 & 0.01 & 0.94(0.02) & 0.93(0.02) & 0.03(0.01) & 0.03(0) & 0.11(0.01) \\
30 & 10 & 59 & 0.97 & 0.97(0.02) & 0.97(0.03) & 0.02(0.01) & 0.05(0.01) & 0.15(0.03) \\
50 & 10 & 136 & 0.7 & 0.97(0.02) & 0.96(0.03) & 0.02(0.01) & 0.04(0.01) & 0.13(0.02) \\
100 & 10 & 307 & 0.05 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.03(0) & 0.11(0.01) \\
200 & 10 & 461 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.02(0) & 0.1(0.01) \\
30 & 30 & 131 & 0.97 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.13(0.02) \\
50 & 30 & 274 & 0.6 & 0.98(0.01) & 0.98(0.01) & 0.01(0) & 0.02(0) & 0.12(0.01) \\
100 & 30 & 419 & 0 & 0.97(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.11(0.01) \\
200 & 30 & 498 & 0 & 0.97(0.01) & 0.96(0.01) & 0.02(0) & 0.01(0) & 0.11(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 118 & 0.97 & 0.96(0.04) & 0.96(0.05) & 0.02(0.01) & 0.08(0.01) & 0.21(0.04) \\
50 & 5 & 212 & 0.95 & 0.98(0.03) & 0.97(0.04) & 0.01(0.01) & 0.06(0.01) & 0.15(0.02) \\
100 & 5 & 341 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.11(0.01) \\
200 & 5 & 425 & 0.92 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
30 & 10 & 205 & 0.97 & 0.98(0.02) & 0.98(0.03) & 0.01(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 10 & 307 & 0.98 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0) & 0.12(0.01) \\
100 & 10 & 423 & 0.94 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
200 & 10 & 487 & 0.92 & 1(0) & 1(0) & 0.01(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 319 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.13(0.01) \\
50 & 30 & 410 & 0.99 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 478 & 0.96 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 497 & 0.91 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 347 & 0.94 & 0.95(0.05) & 0.94(0.06) & 0.02(0.01) & 0.08(0.01) & 0.16(0.03) \\
50 & 5 & 455 & 0.89 & 0.96(0.03) & 0.95(0.04) & 0.02(0.01) & 0.06(0.01) & 0.13(0.02) \\
100 & 5 & 498 & 0.61 & 0.96(0.02) & 0.96(0.03) & 0.02(0.01) & 0.04(0.01) & 0.1(0.01) \\
200 & 5 & 500 & 0.14 & 0.96(0.02) & 0.96(0.02) & 0.02(0.01) & 0.03(0) & 0.08(0.01) \\
30 & 10 & 454 & 0.97 & 0.98(0.02) & 0.97(0.03) & 0.01(0.01) & 0.05(0.01) & 0.14(0.02) \\
50 & 10 & 495 & 0.85 & 0.98(0.02) & 0.97(0.02) & 0.02(0.01) & 0.04(0.01) & 0.11(0.02) \\
100 & 10 & 500 & 0.34 & 0.97(0.01) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.09(0.01) \\
200 & 10 & 500 & 0.01 & 0.97(0.01) & 0.97(0.01) & 0.02(0) & 0.02(0) & 0.08(0.01) \\
30 & 30 & 485 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.02) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 500 & 0.52 & 0.99(0) & 0.99(0.01) & 0.01(0) & 0.02(0) & 0.09(0.01) \\
200 & 30 & 500 & 0 & 0.99(0) & 0.99(0) & 0.01(0) & 0.01(0) & 0.08(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 105 & 0.95 & 0.96(0.05) & 0.95(0.06) & 0.02(0.01) & 0.08(0.01) & 0.16(0.02) \\
50 & 5 & 196 & 0.97 & 0.98(0.03) & 0.97(0.03) & 0.01(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 5 & 266 & 0.97 & 0.99(0.01) & 0.99(0.02) & 0.01(0.01) & 0.04(0.01) & 0.08(0.01) \\
200 & 5 & 360 & 0.96 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 195 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0.01(0.01) & 0.05(0.01) & 0.13(0.01) \\
