Last updated: 2020-06-01

Checks: 6 1

Knit directory: mcfa-para-est/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190614) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version eecb366. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/compiled_para_results.txt
    Ignored:    data/results_bias_est.csv
    Ignored:    data/results_bias_se.csv
    Ignored:    fig/
    Ignored:    manuscript/
    Ignored:    output/fact-cov-converge-largeN.pdf
    Ignored:    output/fact-cov-converge-medN.pdf
    Ignored:    output/fact-cov-converge-smallN.pdf
    Ignored:    output/loading-converge-largeN.pdf
    Ignored:    output/loading-converge-medN.pdf
    Ignored:    output/loading-converge-smallN.pdf
    Ignored:    references/
    Ignored:    sera-presentation/

Untracked files:
    Untracked:  analysis/ml-cfa-parameter-anova-estimates.Rmd
    Untracked:  analysis/ml-cfa-parameter-anova-relative-bias.Rmd
    Untracked:  analysis/ml-cfa-parameter-bias-latent-ICC.Rmd
    Untracked:  analysis/ml-cfa-parameter-bias-observed-ICC.Rmd
    Untracked:  analysis/ml-cfa-parameter-convergence-correlation-pubfigure.Rmd
    Untracked:  analysis/ml-cfa-parameter-convergence-trace-plots-factor-loadings.Rmd
    Untracked:  analysis/ml-cfa-standard-error-anova-logSE.Rmd
    Untracked:  analysis/ml-cfa-standard-error-anova-relative-bias.Rmd
    Untracked:  analysis/ml-cfa-standard-error-bias-factor-loadings.Rmd
    Untracked:  analysis/ml-cfa-standard-error-bias-overview.Rmd
    Untracked:  code/r_functions.R

Unstaged changes:
    Modified:   analysis/index.Rmd
    Modified:   analysis/ml-cfa-parameter-convergence-correlation-factor-loadings.Rmd
    Modified:   code/get_data.R
    Modified:   code/load_packages.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


rm(list=ls())
source(paste0(getwd(),"/code/load_packages.R"))
#source(paste0(getwd(),"/code/get_data.R"))
sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] xtable_1.8-4          kableExtra_1.1.0      cowplot_1.0.0        
 [4] MplusAutomation_0.7-3 data.table_1.12.8     patchwork_1.0.0      
 [7] forcats_0.5.0         stringr_1.4.0         dplyr_0.8.5          
[10] purrr_0.3.4           readr_1.3.1           tidyr_1.1.0          
[13] tibble_3.0.1          ggplot2_3.3.0         tidyverse_1.3.0      
[16] workflowr_1.6.2      

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4.6      lubridate_1.7.8   lattice_0.20-38   assertthat_0.2.1 
 [5] rprojroot_1.3-2   digest_0.6.25     R6_2.4.1          cellranger_1.1.0 
 [9] plyr_1.8.6        backports_1.1.7   reprex_0.3.0      evaluate_0.14    
[13] coda_0.19-3       httr_1.4.1        pillar_1.4.4      rlang_0.4.6      
[17] readxl_1.3.1      rstudioapi_0.11   blob_1.2.1        texreg_1.36.23   
[21] gsubfn_0.7        rmarkdown_2.1     proto_1.0.0       webshot_0.5.2    
[25] pander_0.6.3      munsell_0.5.0     broom_0.5.6       compiler_3.6.3   
[29] httpuv_1.5.2      modelr_0.1.8      xfun_0.14         pkgconfig_2.0.3  
[33] htmltools_0.4.0   tidyselect_1.1.0  viridisLite_0.3.0 fansi_0.4.1      
[37] crayon_1.3.4      dbplyr_1.4.4      withr_2.2.0       later_1.0.0      
[41] grid_3.6.3        nlme_3.1-144      jsonlite_1.6.1    gtable_0.3.0     
[45] lifecycle_0.2.0   DBI_1.1.0         git2r_0.27.1      magrittr_1.5     
[49] scales_1.1.1      cli_2.0.2         stringi_1.4.6     fs_1.4.1         
[53] promises_1.1.0    xml2_1.3.2        ellipsis_0.3.1    generics_0.0.2   
[57] vctrs_0.3.0       boot_1.3-24       tools_3.6.3       glue_1.4.1       
[61] hms_0.5.3         parallel_3.6.3    yaml_2.2.1        colorspace_1.4-1 
[65] rvest_0.3.5       knitr_1.28        haven_2.3.0      
# general options
theme_set(theme_bw())
options(digits=3)
# set up vectors of variable names
pvec <- c(paste0('lambda1',1:6), paste0('lambda2',6:10), 'psiW12','psiB1', 'psiB2', 'psiB12', paste0('thetaB',1:10), 'icc_lv1_est', 'icc_lv2_est', paste0('icc_ov',1:10,'_est'))
# stored "true" values of parameters by each condition
ptvec <- c(rep('lambdaT',11), 'psiW12T', 'psiB1T', 'psiB2T', 'psiB12T', rep("thetaBT", 10), rep('icc_lv',2), rep('icc_ov',10))

result <- read_csv(paste0(w.d, "/data/results_bias_est.csv"))
Parsed with column specification:
cols(
  N1 = col_double(),
  N2 = col_double(),
  ICC_LV = col_double(),
  ICC_OV = col_double(),
  Variable = col_character(),
  Estimator = col_character(),
  TrueValue = col_double(),
  RB = col_double(),
  RMSE = col_double(),
  Bias = col_double(),
  SampVar = col_double(),
  muRE = col_double(),
  mwRE = col_double(),
  uwRE = col_double(),
  nRep = col_double(),
  estMean = col_double(),
  estSD = col_double()
)
# Set conditions levels as categorical values
result <- result %>%
  mutate(N1 = factor(N1, c("5", "10", "30")),
         N2 = factor(N2, c("30", "50", "100", "200")),
         ICC_OV = factor(ICC_OV, c("0.1","0.3", "0.5")),
         ICC_LV = factor(ICC_LV, c("0.1", "0.5")),
         wi = nRep/500)

