Last updated: 2021-02-18

Checks: 7 0

Knit directory: pools-projects/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20201007) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5934257. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  manuscript/pools-development-paper-2021-02-18-blind.docx
    Untracked:  manuscript/pools-development-paper-2021-02-18-title-page.docx

Unstaged changes:
    Modified:   .Rprofile
    Deleted:    .gitattributes
    Modified:   .gitignore
    Modified:   manuscript/pools-development-paper-2021-02-18.docx
    Modified:   manuscript/~$ols-development-paper-2021-02-18.docx

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/development-study-data-management.Rmd) and HTML (docs/development-study-data-management.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5934257 noah-padgett 2021-02-18 major revision to structure
html 5934257 noah-padgett 2021-02-18 major revision to structure

source("code/load_packages.R")
set.seed(20201116)
mydata <- readxl::read_xlsx("data/data-2020-11-16/POOLS_data_2020-11-16.xlsx")

naniar::vis_miss(mydata)

Next, look at the summary level statistics of the raw data.

mydata %>% summarise(N = n())
# A tibble: 1 x 1
      N
  <int>
1   654
apply(mydata[-1,],2, summary)
$ID
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      2     165     328     328     491     654 

$Progress
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  14.00  100.00  100.00   88.76  100.00  100.00 

$`Duration (in seconds)`
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      2     171     265    1143     382  167259 

$Finished
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.0000  1.0000  1.0000  0.7963  1.0000  1.0000 

$class
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   1.000   1.061   1.000   2.000      50 

$teach
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   1.000   1.405   2.000   2.000      21 

$Q4_1
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   2.000   2.419   3.000   5.000     109 

$Q4_2
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   2.000   2.296   3.000   5.000     113 

$Q4_3
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.515   3.000   5.000     113 

$Q4_4
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   1.00    2.00    3.00    2.53    3.00    5.00     113 

$Q4_5
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   2.000   2.335   3.000   5.000     112 

$Q4_6
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.837   4.000   5.000     113 

$Q4_7
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   3.000   4.000   3.487   4.000   5.000     111 

$Q4_8
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   2.000   2.278   3.000   5.000     110 

$Q4_9
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   2.000   2.489   3.000   5.000     113 

$Q4_10
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.505   3.000   5.000     110 

$Q4_11
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   2.000   2.481   3.000   5.000     110 

$Q4_12
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   2.000   2.183   3.000   5.000     111 

$Q4_13
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   1.000   1.642   2.000   5.000     111 

$Q4_14
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.619   3.000   5.000     112 

$Q4_15
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   2.000   2.376   3.000   5.000     111 

$Q4_16
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   1.00    2.00    2.00    2.39    3.00    5.00     110 

$Q4_17
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   2.000   2.173   3.000   5.000     111 

$Q4_18
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   2.000   2.375   3.000   5.000     111 

$Q4_19
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.514   3.000   5.000     114 

$Q5_1
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.586   3.000   5.000     126 

$Q5_2
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.926   4.000   5.000     127 

$Q5_3
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.643   3.000   5.000     124 

$Q5_4
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   3.000   4.000   3.374   4.000   5.000     124 

$Q5_5
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   3.000   4.000   3.385   4.000   5.000     126 

$Q5_6
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.867   4.000   5.000     125 

$Q5_7
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.657   3.000   5.000     125 

$Q5_8
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.873   4.000   5.000     127 

$Q5_9
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.597   3.000   5.000     125 

$Q5_10
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   1.00    2.00    3.00    2.54    3.00    5.00     125 

$Q5_11
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.681   3.000   5.000     124 

$Q5_12
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.812   4.000   5.000     126 

$Q6_1
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   1.000   1.717   2.000   5.000     133 

$Q6_2
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   2.000   2.075   3.000   5.000     131 

$Q6_3
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   2.000   1.952   2.000   5.000     132 

$Q6_4
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   2.000   2.113   3.000   5.000     132 

$Q6_5
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   2.000   2.453   3.000   5.000     132 

$Q6_6
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   2.000   1.785   2.000   5.000     132 

$Q6_7
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   2.000   2.168   3.000   5.000     134 

$Q6_8
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   2.000   2.162   3.000   5.000     135 

$Q6_9
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.781   4.000   5.000     133 