50 & 10 & 219 & 0.99 & 0.99(0.01) & 0.99(0.01) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\
100 & 10 & 307 & 0.96 & 1(0.01) & 0.99(0.01) & 0.01(0.01) & 0.03(0) & 0.07(0.01) \\
200 & 10 & 390 & 0.94 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.05(0.01) \\
30 & 30 & 217 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.01) \\
50 & 30 & 275 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.09(0.01) \\
100 & 30 & 346 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.07(0.01) \\
200 & 30 & 414 & 1 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.05(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M2
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 458 & 0.98 & 0.96(0.04) & 0.95(0.05) & 0.02(0.01) & 0.08(0.01) & 0.15(0.02) \\
50 & 5 & 498 & 0.95 & 0.97(0.03) & 0.96(0.04) & 0.02(0.01) & 0.06(0.01) & 0.11(0.01) \\
100 & 5 & 500 & 0.77 & 0.97(0.02) & 0.97(0.03) & 0.02(0.01) & 0.05(0.01) & 0.08(0.01) \\
200 & 5 & 500 & 0.42 & 0.98(0.01) & 0.97(0.02) & 0.02(0.01) & 0.03(0) & 0.06(0.01) \\
30 & 10 & 487 & 0.99 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.05(0.01) & 0.13(0.02) \\
50 & 10 & 500 & 0.97 & 0.99(0.01) & 0.98(0.02) & 0.01(0.01) & 0.04(0.01) & 0.1(0.01) \\
100 & 10 & 500 & 0.77 & 0.99(0.01) & 0.98(0.01) & 0.01(0.01) & 0.03(0) & 0.08(0.01) \\
200 & 10 & 500 & 0.27 & 0.99(0.01) & 0.98(0.01) & 0.01(0) & 0.02(0) & 0.06(0.01) \\
30 & 30 & 495 & 1 & 1(0) & 1(0) & 0(0) & 0.03(0) & 0.12(0.02) \\
50 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.1(0.01) \\
100 & 30 & 500 & 1 & 1(0) & 1(0) & 0(0) & 0.02(0) & 0.08(0.01) \\
200 & 30 & 500 & 0.73 & 1(0) & 1(0) & 0(0) & 0.01(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M2, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: MLR
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 255 & 0.1 & 0.77(0.14) & 0.73(0.16) & 0.07(0.02) & 0.08(0.04) & 0.32(0.06) \\
50 & 5 & 276 & 0.1 & 0.86(0.06) & 0.83(0.07) & 0.05(0.01) & 0.06(0.01) & 0.28(0.04) \\
100 & 5 & 376 & 0.01 & 0.89(0.04) & 0.87(0.04) & 0.04(0.01) & 0.05(0.01) & 0.22(0.03) \\
200 & 5 & 468 & 0 & 0.91(0.02) & 0.9(0.03) & 0.04(0) & 0.05(0.01) & 0.17(0.02) \\
30 & 10 & 301 & 0.03 & 0.86(0.05) & 0.83(0.06) & 0.05(0.01) & 0.06(0.01) & 0.26(0.04) \\
50 & 10 & 414 & 0.01 & 0.89(0.04) & 0.87(0.04) & 0.04(0.01) & 0.05(0.01) & 0.22(0.03) \\
100 & 10 & 486 & 0 & 0.91(0.02) & 0.9(0.03) & 0.04(0) & 0.05(0) & 0.16(0.02) \\
200 & 10 & 499 & 0 & 0.92(0.01) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.02) \\
30 & 30 & 472 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0.01) & 0.05(0) & 0.19(0.03) \\
50 & 30 & 496 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.04(0) & 0.15(0.02) \\
100 & 30 & 500 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.11(0.01) \\
200 & 30 & 500 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 169 & 0.03 & 0.83(0.06) & 0.8(0.07) & 0.07(0.02) & 0.08(0.01) & 0.2(0.04) \\
50 & 5 & 247 & 0.01 & 0.87(0.04) & 0.85(0.05) & 0.06(0.01) & 0.07(0.01) & 0.17(0.03) \\
100 & 5 & 388 & 0 & 0.89(0.03) & 0.88(0.03) & 0.05(0.01) & 0.06(0.01) & 0.14(0.02) \\
200 & 5 & 491 & 0 & 0.9(0.02) & 0.88(0.02) & 0.05(0) & 0.05(0.01) & 0.13(0.02) \\
30 & 10 & 264 & 0.02 & 0.86(0.05) & 0.84(0.05) & 0.06(0.01) & 0.06(0.01) & 0.17(0.04) \\