Summarizing Results

First, we will plot estimates (botxplots) to show how these estimates changed across conditions. To summarize the results we will average over the parameters that only differ y indices. Meaning we will describe the “average factor loading bias” by reporting the average bias for factor loadings. Additionally, different conditions resultedin different “sample sizes.” By this we mean the number of uses replications. The different number of cases per condition was accounted for by creating a “weight” variable for each row of the result object. This meant that conditions that had more usable replications counted more towards to averages reported (or count as much as if we averaged over the individual replications).

*Click here for more details

Latent Variable ICC

sdat <- filter(result, Variable %like% 'icc_lv')

sdat <- sdat %>%
  group_by(N1, N2, ICC_OV, ICC_LV, Estimator) %>%
  summarise(estMean = weighted.mean(estMean, wi),
            estSD = weighted.mean(estSD, wi),
            RB = weighted.mean(RB, wi),
            RMSE = weighted.mean(RMSE, wi), 
            Bias = weighted.mean(Bias, wi),
            SampVar = weighted.mean(SampVar, wi))

# first, plot estimates
p1 <- ggplot(sdat, aes(y=estMean))+
  geom_boxplot()+
  labs(y="Average Latent Variable ICC")

p2 <- ggplot(sdat, aes(y=estSD))+
  geom_boxplot()+
  labs(y="SD of Latent Variable ICC")

p3 <- ggplot(sdat, aes(y=RB))+
  geom_boxplot()+
  geom_hline(yintercept=-10, color="red", linetype="dashed")+
  geom_hline(yintercept=10, color="red", linetype="dashed")+
  labs(y="Relative Bias")

p4 <- ggplot(sdat, aes(y=RMSE))+
  geom_boxplot()+
  labs(y="Root Mean Square Error")

p5 <- ggplot(sdat, aes(y=Bias))+
  geom_boxplot()+
  labs(y="Sqaured Bias")

p6 <- ggplot(sdat, aes(y=SampVar))+
  geom_boxplot()+
  labs(y="Sampling Variance of Estimates")


p <- (p1 + p2 + p3)/(p4 + p5 + p6) + 
  plot_annotation(title="Summarizing bias indices of LATENT VARIABLE ICC")
p

Single Condition Breakdown

Estimation Method

ggplot(sdat, aes(y=estMean))+
  geom_boxplot()+
  labs(y="Average Latent Variable ICC",
       title="LATENT VARIABLE ICC by Estimation Method",
       subtitle="Parameter Estimates")+
  facet_wrap(.~Estimator)

ggplot(sdat, aes(y=estSD))+
  geom_boxplot()+
  labs(y="SD of Latent Variable ICC",
       title="LATENT VARIABLE ICC by Estimation Method",
       subtitle="Standard Deviation of Estimates")+
  facet_wrap(.~Estimator)

ggplot(sdat, aes(y=RB))+
  geom_boxplot()+
  geom_hline(yintercept=-10, color="red", linetype="dashed")+
  geom_hline(yintercept=10, color="red", linetype="dashed")+
  labs(y="Relative Bias",
       title="LATENT VARIABLE ICC by Estimation Method",
       subtitle="Relative Bias of Estimates")+
  facet_wrap(.~Estimator)

ggplot(sdat, aes(y=RMSE))+
  geom_boxplot()+
  labs(y="Root Mean Square Error",
       title="LATENT VARIABLE ICC by Estimation Method",
       subtitle="Root Mean Square Error of Estimates")+
  facet_wrap(.~Estimator)

ggplot(sdat, aes(y=Bias))+
  geom_boxplot()+
  labs(y="Sqaured Bias",
       title="LATENT VARIABLE ICC by Estimation Method",
       subtitle="Squared Bias of Estiamtes")+
  facet_wrap(.~Estimator)

ggplot(sdat, aes(y=SampVar))+
  geom_boxplot()+
  labs(y="Sampling Variance",
       title="LATENT VARIABLE ICC by Estimation Method",
       subtitle="Sampling Variance of Estimates")+
  facet_wrap(.~Estimator)

c <- sdat %>%
  group_by(Estimator) %>%
  summarise(est = mean(estMean),
            RB = mean(RB),
            RMSE = mean(RMSE),
            Bias = mean(Bias),
            SampVar =mean(SampVar))

kable(c, format='html', digits=3,
      caption="Summary Indices of LATENT VARIABLE ICC by Estimation Method") %>%
  kable_styling(full_width = T)
Summary Indices of LATENT VARIABLE ICC by Estimation Method
Estimator est RB RMSE Bias SampVar
MLR 0.303 8.218 0.006 0.001 0.006
ULSMV 0.308 9.481 0.007 0.001 0.006
WLSMV 0.287 -0.585 0.007 0.001 0.006