$Q6_10
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.846   4.000   5.000     134 

$Q6_11
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.719   3.000   5.000     133 

$Q7_1
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   2.000   2.413   3.000   5.000     137 

$Q7_2
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.591   3.000   5.000     139 

$Q7_3
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   3.000   4.000   3.432   4.000   5.000     139 

$Q7_4
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.793   4.000   5.000     142 

$Q7_5
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.792   3.000   5.000     139 

$Q7_6
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.873   4.000   5.000     142 

$Q7_7
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   3.000   4.000   3.519   4.000   5.000     139 

$Q7_8
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   1.00    2.00    3.00    2.77    3.00    5.00     140 

$Q7_9
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.495   3.000   5.000     140 

$Q7_10
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   1.000   2.000   2.222   3.000   5.000     139 

$Q7_11
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.674   3.000   5.000     138 

$Q7_12
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   3.000   4.000   3.346   4.000   5.000     138 

$Q7_13
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   3.000   4.000   3.533   4.000   5.000     139 

$Q7_14
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   3.000   4.000   3.511   4.000   5.000     142 

$Q7_15
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.000   2.000   3.000   2.447   3.000   5.000     143 

$version
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.000   1.000   1.100   1.222   1.500   1.500 

Basic Item Analysis

psychometric::item.exam(mydata[,7:63],discrim = T)
      Sample.SD Item.total Item.Tot.woi Difficulty Discrimination
Q4_1  0.8872082  0.6516070    0.6373040   2.427039      1.2258065
Q4_2  0.8355396  0.6740773    0.6613121   2.315451      1.2129032
Q4_3  0.8653310  0.6658966    0.6524035   2.525751      1.1870968
Q4_4  0.8672355  0.7207306    0.7090310   2.540773      1.3612903
Q4_5  0.9221809  0.6784608    0.6644890   2.332618      1.3935484
Q4_6  1.0529325  0.6798330    0.6638760   2.873391      1.5741935
Q4_7  1.0033678  0.6164219    0.5989636   3.527897      1.2451613
Q4_8  0.9383901  0.6793846    0.6651933   2.287554      1.4451613
Q4_9  1.0539028  0.6560544    0.6391568   2.493562      1.5483871
Q4_10 0.8064561  0.7034755    0.6920670   2.512876      1.1806452
Q4_11 0.9907808  0.7185443    0.7050420   2.491416      1.5612903
Q4_12 1.1303523  0.6257440    0.6063727   2.184549      1.6000000
Q4_13 0.8341216  0.5583652    0.5423567   1.622318      1.0387097
Q4_14 0.9818605  0.6801578    0.6653195   2.648069      1.4322581
Q4_15 0.9384909  0.7174028    0.7045903   2.396996      1.4645161
Q4_16 0.9675906  0.6388783    0.6228078   2.394850      1.3935484
Q4_17 1.0063461  0.5898531    0.5714573   2.173820      1.3806452
Q4_18 0.8350423  0.7364345    0.7257101   2.384120      1.3483871
Q4_19 1.0287056  0.7232103    0.7093677   2.530043      1.6903226
Q5_1  0.9996746  0.6190576    0.6017546   2.611588      1.3483871
Q5_2  1.1228972  0.5968539    0.5765253   2.939914      1.4387097
Q5_3  1.1249174  0.6047626    0.5846894   2.660944      1.4516129
Q5_4  1.1709405  0.5502629    0.5273307   3.420601      1.3290323
Q5_5  1.1190871  0.5457499    0.5237081   3.405579      1.2258065
Q5_6  0.9887922  0.6618613    0.6462444   2.892704      1.3677419
Q5_7  1.0210327  0.6355627    0.6184619   2.671674      1.4387097
Q5_8  1.1455520  0.6251856    0.6055242   2.909871      1.4967742
Q5_9  1.0120165  0.7061623    0.6918662   2.615880      1.4967742
Q5_10 0.8725433  0.5976739    0.5819974   2.572961      1.0516129
Q5_11 0.9966509  0.6885824    0.6738324   2.710300      1.4258065
Q5_12 1.0617990  0.6456678    0.6282440   2.841202      1.4516129
Q6_1  0.8942956  0.5483070    0.5308487   1.710300      1.0516129
Q6_2  0.9885052  0.5961613    0.5783020   2.075107      1.1935484
Q6_3  1.0104443  0.5830481    0.5643549   1.948498      1.2709677
Q6_4  1.0288290  0.5595960    0.5398014   2.111588      1.1548387
Q6_5  1.1678406  0.4767321    0.4514771   2.474249      1.1806452
Q6_6  0.8692367  0.6638339    0.6502127   1.774678      1.2709677
Q6_7  0.9499351  0.7040562    0.6905832   2.163090      1.4709677
Q6_8  0.9514326  0.6509685    0.6355817   2.160944      1.2645161
Q6_9  1.3537951  0.5395366    0.5124850   2.778970      1.6193548