50 & 10 & 393 & 0 & 0.89(0.03) & 0.87(0.03) & 0.05(0.01) & 0.05(0.01) & 0.15(0.03) \\
100 & 10 & 496 & 0 & 0.9(0.02) & 0.88(0.02) & 0.05(0) & 0.05(0.01) & 0.13(0.02) \\
200 & 10 & 500 & 0 & 0.9(0.01) & 0.89(0.01) & 0.04(0) & 0.05(0) & 0.12(0.01) \\
30 & 30 & 469 & 0 & 0.9(0.02) & 0.88(0.03) & 0.04(0.01) & 0.05(0) & 0.16(0.04) \\
50 & 30 & 500 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.04(0) & 0.14(0.02) \\
100 & 30 & 500 & 0 & 0.91(0.01) & 0.89(0.01) & 0.04(0) & 0.04(0) & 0.13(0.02) \\
200 & 30 & 500 & 0 & 0.91(0.01) & 0.89(0.01) & 0.04(0) & 0.04(0) & 0.12(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 205 & 0.28 & 0.8(0.13) & 0.76(0.15) & 0.05(0.02) & 0.07(0.01) & 0.23(0.03) \\
50 & 5 & 274 & 0.35 & 0.88(0.07) & 0.86(0.08) & 0.04(0.01) & 0.06(0.01) & 0.19(0.02) \\
100 & 5 & 373 & 0.14 & 0.91(0.05) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.14(0.02) \\
200 & 5 & 443 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\
30 & 10 & 295 & 0.13 & 0.87(0.06) & 0.84(0.07) & 0.04(0.01) & 0.06(0.01) & 0.2(0.02) \\
50 & 10 & 350 & 0.06 & 0.9(0.04) & 0.88(0.05) & 0.04(0.01) & 0.05(0.01) & 0.15(0.02) \\
100 & 10 & 440 & 0 & 0.91(0.02) & 0.89(0.03) & 0.03(0.01) & 0.05(0.01) & 0.11(0.01) \\
200 & 10 & 490 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
30 & 30 & 347 & 0 & 0.9(0.03) & 0.88(0.03) & 0.04(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 30 & 418 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.13(0.01) \\
100 & 30 & 485 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
200 & 30 & 497 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 382 & 0.17 & 0.83(0.09) & 0.8(0.1) & 0.06(0.02) & 0.08(0.01) & 0.18(0.03) \\
50 & 5 & 465 & 0.15 & 0.88(0.05) & 0.86(0.06) & 0.05(0.01) & 0.07(0.01) & 0.15(0.02) \\
100 & 5 & 494 & 0.01 & 0.9(0.03) & 0.89(0.04) & 0.04(0.01) & 0.05(0.01) & 0.12(0.02) \\
200 & 5 & 500 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.05(0) & 0.1(0.01) \\
30 & 10 & 473 & 0.06 & 0.87(0.05) & 0.85(0.06) & 0.05(0.01) & 0.06(0.01) & 0.17(0.03) \\
50 & 10 & 494 & 0.01 & 0.9(0.03) & 0.88(0.04) & 0.04(0.01) & 0.05(0.01) & 0.13(0.02) \\
100 & 10 & 500 & 0 & 0.91(0.02) & 0.89(0.03) & 0.04(0) & 0.05(0) & 0.1(0.01) \\
200 & 10 & 500 & 0 & 0.91(0.01) & 0.9(0.02) & 0.04(0) & 0.04(0) & 0.09(0.01) \\
30 & 30 & 489 & 0 & 0.9(0.02) & 0.89(0.03) & 0.04(0.01) & 0.05(0) & 0.15(0.02) \\
50 & 30 & 496 & 0 & 0.91(0.02) & 0.9(0.02) & 0.04(0) & 0.04(0) & 0.12(0.02) \\
100 & 30 & 500 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.1(0.01) \\
200 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 172 & 0.38 & 0.81(0.1) & 0.78(0.12) & 0.05(0.02) & 0.07(0.01) & 0.19(0.02) \\
50 & 5 & 246 & 0.39 & 0.88(0.07) & 0.86(0.08) & 0.03(0.01) & 0.06(0.01) & 0.15(0.02) \\
100 & 5 & 304 & 0.21 & 0.91(0.04) & 0.89(0.05) & 0.03(0.01) & 0.05(0.01) & 0.11(0.01) \\
200 & 5 & 377 & 0.01 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.05(0.01) & 0.07(0.01) \\
30 & 10 & 216 & 0.26 & 0.88(0.06) & 0.86(0.07) & 0.04(0.01) & 0.06(0.01) & 0.17(0.02) \\
50 & 10 & 243 & 0.09 & 0.9(0.04) & 0.88(0.04) & 0.03(0.01) & 0.05(0.01) & 0.13(0.01) \\
100 & 10 & 327 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
200 & 10 & 393 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
30 & 30 & 249 & 0 & 0.9(0.02) & 0.88(0.03) & 0.04(0) & 0.05(0) & 0.16(0.02) \\