Level-2 Sample Size

ggplot(sdat, aes(y=estMean))+
  geom_boxplot()+
  labs(y="Average Latent Variable ICC",
       title="LATENT VARIABLE ICC by Level-2 Sample Size",
       subtitle="Parameter Estimates")+
  facet_wrap(.~N2)

ggplot(sdat, aes(y=estSD))+
  geom_boxplot()+
  labs(y="SD of Latent Variable ICC",
       title="LATENT VARIABLE ICC by Level-2 Sample Size",
       subtitle="Standard Deviation of Parameter Estimates")+
  facet_wrap(.~N2)

ggplot(sdat, aes(y=RB))+
  geom_boxplot()+
  geom_hline(yintercept=-10, color="red", linetype="dashed")+
  geom_hline(yintercept=10, color="red", linetype="dashed")+
  labs(y="Relative Bias",
       title="LATENT VARIABLE ICC by Level-2 Sample Size",
       subtitle="Relative Bias Parameter Estimates")+
  facet_wrap(.~N2)

ggplot(sdat, aes(y=RMSE))+
  geom_boxplot()+
  labs(y="Root Mean Square Error",
       title="LATENT VARIABLE ICC by Level-2 Sample Size",
       subtitle="Root Mean Square Error")+
  facet_wrap(.~N2)

ggplot(sdat, aes(y=Bias))+
  geom_boxplot()+
  labs(y="Sqaured Bias",
       title="LATENT VARIABLE ICC by Level-2 Sample Size",
       subtitle="Squared Bias of Parameter Estimates")+
  facet_wrap(.~N2)

ggplot(sdat, aes(y=SampVar))+
  geom_boxplot()+
  labs(y="Sampling Variance of Estimates",
       title="LATENT VARIABLE ICC by Level-2 Sample Size",
       subtitle="Sampling Variance of Parameter Estimates")+
  facet_wrap(.~N2)

c <- sdat %>%
  group_by(N2) %>%
  summarise(est = mean(estMean),
            RB = mean(RB),
            RMSE = mean(RMSE),
            Bias = mean(Bias),
            SampVar =mean(SampVar))

kable(c, format='html', digits=3, 
      caption="Summary Indices of LATENT VARIABLE ICC by Level-2 Sample Size") %>%
  kable_styling(full_width = T)
Summary Indices of LATENT VARIABLE ICC by Level-2 Sample Size
N2 est RB RMSE Bias SampVar
30 0.300 12.084 0.013 0.002 0.011
50 0.299 7.252 0.008 0.001 0.007
100 0.300 3.188 0.004 0.000 0.004
200 0.299 0.295 0.002 0.000 0.002

Level-1 Sample Size

ggplot(sdat, aes(y=estMean))+
  geom_boxplot()+
  labs(y="Average Latent Variable ICC",
       title="LATENT VARIABLE ICC by Level-1",
       subtitle="Parameter Estimates")+
  facet_wrap(.~N1)

ggplot(sdat, aes(y=estSD))+
  geom_boxplot()+
  labs(y="SD of Latent Variable ICC",
       title="LATENT VARIABLE ICC by Level-1 Sample Size",
       subtitle="Standard Deviation of Parameter Estimates")+
  facet_wrap(.~N1)

ggplot(sdat, aes(y=RB))+
  geom_boxplot()+
  geom_hline(yintercept=-10, color="red", linetype="dashed")+
  geom_hline(yintercept=10, color="red", linetype="dashed")+
  labs(y="Relative Bias",
       title="LATENT VARIABLE ICC by Level-1 Sample Size",
       subtitle="Relative Bias of Parameter Estimates")+
  facet_wrap(.~N1)

ggplot(sdat, aes(y=RMSE))+
  geom_boxplot()+
  labs(y="Root Mean Square Error",
       title="LATENT VARIABLE ICC by Level-1 Sample Size",
       subtitle="Root Mean Square Error")+
  facet_wrap(.~N1)

ggplot(sdat, aes(y=Bias))+
  geom_boxplot()+
  labs(y="Sqaured Bias",
       title="LATENT VARIABLE ICC by Level-1 Sample Size",
       subtitle="Squared Bias of Parameter Estimates")+
  facet_wrap(.~N1)

ggplot(sdat, aes(y=SampVar))+
  geom_boxplot()+
  labs(y="Sampling Variance of Estimates",
       title="LATENT VARIABLE ICC by Level-1 Sample Size",
       subtitle="Sampling Variance of Parameter Estimates")+
  facet_wrap(.~N1)

c <- sdat %>%
  group_by(N1) %>%
  summarise(est = mean(estMean),
            RB = mean(RB),
            RMSE = mean(RMSE),
            Bias = mean(Bias),
            SampVar =mean(SampVar))

kable(c, format='html', digits=3,
      caption="Summary Indices of LATENT VARIABLE ICC  by Level-1 Sample Size") %>%
  kable_styling(full_width = T)
Summary Indices of LATENT VARIABLE ICC by Level-1 Sample Size
N1 est RB RMSE Bias SampVar
5 0.302 9.76 0.009 0.001 0.008
10 0.298 4.43 0.006 0.001 0.005
30 0.298 2.92 0.004 0.000 0.004