Q6_10 1.0887601  0.6214869    0.6026895   2.862661      1.3677419
Q6_11 1.0412153  0.7271575    0.7133071   2.746781      1.6322581
Q7_1  0.9426981  0.7743595    0.7637171   2.416309      1.6709677
Q7_2  0.9320566  0.7212084    0.7086279   2.598712      1.4064516
Q7_3  1.0678492  0.6002486    0.5810614   3.476395      1.3290323
Q7_4  1.0532458  0.6317092    0.6139125   2.802575      1.3612903
Q7_5  1.0266647  0.6927797    0.6777375   2.815451      1.5290323
Q7_6  1.0123607  0.6772793    0.6618576   2.914163      1.5225806
Q7_7  1.0950153  0.6002922    0.5806053   3.579399      1.4516129
Q7_8  0.9929211  0.6571979    0.6413455   2.800429      1.4387097
Q7_9  1.0680911  0.7276687    0.7134714   2.506438      1.7677419
Q7_10 1.0240903  0.7416136    0.7286033   2.218884      1.7548387
Q7_11 0.9402791  0.7003716    0.6869045   2.693133      1.4322581
Q7_12 1.1216636  0.5604369    0.5388392   3.373391      1.3419355
Q7_13 1.1271981  0.3058337    0.2774909   3.560086      0.6516129
Q7_14 1.0932101  0.5223430    0.5000812   3.540773      1.0838710
Q7_15 0.9911627  0.7239081    0.7106135   2.439914      1.6064516
      Item.Criterion Item.Reliab Item.Rel.woi Item.Validity
Q4_1              NA   0.5774905    0.5648143            NA
Q4_2              NA   0.5626136    0.5519592            NA
Q4_3              NA   0.5756024    0.5639389            NA
Q4_4              NA   0.6243722    0.6142368            NA
Q4_5              NA   0.6249919    0.6121212            NA
Q4_6              NA   0.7150498    0.6982662            NA
Q4_7              NA   0.6178339    0.6003356            NA
Q4_8              NA   0.6368433    0.6235407            NA
Q4_9              NA   0.6906753    0.6728860            NA
Q4_10             NA   0.5667131    0.5575225            NA
Q4_11             NA   0.7111556    0.6977922            NA
Q4_12             NA   0.7065518    0.6846790            NA
Q4_13             NA   0.4652445    0.4519058            NA
Q4_14             NA   0.6671031    0.6525496            NA
Q4_15             NA   0.6725532    0.6605417            NA
Q4_16             NA   0.6175090    0.6019760            NA
Q4_17             NA   0.5929591    0.5744665            NA
Q4_18             NA   0.6142938    0.6053481            NA
Q4_19             NA   0.7431718    0.7289471            NA
Q5_1              NA   0.6181918    0.6009130            NA
Q5_2              NA   0.6694861    0.6466836            NA
Q5_3              NA   0.6795776    0.6570211            NA
Q5_4              NA   0.6436334    0.6168100            NA
Q5_5              NA   0.6100861    0.5854458            NA
Q5_6              NA   0.6537407    0.6383155            NA
Q5_7              NA   0.6482336    0.6307919            NA
Q5_8              NA   0.7154138    0.6929148            NA
Q5_9              NA   0.7138807    0.6994283            NA
Q5_10             NA   0.5209365    0.5072728            NA
Q5_11             NA   0.6855395    0.6708547            NA
Q5_12             NA   0.6848334    0.6663527            NA
Q6_1              NA   0.4898221    0.4742260            NA
Q6_2              NA   0.5886759    0.5710408            NA
Q6_3              NA   0.5885052    0.5696370            NA
Q6_4              NA   0.5751105    0.5547672            NA
Q6_5              NA   0.5561494    0.5266872            NA
Q6_6              NA   0.5764093    0.5645820            NA
Q6_7              NA   0.6680897    0.6553049            NA
Q6_8              NA   0.6186877    0.6040640            NA
Q6_9              NA   0.7296379    0.6930548            NA
Q6_10             NA   0.6759238    0.6554798            NA
Q6_11             NA   0.7563147    0.7419090            NA
Q7_1              NA   0.7292035    0.7191817            NA
Q7_2              NA   0.6714854    0.6597722            NA
Q7_3              NA   0.6402868    0.6198198            NA
Q7_4              NA   0.6646308    0.6459066            NA
Q7_5              NA   0.7104889    0.6950621            NA
Q7_6              NA   0.6849149    0.6693193            NA
Q7_7              NA   0.6566234    0.6350891            NA
Q7_8              NA   0.6518451    0.6361218            NA
Q7_9              NA   0.7763821    0.7612344            NA
Q7_10             NA   0.7586639    0.7453545            NA
Q7_11             NA   0.6578378    0.6451885            NA
Q7_12             NA   0.6279468    0.6037475            NA
Q7_13             NA   0.3443651    0.3124514            NA
Q7_14             NA   0.5704176    0.5461069            NA
Q7_15             NA   0.7167404    0.7035775            NA