50 & 30 & 277 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.01) \\
100 & 30 & 357 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.08(0.01) \\
200 & 30 & 418 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: MLR
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 459 & 0.3 & 0.82(0.09) & 0.79(0.11) & 0.05(0.02) & 0.07(0.01) & 0.18(0.03) \\
50 & 5 & 493 & 0.36 & 0.89(0.07) & 0.87(0.08) & 0.04(0.01) & 0.06(0.01) & 0.13(0.02) \\
100 & 5 & 499 & 0.07 & 0.9(0.04) & 0.89(0.04) & 0.03(0.01) & 0.05(0.01) & 0.1(0.01) \\
200 & 5 & 500 & 0 & 0.91(0.02) & 0.9(0.03) & 0.03(0) & 0.05(0.01) & 0.08(0.01) \\
30 & 10 & 481 & 0.18 & 0.88(0.06) & 0.85(0.07) & 0.04(0.01) & 0.06(0.01) & 0.16(0.02) \\
50 & 10 & 499 & 0.07 & 0.9(0.04) & 0.89(0.04) & 0.03(0.01) & 0.05(0.01) & 0.12(0.02) \\
100 & 10 & 500 & 0 & 0.91(0.02) & 0.9(0.03) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
200 & 10 & 500 & 0 & 0.92(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.07(0.01) \\
30 & 30 & 491 & 0 & 0.9(0.03) & 0.89(0.03) & 0.03(0.01) & 0.04(0) & 0.15(0.02) \\
50 & 30 & 500 & 0 & 0.91(0.02) & 0.9(0.02) & 0.03(0) & 0.04(0) & 0.12(0.02) \\
100 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.09(0.01) \\
200 & 30 & 500 & 0 & 0.92(0.01) & 0.9(0.01) & 0.03(0) & 0.04(0) & 0.07(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator MLR, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: ULSMV
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 20 & 1 & 0.95(0.05) & 0.94(0.05) & 0.02(0.01) & 0.09(0.01) & 0.35(0.06) \\
50 & 5 & 74 & 0.61 & 0.93(0.05) & 0.92(0.06) & 0.03(0.01) & 0.07(0.01) & 0.32(0.06) \\
100 & 5 & 226 & 0.09 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.22(0.05) \\
200 & 5 & 410 & 0 & 0.93(0.02) & 0.91(0.03) & 0.04(0.01) & 0.05(0.01) & 0.15(0.03) \\
30 & 10 & 174 & 0.43 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.07(0.01) & 0.26(0.05) \\
50 & 10 & 313 & 0.05 & 0.93(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.2(0.04) \\
100 & 10 & 422 & 0 & 0.92(0.02) & 0.91(0.02) & 0.04(0.01) & 0.05(0.01) & 0.13(0.02) \\
200 & 10 & 469 & 0 & 0.92(0.01) & 0.91(0.02) & 0.04(0) & 0.05(0) & 0.09(0.01) \\
30 & 30 & 390 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0.01) & 0.05(0.01) & 0.16(0.02) \\
50 & 30 & 453 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.12(0.02) \\
100 & 30 & 485 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.09(0.01) \\
200 & 30 & 499 & 0 & 0.92(0.01) & 0.91(0.01) & 0.04(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 11 & 0.82 & 0.9(0.12) & 0.88(0.14) & 0.02(0.02) & 0.09(0.01) & 0.16(0.04) \\
50 & 5 & 32 & 0.44 & 0.87(0.07) & 0.85(0.08) & 0.03(0.01) & 0.08(0.01) & 0.14(0.03) \\
100 & 5 & 33 & 0.06 & 0.87(0.04) & 0.85(0.05) & 0.04(0.01) & 0.07(0.01) & 0.12(0.02) \\
200 & 5 & 34 & 0 & 0.86(0.04) & 0.83(0.05) & 0.04(0.01) & 0.06(0.01) & 0.11(0.02) \\
30 & 10 & 30 & 0.47 & 0.86(0.08) & 0.83(0.1) & 0.03(0.01) & 0.07(0.01) & 0.15(0.04) \\
50 & 10 & 42 & 0.14 & 0.85(0.07) & 0.82(0.08) & 0.03(0.01) & 0.06(0.01) & 0.12(0.03) \\
100 & 10 & 26 & 0 & 0.82(0.05) & 0.79(0.06) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\
200 & 10 & 8 & 0 & 0.77(0.05) & 0.73(0.05) & 0.04(0) & 0.05(0.01) & 0.11(0.02) \\