ICC Observed Variables

ggplot(sdat, aes(y=estMean))+
  geom_boxplot()+
  labs(y="Average Latent Variable ICC",
       title="LATENT VARIABLE ICC by ICC of Observed Variables",
       subtitle="Parameter Estimates")+
  facet_wrap(.~ICC_OV)

ggplot(sdat, aes(y=estSD))+
  geom_boxplot()+
  labs(y="SD of Latent Variable ICC",
       title="LATENT VARIABLE ICC by ICC of Observed Variables",
       subtitle="Standard Deviation of Parameter Estimates")+
  facet_wrap(.~ICC_OV)

ggplot(sdat, aes(y=RB))+
  geom_boxplot()+
  geom_hline(yintercept=-10, color="red", linetype="dashed")+
  geom_hline(yintercept=10, color="red", linetype="dashed")+
  labs(y="Relative Bias",
       title="LATENT VARIABLE ICC by ICC of Observed Variables",
       subtitle="Relative Bias of Parameter Estimates")+
  facet_wrap(.~ICC_OV)

ggplot(sdat, aes(y=RMSE))+
  geom_boxplot()+
  labs(y="Root Mean Square Error",
       title="LATENT VARIABLE ICC by ICC of Observed Variables",
       subtitle="Root Mean Square Error of Parameter Estimates")+
  facet_wrap(.~ICC_OV)

ggplot(sdat, aes(y=Bias))+
  geom_boxplot()+
  labs(y="Sqaured Bias",
       title="LATENT VARIABLE ICC by ICC of Observed Variables",
       subtitle="Squared Bias of Parameter Estimates")+
  facet_wrap(.~ICC_OV)

ggplot(sdat, aes(y=SampVar))+
  geom_boxplot()+
  labs(y="Sampling Variance of Estimates",
       title="LATENT VARIABLE ICC by ICC of Observed Variables",
       subtitle="Sampling Variance of Parameter Estimates")+
  facet_wrap(.~ICC_OV)

c <- sdat %>%
  group_by(ICC_OV) %>%
  summarise(est = mean(estMean),
            RB = mean(RB),
            RMSE = mean(RMSE),
            Bias = mean(Bias),
            SampVar =mean(SampVar))

kable(c, format='html', digits=3, caption="Summary Indices of LATENT VARIABLE ICC by ICC of Observed Variables") %>%
  kable_styling(full_width = T)
Summary Indices of LATENT VARIABLE ICC by ICC of Observed Variables
ICC_OV est RB RMSE Bias SampVar
0.1 0.289 -4.29 0.004 0.000 0.003
0.3 0.297 3.33 0.006 0.000 0.005
0.5 0.311 18.08 0.010 0.002 0.008

ICC Latent Variables

ggplot(sdat, aes(y=estMean))+
  geom_boxplot()+
  labs(y="Average Latent Variable ICC",
       title="LATENT VARIABLE ICC by ICC of Latent Variables",
       subtitle="Parameter Estimates")+
  facet_wrap(.~ICC_LV)

ggplot(sdat, aes(y=estSD))+
  geom_boxplot()+
  labs(y="SD of Latent Variable ICC",
       title="LATENT VARIABLE ICC by ICC of Latent Variables",
       subtitle="Standard Deviation of Parameter Estimates")+
  facet_wrap(.~ICC_LV)

ggplot(sdat, aes(y=RB))+
  geom_boxplot()+
  geom_hline(yintercept=-10, color="red", linetype="dashed")+
  geom_hline(yintercept=10, color="red", linetype="dashed")+
  labs(y="Relative Bias",
       title="LATENT VARIABLE ICC by ICC of Latent Variables",
       subtitle="Relative Bias of Parameter Estimates")+
  facet_wrap(.~ICC_LV)

ggplot(sdat, aes(y=RMSE))+
  geom_boxplot()+
  labs(y="Root Mean Square Error",
       title="LATENT VARIABLE ICC by ICC of Latent Variables",
       subtitle="Root Mean Square Error of Parameter Estimates")+
  facet_wrap(.~ICC_LV)

ggplot(sdat, aes(y=Bias))+
  geom_boxplot()+
  labs(y="Sqaured Bias",
       title="LATENT VARIABLE ICC by ICC of Latent Variables",
       subtitle="Squared Bias of Parameter Estimates")+
  facet_wrap(.~ICC_LV)

ggplot(sdat, aes(y=SampVar))+
  geom_boxplot()+
  labs(y="Sampling Variance of Estimates",
       title="LATENT VARIABLE ICC by ICC of Latent Variables",
       subtitle="Sampling Variance of Parameter Estimates")+
  facet_wrap(.~ICC_LV)

c <- sdat %>%
  group_by(ICC_LV) %>%
  summarise(est = mean(estMean),
            RB = mean(RB),
            RMSE = mean(RMSE),
            Bias = mean(Bias),
            SampVar =mean(SampVar))

kable(c, format='html', digits=3,
      caption="Summary Indices of LATENT VARIABLE ICC by ICC of Latent Variables") %>%
  kable_styling(full_width = T)
Summary Indices of LATENT VARIABLE ICC by ICC of Latent Variables
ICC_LV est RB RMSE Bias SampVar
0.1 0.115 14.68 0.006 0.001 0.005
0.5 0.484 -3.27 0.007 0.001 0.007