30 & 30 & 42 & 0.36 & 0.88(0.05) & 0.86(0.06) & 0.02(0.01) & 0.06(0.01) & 0.12(0.03) \\
50 & 30 & 28 & 0 & 0.81(0.05) & 0.78(0.06) & 0.03(0) & 0.06(0) & 0.11(0.02) \\
100 & 30 & 5 & 0 & 0.75(0.03) & 0.7(0.04) & 0.03(0) & 0.05(0) & 0.09(0.02) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 173 & 0.95 & 0.92(0.08) & 0.9(0.09) & 0.02(0.01) & 0.09(0.01) & 0.21(0.04) \\
50 & 5 & 246 & 0.76 & 0.92(0.06) & 0.91(0.07) & 0.02(0.01) & 0.07(0.01) & 0.16(0.02) \\
100 & 5 & 365 & 0.3 & 0.93(0.04) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.11(0.01) \\
200 & 5 & 440 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\
30 & 10 & 277 & 0.84 & 0.92(0.05) & 0.91(0.06) & 0.02(0.01) & 0.07(0.01) & 0.16(0.02) \\
50 & 10 & 351 & 0.38 & 0.93(0.03) & 0.91(0.04) & 0.02(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 10 & 444 & 0.02 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\
200 & 10 & 488 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 343 & 0.93 & 0.97(0.03) & 0.96(0.03) & 0.01(0.01) & 0.06(0.01) & 0.13(0.01) \\
50 & 30 & 419 & 0.31 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0) & 0.1(0.01) \\
100 & 30 & 485 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 496 & 0 & 0.94(0.01) & 0.93(0.01) & 0.02(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 292 & 0.93 & 0.9(0.1) & 0.88(0.12) & 0.02(0.01) & 0.11(0.01) & 0.14(0.03) \\
50 & 5 & 362 & 0.66 & 0.89(0.08) & 0.87(0.09) & 0.03(0.01) & 0.09(0.01) & 0.11(0.02) \\
100 & 5 & 393 & 0.17 & 0.89(0.05) & 0.87(0.06) & 0.03(0.01) & 0.07(0.01) & 0.09(0.01) \\
200 & 5 & 432 & 0 & 0.89(0.03) & 0.87(0.04) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
30 & 10 & 353 & 0.89 & 0.91(0.08) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.12(0.02) \\
50 & 10 & 379 & 0.48 & 0.89(0.06) & 0.87(0.07) & 0.02(0.01) & 0.07(0.01) & 0.1(0.02) \\
100 & 10 & 419 & 0.02 & 0.88(0.04) & 0.85(0.05) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 452 & 0 & 0.87(0.03) & 0.84(0.04) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 381 & 1 & 1(0.02) & 1(0.02) & 0(0) & 0.06(0.01) & 0.1(0.02) \\
50 & 30 & 413 & 0.93 & 0.97(0.04) & 0.96(0.04) & 0.01(0) & 0.06(0.01) & 0.08(0.01) \\
100 & 30 & 447 & 0.01 & 0.9(0.03) & 0.88(0.04) & 0.02(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 477 & 0 & 0.86(0.03) & 0.84(0.03) & 0.02(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:50 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 153 & 0.95 & 0.87(0.14) & 0.84(0.17) & 0.02(0.01) & 0.1(0.02) & 0.15(0.02) \\
50 & 5 & 243 & 0.94 & 0.9(0.09) & 0.89(0.1) & 0.02(0.01) & 0.08(0.01) & 0.12(0.01) \\
100 & 5 & 299 & 0.77 & 0.93(0.05) & 0.92(0.06) & 0.02(0.01) & 0.06(0.01) & 0.08(0.01) \\
200 & 5 & 378 & 0.36 & 0.94(0.03) & 0.93(0.03) & 0.02(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 213 & 0.99 & 0.95(0.07) & 0.94(0.09) & 0.01(0.01) & 0.07(0.01) & 0.13(0.01) \\
50 & 10 & 241 & 0.94 & 0.93(0.06) & 0.92(0.07) & 0.01(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 10 & 329 & 0.66 & 0.94(0.04) & 0.93(0.04) & 0.01(0.01) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 397 & 0.13 & 0.94(0.02) & 0.93(0.02) & 0.02(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 249 & 1 & 1(0) & 1(0) & 0(0) & 0.06(0.01) & 0.12(0.01) \\
50 & 30 & 283 & 1 & 1(0) & 1(0) & 0(0) & 0.05(0) & 0.09(0.01) \\