By Estimation Method and Sample Sizes

Estimation Method & Level-2 Sample Size

ggplot(sdat, aes(y=estMean))+
  geom_boxplot()+
  labs(y="Average Latent Variable ICC")+
  facet_grid(N2~Estimator)

ggplot(sdat, aes(y=RB))+
  geom_boxplot()+
  geom_hline(yintercept=-10, color="red", linetype="dashed")+
  geom_hline(yintercept=10, color="red", linetype="dashed")+
  labs(y="Relative Bias")+
  facet_grid(N2~Estimator)

ggplot(sdat, aes(y=RMSE))+
  geom_boxplot()+
  labs(y="Root Mean Square Error")+
  facet_grid(N2~Estimator)

c <- sdat %>%
  group_by(Estimator, N2) %>%
  summarise(est = mean(estMean),
            RB = mean(RB),
            RMSE = mean(RMSE),
            Bias = mean(Bias),
            SampVar =mean(SampVar))

c1 <- cbind(c[ c$Estimator == 'MLR', c( 'N2', 'est', 'RB', 'RMSE')], 
           c[ c$Estimator == 'ULSMV', c('est', 'RB', 'RMSE')], 
           c[ c$Estimator == 'WLSMV', c('est', 'RB', 'RMSE')])
colnames(c1) <- c('N2',  rep(c('est', 'RB', 'RMSE'), 3))

kable(c1, format='html', digits=3, row.names = F) %>%
  kable_styling(full_width = T) %>%
  add_header_above(c(' '=1, 'MLR'=3, 'ULSMV'=3, 'WLSMV'=3))
MLR
ULSMV
WLSMV
N2 est RB RMSE est RB RMSE est RB RMSE
30 0.307 16.47 0.012 0.319 20.55 0.013 0.273 -0.777 0.013
50 0.304 10.57 0.007 0.308 10.95 0.008 0.284 0.230 0.008
100 0.302 4.82 0.004 0.304 5.06 0.004 0.293 -0.318 0.004
200 0.300 1.01 0.002 0.301 1.35 0.002 0.296 -1.473 0.002

Estimation Method & Level-1 Sample Size

ggplot(sdat, aes(y=estMean))+
  geom_boxplot()+
  labs(y="Average Latent Variable ICC")+
  facet_grid(N1~Estimator)

ggplot(sdat, aes(y=RB))+
  geom_boxplot()+
  geom_hline(yintercept=-10, color="red", linetype="dashed")+
  geom_hline(yintercept=10, color="red", linetype="dashed")+
  labs(y="Relative Bias")+
  facet_grid(N1~Estimator)

ggplot(sdat, aes(y=RMSE))+
  geom_boxplot()+
  labs(y="Root Mean Square Error")+
  facet_grid(N1~Estimator)

c <- sdat %>%
  group_by(Estimator, N1) %>%
  summarise(est = mean(estMean),
            RB = mean(RB),
            RMSE = mean(RMSE),
            Bias = mean(Bias),
            SampVar =mean(SampVar))

c1 <- cbind(c[ c$Estimator == 'MLR', c( 'N1', 'est', 'RB', 'RMSE')], 
           c[ c$Estimator == 'ULSMV', c('est', 'RB', 'RMSE')], 
           c[ c$Estimator == 'WLSMV', c('est', 'RB', 'RMSE')])
colnames(c1) <- c('N1',  rep(c('est', 'RB', 'RMSE'), 3))

kable(c1, format='html', digits=3, row.names = F) %>%
  kable_styling(full_width = T) %>%
  add_header_above(c(' '=1, 'MLR'=3, 'ULSMV'=3, 'WLSMV'=3))
MLR
ULSMV
WLSMV
N1 est RB RMSE est RB RMSE est RB RMSE
5 0.307 13.40 0.009 0.313 14.66 0.010 0.285 1.24 0.009
10 0.302 7.00 0.006 0.307 8.18 0.006 0.285 -1.88 0.006
30 0.300 4.25 0.004 0.304 5.60 0.004 0.290 -1.11 0.005

Estimation Method, Level-2 Sample Size & Level-1 Sample Size

ggplot(sdat, aes(y=estMean,x=N1, group=N1))+
  geom_boxplot()+
  labs(y="Average Latent Variable ICC")+
  facet_grid(N2~Estimator)

ggplot(sdat, aes(y=RB,x=N1, group=N1))+
  geom_boxplot()+
  geom_hline(yintercept=-10, color="red", linetype="dashed")+
  geom_hline(yintercept=10, color="red", linetype="dashed")+
  labs(y="Relative Bias")+
  facet_grid(N2~Estimator)

ggplot(sdat, aes(y=RMSE,x=N1, group=N1))+
  geom_boxplot()+
  labs(y="Root Mean Square Error")+
  facet_grid(N2~Estimator)

c <- sdat %>%
  group_by(Estimator, N2, N1) %>%
  summarise(est = mean(estMean),
            RB = mean(RB),
            RMSE = mean(RMSE),
            Bias = mean(Bias),
            SampVar =mean(SampVar))