100 & 30 & 358 & 0.99 & 0.98(0.02) & 0.98(0.02) & 0(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 416 & 0.22 & 0.96(0.01) & 0.95(0.02) & 0.01(0) & 0.05(0) & 0.05(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: ULSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:51 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 400 & 0.99 & 0.89(0.12) & 0.87(0.14) & 0.02(0.01) & 0.12(0.02) & 0.12(0.02) \\
50 & 5 & 446 & 0.93 & 0.91(0.09) & 0.89(0.1) & 0.02(0.01) & 0.09(0.01) & 0.09(0.01) \\
100 & 5 & 477 & 0.57 & 0.9(0.06) & 0.89(0.07) & 0.02(0.01) & 0.08(0.01) & 0.07(0.01) \\
200 & 5 & 498 & 0.11 & 0.91(0.04) & 0.89(0.04) & 0.02(0) & 0.06(0.01) & 0.05(0.01) \\
30 & 10 & 441 & 0.99 & 0.97(0.07) & 0.96(0.08) & 0(0.01) & 0.09(0.01) & 0.11(0.02) \\
50 & 10 & 464 & 0.94 & 0.93(0.07) & 0.92(0.08) & 0.01(0.01) & 0.08(0.01) & 0.08(0.01) \\
100 & 10 & 483 & 0.48 & 0.91(0.05) & 0.9(0.06) & 0.02(0.01) & 0.06(0.01) & 0.06(0.01) \\
200 & 10 & 499 & 0.02 & 0.91(0.03) & 0.89(0.04) & 0.02(0) & 0.06(0.01) & 0.05(0.01) \\
30 & 30 & 444 & 1 & 1(0) & 1(0) & 0(0) & 0.08(0.01) & 0.1(0.01) \\
50 & 30 & 478 & 1 & 1(0) & 1(0) & 0(0) & 0.07(0.01) & 0.08(0.01) \\
100 & 30 & 493 & 1 & 0.99(0.02) & 0.99(0.02) & 0(0) & 0.06(0.01) & 0.06(0.01) \\
200 & 30 & 499 & 0.32 & 0.94(0.03) & 0.93(0.03) & 0.01(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator ULSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: WLSMV
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:51 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 31 & 0.94 & 0.94(0.05) & 0.93(0.06) & 0.02(0.01) & 0.09(0.01) & 0.35(0.06) \\
50 & 5 & 78 & 0.68 & 0.93(0.05) & 0.92(0.06) & 0.03(0.01) & 0.07(0.01) & 0.3(0.05) \\
100 & 5 & 230 & 0.2 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.22(0.04) \\
200 & 5 & 418 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.05(0.01) & 0.15(0.03) \\
30 & 10 & 182 & 0.62 & 0.93(0.04) & 0.92(0.05) & 0.03(0.01) & 0.07(0.01) & 0.25(0.05) \\
50 & 10 & 325 & 0.15 & 0.93(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.19(0.03) \\
100 & 10 & 444 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0.01) & 0.13(0.02) \\
200 & 10 & 481 & 0 & 0.93(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.09(0.01) \\
30 & 30 & 421 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0.01) & 0.16(0.02) \\
50 & 30 & 475 & 0 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.12(0.01) \\
100 & 30 & 495 & 0 & 0.93(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.09(0.01) \\
200 & 30 & 499 & 0 & 0.93(0.01) & 0.91(0.01) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.1
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:51 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 19 & 0.79 & 0.91(0.09) & 0.89(0.1) & 0.03(0.02) & 0.09(0.01) & 0.2(0.06) \\
50 & 5 & 36 & 0.22 & 0.89(0.04) & 0.87(0.05) & 0.04(0.01) & 0.08(0.01) & 0.16(0.03) \\
100 & 5 & 54 & 0.02 & 0.9(0.04) & 0.88(0.04) & 0.04(0.01) & 0.06(0.01) & 0.12(0.02) \\
200 & 5 & 69 & 0 & 0.88(0.03) & 0.86(0.03) & 0.04(0) & 0.06(0.01) & 0.11(0.02) \\
30 & 10 & 32 & 0.34 & 0.91(0.06) & 0.89(0.07) & 0.03(0.01) & 0.07(0.01) & 0.16(0.04) \\
50 & 10 & 60 & 0.03 & 0.89(0.04) & 0.87(0.05) & 0.04(0.01) & 0.06(0.01) & 0.12(0.02) \\
100 & 10 & 67 & 0 & 0.87(0.04) & 0.85(0.04) & 0.04(0.01) & 0.06(0.01) & 0.1(0.02) \\
200 & 10 & 41 & 0 & 0.87(0.02) & 0.84(0.03) & 0.04(0) & 0.05(0) & 0.1(0.02) \\
30 & 30 & 69 & 0.03 & 0.92(0.03) & 0.91(0.03) & 0.03(0.01) & 0.06(0.01) & 0.13(0.02) \\
50 & 30 & 81 & 0 & 0.9(0.02) & 0.88(0.03) & 0.03(0) & 0.05(0) & 0.11(0.02) \\
100 & 30 & 55 & 0 & 0.87(0.02) & 0.84(0.03) & 0.04(0) & 0.05(0) & 0.1(0.01) \\
200 & 30 & 18 & 0 & 0.86(0.02) & 0.83(0.02) & 0.04(0) & 0.05(0) & 0.09(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.1 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:51 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 117 & 0.9 & 0.91(0.07) & 0.9(0.08) & 0.03(0.01) & 0.09(0.01) & 0.21(0.04) \\
50 & 5 & 200 & 0.63 & 0.93(0.05) & 0.91(0.06) & 0.03(0.01) & 0.07(0.01) & 0.16(0.02) \\
100 & 5 & 333 & 0.21 & 0.93(0.04) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.11(0.01) \\
200 & 5 & 420 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\
30 & 10 & 193 & 0.57 & 0.93(0.04) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.15(0.02) \\
50 & 10 & 311 & 0.16 & 0.93(0.03) & 0.91(0.04) & 0.03(0.01) & 0.06(0.01) & 0.12(0.01) \\
100 & 10 & 418 & 0.01 & 0.93(0.02) & 0.92(0.02) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\
200 & 10 & 485 & 0 & 0.94(0.01) & 0.92(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 319 & 0.14 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.06(0.01) & 0.13(0.01) \\
50 & 30 & 403 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.1(0.01) \\
100 & 30 & 482 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 498 & 0 & 0.94(0.01) & 0.92(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.3
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:51 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 286 & 0.81 & 0.91(0.07) & 0.89(0.08) & 0.03(0.01) & 0.09(0.01) & 0.16(0.03) \\
50 & 5 & 318 & 0.51 & 0.91(0.05) & 0.89(0.06) & 0.03(0.01) & 0.08(0.01) & 0.13(0.02) \\
100 & 5 & 354 & 0.06 & 0.91(0.03) & 0.9(0.04) & 0.03(0.01) & 0.06(0.01) & 0.09(0.01) \\
200 & 5 & 389 & 0 & 0.91(0.02) & 0.9(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
30 & 10 & 342 & 0.53 & 0.92(0.04) & 0.91(0.05) & 0.03(0.01) & 0.07(0.01) & 0.14(0.02) \\
50 & 10 & 356 & 0.11 & 0.92(0.03) & 0.9(0.04) & 0.03(0.01) & 0.06(0.01) & 0.11(0.02) \\
100 & 10 & 371 & 0 & 0.91(0.03) & 0.9(0.03) & 0.03(0) & 0.06(0.01) & 0.08(0.01) \\
200 & 10 & 401 & 0 & 0.91(0.02) & 0.89(0.02) & 0.04(0) & 0.05(0) & 0.07(0.01) \\
30 & 30 & 341 & 0.74 & 0.97(0.02) & 0.96(0.02) & 0.01(0.01) & 0.06(0.01) & 0.12(0.02) \\
50 & 30 & 370 & 0.04 & 0.95(0.02) & 0.94(0.02) & 0.02(0) & 0.05(0.01) & 0.09(0.01) \\
100 & 30 & 406 & 0 & 0.93(0.01) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.08(0.01) \\
200 & 30 & 413 & 0 & 0.91(0.01) & 0.9(0.01) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.3 and ICC_L 0.5}
\end{table}
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.1
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:51 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 95 & 0.8 & 0.91(0.07) & 0.89(0.08) & 0.03(0.02) & 0.09(0.01) & 0.15(0.02) \\
50 & 5 & 179 & 0.7 & 0.92(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.12(0.01) \\
100 & 5 & 266 & 0.27 & 0.93(0.03) & 0.92(0.04) & 0.03(0.01) & 0.06(0.01) & 0.08(0.01) \\