c1 <- cbind(c[ c$Estimator == 'MLR', c( 'N2','N1', 'est', 'RB', 'RMSE')], 
           c[ c$Estimator == 'ULSMV', c('est', 'RB', 'RMSE')], 
           c[ c$Estimator == 'WLSMV', c('est', 'RB', 'RMSE')])
colnames(c1) <- c('N2','N1',  rep(c('est', 'RB', 'RMSE'), 3))

kable(c1, format='html', digits=3, row.names = F) %>%
  kable_styling(full_width = T) %>%
  add_header_above(c(' '=2, 'MLR'=3, 'ULSMV'=3, 'WLSMV'=3))
MLR
ULSMV
WLSMV
N2 N1 est RB RMSE est RB RMSE est RB RMSE
30 5 0.316 25.561 0.017 0.333 32.294 0.019 0.270 1.960 0.018
30 10 0.304 14.287 0.012 0.313 17.037 0.012 0.268 -3.237 0.013
30 30 0.302 9.572 0.008 0.309 12.335 0.008 0.281 -1.055 0.009
50 5 0.308 16.322 0.011 0.309 15.309 0.011 0.279 2.414 0.011
50 10 0.304 9.775 0.007 0.309 10.590 0.007 0.284 -1.072 0.007
50 30 0.301 5.621 0.005 0.305 6.960 0.005 0.289 -0.653 0.005
100 5 0.305 8.737 0.005 0.307 8.220 0.005 0.293 1.102 0.005
100 10 0.301 3.215 0.003 0.303 3.799 0.003 0.292 -1.678 0.003
100 30 0.300 2.507 0.003 0.302 3.169 0.003 0.295 -0.379 0.003
200 5 0.302 2.962 0.003 0.303 2.818 0.003 0.296 -0.534 0.003
200 10 0.299 0.744 0.002 0.301 1.290 0.002 0.296 -1.533 0.002
200 30 0.298 -0.685 0.001 0.300 -0.052 0.001 0.295 -2.352 0.001

Relative Efficiency by Sample Sizes

sdat <- filter(result, Variable %like% 'icc_lv')

c <- sdat %>%
  group_by(Estimator, N2, N1) %>%
  summarise(mu = weighted.mean(muRE, wi),
            mw = weighted.mean(mwRE, wi),
            uw = weighted.mean(uwRE, wi))

c1 <- cbind(c[ c$Estimator == 'MLR', c( 'N2','N1', 'mu', 'mw', 'uw')])
colnames(c1) <- c('N2','N1',c('MLR/ULSMV', 'MLR/WLSMV', 'ULSMV/WLSMV'))

kable(c1, format='html', digits=3, row.names = F) %>%
  kable_styling(full_width = T)
N2 N1 MLR/ULSMV MLR/WLSMV ULSMV/WLSMV
30 5 1.982 1.865 1.054
30 10 1.199 1.211 1.026
30 30 1.077 1.122 1.036
50 5 1.337 1.449 1.080
50 10 1.088 1.126 1.030
50 30 1.020 1.022 1.003
100 5 1.119 1.134 1.016
100 10 1.030 1.058 1.025
100 30 1.003 0.998 0.996
200 5 1.033 1.052 1.017
200 10 1.004 1.015 1.011
200 30 0.999 0.992 0.993

Relative Efficiency by All Conditions

c <- sdat %>%
  group_by(Estimator, N2, N1, ICC_OV, ICC_LV) %>%
  summarise(mu = weighted.mean(muRE, wi),
            mw = weighted.mean(mwRE, wi),
            uw = weighted.mean(uwRE, wi))

c1 <- cbind(c[ c$Estimator == 'MLR', c( 'N2','N1','ICC_OV', 'ICC_LV',  'mu', 'mw', 'uw')])
colnames(c1) <- c('N2','N1', 'ICC_OV', 'ICC_LV',c('MLR/ULSMV', 'MLR/WLSMV', 'ULSMV/WLSMV'))

kable(c1, format='html', digits=3, row.names = F) %>%
  kable_styling(full_width = T)
N2 N1 ICC_OV ICC_LV MLR/ULSMV MLR/WLSMV ULSMV/WLSMV
30 5 0.1 0.1 5.621 4.385 0.784
30 5 0.1 0.5 3.549 3.452 0.973
30 5 0.3 0.1 1.142 1.661 1.454
30 5 0.3 0.5 1.017 0.846 0.833
30 5 0.5 0.1 0.846 1.735 2.054
30 5 0.5 0.5 1.005 0.844 0.839
30 10 0.1 0.1 1.488 1.377 0.926
30 10 0.1 0.5 1.925 1.944 1.008
30 10 0.3 0.1 1.005 1.407 1.401
30 10 0.3 0.5 1.037 0.897 0.865
30 10 0.5 0.1 0.903 1.403 1.554
30 10 0.5 0.5 1.068 0.853 0.798
30 30 0.1 0.1 1.058 1.007 0.951
30 30 0.1 0.5 1.324 1.651 1.247
30 30 0.3 0.1 1.012 1.213 1.199
30 30 0.3 0.5 1.022 0.897 0.878
30 30 0.5 0.1 0.873 1.116 1.280
30 30 0.5 0.5 1.057 0.899 0.851
50 5 0.1 0.1 2.361 2.323 0.984
50 5 0.1 0.5 2.235 2.803 1.253
50 5 0.3 0.1 1.017 1.375 1.352
50 5 0.3 0.5 1.003 0.914 0.912
50 5 0.5 0.1 0.939 1.404 1.495
50 5 0.5 0.5 1.007 0.864 0.858
50 10 0.1 0.1 1.139 1.070 0.940
50 10 0.1 0.5 1.364 1.669 1.225
50 10 0.3 0.1 1.025 1.190 1.162
50 10 0.3 0.5 1.018 0.921 0.905
50 10 0.5 0.1 0.923 1.234 1.338
50 10 0.5 0.5 1.028 0.867 0.844
50 30 0.1 0.1 1.010 0.960 0.950
50 30 0.1 0.5 1.077 1.241 1.152
50 30 0.3 0.1 0.984 1.051 1.068
50 30 0.3 0.5 1.020 0.914 0.897
50 30 0.5 0.1 0.929 1.083 1.166
50 30 0.5 0.5 1.060 0.913 0.861
100 5 0.1 0.1 1.314 1.207 0.919
100 5 0.1 0.5 1.481 1.553 1.049
100 5 0.3 0.1 0.989 1.127 1.139
100 5 0.3 0.5 1.011 0.944 0.933
100 5 0.5 0.1 0.959 1.158 1.208
100 5 0.5 0.5 1.013 0.953 0.940
100 10 0.1 0.1 1.024 1.002 0.978
100 10 0.1 0.5 1.126 1.308 1.161
100 10 0.3 0.1 1.012 1.068 1.056
100 10 0.3 0.5 1.003 0.960 0.957
100 10 0.5 0.1 0.973 1.088 1.118
100 10 0.5 0.5 1.023 0.935 0.914
100 30 0.1 0.1 1.004 0.979 0.974
100 30 0.1 0.5 1.018 1.074 1.055
100 30 0.3 0.1 1.002 1.014 1.012
100 30 0.3 0.5 0.997 0.960 0.962
100 30 0.5 0.1 0.946 1.038 1.097
100 30 0.5 0.5 1.034 0.936 0.905
200 5 0.1 0.1 1.044 1.029 0.986
200 5 0.1 0.5 1.141 1.236 1.083
200 5 0.3 0.1 1.016 1.037 1.020
200 5 0.3 0.5 0.998 0.978 0.979
200 5 0.5 0.1 0.979 1.059 1.082
200 5 0.5 0.5 1.008 0.978 0.970
200 10 0.1 0.1 1.008 0.994 0.986
200 10 0.1 0.5 1.016 1.096 1.079
200 10 0.3 0.1 0.997 1.007 1.010
200 10 0.3 0.5 1.004 0.988 0.984
200 10 0.5 0.1 0.980 1.037 1.059
200 10 0.5 0.5 1.012 0.970 0.958
200 30 0.1 0.1 1.003 1.000 0.996
200 30 0.1 0.5 1.006 1.005 0.999
200 30 0.3 0.1 0.988 1.000 1.012
200 30 0.3 0.5 0.999 0.974 0.975
200 30 0.5 0.1 0.991 1.012 1.022
200 30 0.5 0.5 1.007 0.965 0.958

Manuscript Table

c <- sdat %>%
  group_by(Estimator, N2, N1) %>%
  summarise(est = weighted.mean(estMean, wi),
            RB = weighted.mean(RB, wi),
            RMSE = weighted.mean(RMSE, wi))

c1 <- cbind(c[ c$Estimator == 'MLR', c( 'N2','N1', 'est', 'RB', 'RMSE')], 
           c[ c$Estimator == 'ULSMV', c('est', 'RB', 'RMSE')], 
           c[ c$Estimator == 'WLSMV', c('est', 'RB', 'RMSE')])
colnames(c1) <- c('N2','N1',  rep(c('est', 'RB', 'RMSE'), 3))