200 & 5 & 353 & 0 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 185 & 0.83 & 0.95(0.04) & 0.94(0.04) & 0.02(0.01) & 0.07(0.01) & 0.13(0.01) \\
50 & 10 & 217 & 0.29 & 0.94(0.03) & 0.92(0.03) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 10 & 305 & 0 & 0.94(0.02) & 0.93(0.02) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 387 & 0 & 0.94(0.01) & 0.93(0.02) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
30 & 30 & 211 & 0.98 & 0.99(0.02) & 0.99(0.02) & 0(0.01) & 0.06(0.01) & 0.12(0.01) \\
50 & 30 & 265 & 0.41 & 0.97(0.01) & 0.96(0.02) & 0.01(0) & 0.05(0.01) & 0.09(0.01) \\
100 & 30 & 343 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 409 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.1}
\end{table}
===============================
Model: M12
Estimator: WLSMV
ICC Obs. Var.: 0.5
ICC Lat. Var.: 0.5
% latex table generated in R 3.6.0 by xtable 1.8-4 package
% Wed Oct 30 21:17:51 2019
\begin{table}[ht]
\centering
\begin{tabular}{lllllllll}
\toprule
N2 & N1 & Num\_Rep & chi2 & CFI & TLI & RMSEA & SRMRW & SRMRB \\
\midrule
30 & 5 & 407 & 0.87 & 0.92(0.06) & 0.9(0.07) & 0.03(0.01) & 0.09(0.01) & 0.14(0.02) \\
50 & 5 & 448 & 0.65 & 0.92(0.05) & 0.91(0.06) & 0.03(0.01) & 0.08(0.01) & 0.11(0.01) \\
100 & 5 & 481 & 0.15 & 0.92(0.03) & 0.91(0.04) & 0.03(0.01) & 0.07(0.01) & 0.08(0.01) \\
200 & 5 & 498 & 0 & 0.92(0.02) & 0.91(0.03) & 0.03(0) & 0.06(0.01) & 0.06(0.01) \\
30 & 10 & 440 & 0.87 & 0.95(0.04) & 0.95(0.05) & 0.02(0.01) & 0.07(0.01) & 0.13(0.02) \\
50 & 10 & 476 & 0.35 & 0.94(0.03) & 0.93(0.04) & 0.03(0.01) & 0.06(0.01) & 0.1(0.01) \\
100 & 10 & 486 & 0.01 & 0.93(0.02) & 0.92(0.03) & 0.03(0) & 0.06(0.01) & 0.07(0.01) \\
200 & 10 & 500 & 0 & 0.93(0.02) & 0.91(0.02) & 0.03(0) & 0.05(0) & 0.06(0.01) \\
30 & 30 & 432 & 1 & 1(0) & 1(0.01) & 0(0) & 0.06(0.01) & 0.12(0.01) \\
50 & 30 & 466 & 0.85 & 0.98(0.02) & 0.98(0.02) & 0.01(0) & 0.06(0.01) & 0.09(0.01) \\
100 & 30 & 495 & 0 & 0.95(0.01) & 0.94(0.01) & 0.02(0) & 0.05(0) & 0.07(0.01) \\
200 & 30 & 500 & 0 & 0.94(0.01) & 0.93(0.01) & 0.03(0) & 0.05(0) & 0.05(0.01) \\
\bottomrule
\end{tabular}
\caption{Summary of Fit Statistics Across Conditions: Model M12, Estimator WLSMV, ICC_O 0.5 and ICC_L 0.5}
\end{table}
sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] xtable_1.8-4 kableExtra_1.1.0 forcats_0.4.0 stringr_1.4.0
[5] dplyr_0.8.1 purrr_0.3.2 readr_1.3.1 tidyr_0.8.3
[9] tibble_2.1.1 ggplot2_3.2.0 tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] tidyselect_0.2.5 xfun_0.7 haven_2.1.0
[4] lattice_0.20-38 colorspace_1.4-1 generics_0.0.2
[7] htmltools_0.3.6 viridisLite_0.3.0 yaml_2.2.0
[10] rlang_0.3.4 pillar_1.4.1 glue_1.3.1
[13] withr_2.1.2 modelr_0.1.4 readxl_1.3.1
[16] munsell_0.5.0 gtable_0.3.0 workflowr_1.4.0
[19] cellranger_1.1.0 rvest_0.3.4 evaluate_0.14
[22] knitr_1.23 highr_0.8 broom_0.5.2
[25] Rcpp_1.0.1 scales_1.0.0 backports_1.1.4
[28] webshot_0.5.1 jsonlite_1.6 fs_1.3.1
[31] hms_0.4.2 digest_0.6.19 stringi_1.4.3
[34] grid_3.6.0 rprojroot_1.3-2 cli_1.1.0
[37] tools_3.6.0 magrittr_1.5 lazyeval_0.2.2
[40] crayon_1.3.4 whisker_0.3-2 pkgconfig_2.0.2
[43] xml2_1.2.0 lubridate_1.7.4 assertthat_0.2.1
[46] rmarkdown_1.13 httr_1.4.0 rstudioapi_0.10
[49] R6_2.4.0 nlme_3.1-139 git2r_0.26.1
[52] compiler_3.6.0