kable(c1, format='html', digits=3, row.names = F) %>%
  kable_styling(full_width = T) %>%
  add_header_above(c(' '=2, 'MLR'=3, 'ULSMV'=3, 'WLSMV'=3))
MLR
ULSMV
WLSMV
N2 N1 est RB RMSE est RB RMSE est RB RMSE
30 5 0.348 16.522 0.017 0.406 26.150 0.022 0.344 -4.953 0.025
30 10 0.336 8.725 0.012 0.351 14.435 0.013 0.309 -5.982 0.015
30 30 0.328 4.342 0.008 0.323 7.871 0.008 0.287 -4.978 0.009
50 5 0.344 11.310 0.011 0.365 15.943 0.012 0.342 0.381 0.014
50 10 0.330 5.927 0.007 0.330 7.873 0.007 0.301 -3.748 0.008
50 30 0.319 3.155 0.005 0.318 4.464 0.005 0.294 -2.975 0.005
100 5 0.328 6.820 0.005 0.329 7.804 0.006 0.314 0.356 0.005
100 10 0.316 2.147 0.003 0.312 2.818 0.003 0.294 -2.575 0.003
100 30 0.310 1.549 0.002 0.311 2.268 0.002 0.299 -1.430 0.003
200 5 0.314 2.398 0.003 0.310 2.458 0.003 0.301 -0.893 0.003
200 10 0.307 0.496 0.002 0.308 0.993 0.002 0.299 -1.748 0.002
200 30 0.303 -0.736 0.001 0.305 -0.149 0.001 0.300 -2.364 0.001
print(xtable(c1, digits = 3,align=c("l", "l", "l", rep("r",9)),
             display=c("s", "d","d", rep("f",9)),
             caption="Mean Latent Variable ICC, Relative Bias, and RMSE by Estimation Method",
             label="tb:fct"),
      booktabs = T, include.rownames = F,
      caption.placement = "top")
% latex table generated in R 3.6.3 by xtable 1.8-4 package
% Mon Jun 01 23:24:57 2020
\begin{table}[ht]
\centering
\caption{Mean Latent Variable ICC, Relative Bias, and RMSE by Estimation Method} 
\label{tb:fct}
\begin{tabular}{llrrrrrrrrr}
  \toprule
N2 & N1 & est & RB & RMSE & est & RB & RMSE & est & RB & RMSE \\ 
  \midrule
30 & 5 & 0.348 & 16.522 & 0.017 & 0.406 & 26.150 & 0.022 & 0.344 & -4.953 & 0.025 \\ 
  30 & 10 & 0.336 & 8.725 & 0.012 & 0.351 & 14.435 & 0.013 & 0.309 & -5.982 & 0.015 \\ 
  30 & 30 & 0.328 & 4.342 & 0.008 & 0.323 & 7.871 & 0.008 & 0.287 & -4.978 & 0.009 \\ 
  50 & 5 & 0.344 & 11.310 & 0.011 & 0.365 & 15.943 & 0.012 & 0.342 & 0.381 & 0.014 \\ 
  50 & 10 & 0.330 & 5.927 & 0.007 & 0.330 & 7.873 & 0.007 & 0.301 & -3.748 & 0.008 \\ 
  50 & 30 & 0.319 & 3.155 & 0.005 & 0.318 & 4.464 & 0.005 & 0.294 & -2.975 & 0.005 \\ 
  100 & 5 & 0.328 & 6.820 & 0.005 & 0.329 & 7.804 & 0.006 & 0.314 & 0.356 & 0.005 \\ 
  100 & 10 & 0.316 & 2.147 & 0.003 & 0.312 & 2.818 & 0.003 & 0.294 & -2.575 & 0.003 \\ 
  100 & 30 & 0.310 & 1.549 & 0.002 & 0.311 & 2.268 & 0.002 & 0.299 & -1.430 & 0.003 \\ 
  200 & 5 & 0.314 & 2.398 & 0.003 & 0.310 & 2.458 & 0.003 & 0.301 & -0.893 & 0.003 \\ 
  200 & 10 & 0.307 & 0.496 & 0.002 & 0.308 & 0.993 & 0.002 & 0.299 & -1.748 & 0.002 \\ 
  200 & 30 & 0.303 & -0.736 & 0.001 & 0.305 & -0.149 & 0.001 & 0.300 & -2.364 & 0.001 \\ 
   \bottomrule
\end{tabular}
\end{table}

sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] xtable_1.8-4          kableExtra_1.1.0      cowplot_1.0.0        
 [4] MplusAutomation_0.7-3 data.table_1.12.8     patchwork_1.0.0      
 [7] forcats_0.5.0         stringr_1.4.0         dplyr_0.8.5          
[10] purrr_0.3.4           readr_1.3.1           tidyr_1.1.0          
[13] tibble_3.0.1          ggplot2_3.3.0         tidyverse_1.3.0      
[16] workflowr_1.6.2      

loaded via a namespace (and not attached):
 [1] httr_1.4.1        jsonlite_1.6.1    viridisLite_0.3.0 gsubfn_0.7       
 [5] modelr_0.1.8      assertthat_0.2.1  highr_0.8         pander_0.6.3     
 [9] blob_1.2.1        cellranger_1.1.0  yaml_2.2.1        pillar_1.4.4     
[13] backports_1.1.7   lattice_0.20-38   glue_1.4.1        digest_0.6.25    
[17] promises_1.1.0    rvest_0.3.5       colorspace_1.4-1  htmltools_0.4.0  
[21] httpuv_1.5.2      plyr_1.8.6        pkgconfig_2.0.3   broom_0.5.6      
[25] haven_2.3.0       scales_1.1.1      webshot_0.5.2     later_1.0.0      
[29] git2r_0.27.1      farver_2.0.3      generics_0.0.2    ellipsis_0.3.1   
[33] withr_2.2.0       cli_2.0.2         proto_1.0.0       magrittr_1.5     
[37] crayon_1.3.4      readxl_1.3.1      evaluate_0.14     fs_1.4.1         
[41] fansi_0.4.1       nlme_3.1-144      xml2_1.3.2        tools_3.6.3      
[45] hms_0.5.3         lifecycle_0.2.0   munsell_0.5.0     reprex_0.3.0     
[49] compiler_3.6.3    rlang_0.4.6       grid_3.6.3        rstudioapi_0.11  
[53] texreg_1.36.23    labeling_0.3      rmarkdown_2.1     boot_1.3-24      
[57] gtable_0.3.0      DBI_1.1.0         R6_2.4.1          lubridate_1.7.8  
[61] knitr_1.28        rprojroot_1.3-2   stringi_1.4.6     parallel_3.6.3   
[65] Rcpp_1.0.4.6      vctrs_0.3.0       dbplyr_1.4.4      tidyselect_1.1.0 
[69] xfun_0.14         coda_0.19-3