Data Cleaning

Here, I proceed with data munging to impute missing values and then construct two split halves.

Missing Data

naniar::vis_miss(mydata)

anyNA(mydata)
[1] TRUE
# remove cases with less than 43% complete (i.e., just openned then closed survey)
mydata.imp <- mydata %>%
  filter(Progress >= 43)

# impute class/teach based on progress
mydata.imp <- mydata.imp %>%
  group_by(Progress) %>%
  mutate(class = ifelse(is.na(class) == T, round(median(class, na.rm=T),0), class),
         teach = ifelse(is.na(teach) == T, round(median(teach, na.rm=T),0), teach))

# impute missing survey responses by median of group of class/teach
mydata.imp <- mydata.imp %>%
  group_by(class, teach) %>%
  mutate(across(Q4_1:Q7_15, ~ifelse(is.na(.x), round(median(.x, na.rm=T),0), .x)))



anyNA(mydata.imp)
[1] FALSE

Check Imputation

To check the quality of the imputation, I laid out the correlation matrices of both datasets in one heatmap with the below diagonal being the raw data and the above diagonal being the imputed data. These should be nearly difficult to see any differences.

c1 <- cor(mydata[7:63], use="pairwise.complete")
c2 <- cor(mydata.imp[7:63])

corMatrix <- c1
corMatrix[lower.tri(corMatrix)] <- c2[lower.tri(c2)]

ggcorrplot(corMatrix,outline.color = "white")

Randomly split

mydata.imp$random.split <- rbinom(nrow(mydata.imp),1, 0.5)

dat1 <- filter(mydata.imp, random.split==0)
dat2 <- filter(mydata.imp, random.split==1)


write.table(dat1, "data/data-2020-11-16/pools_data_split1_2020_11_16.txt", sep="\t", row.names = F)
write.table(dat2, "data/data-2020-11-16/pools_data_split2_2020_11_16.txt", sep="\t", row.names = F)

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] xtable_1.8-4      kableExtra_1.3.1  readxl_1.3.1      coda_0.19-4      
 [5] nFactors_2.4.1    lattice_0.20-41   psych_2.0.12      psychometric_2.2 
 [9] multilevel_2.6    MASS_7.3-53       nlme_3.1-151      mvtnorm_1.1-1    
[13] ggcorrplot_0.1.3  naniar_0.6.0      simsem_0.5-15     lslx_0.6.10      
[17] MIIVsem_0.5.5     lavaanPlot_0.5.1  semTools_0.5-4    lavaan_0.6-7     
[21] data.table_1.13.6 patchwork_1.1.1   forcats_0.5.0     stringr_1.4.0    
[25] dplyr_1.0.3       purrr_0.3.4       readr_1.4.0       tidyr_1.1.2      
[29] tibble_3.0.5      ggplot2_3.3.3     tidyverse_1.3.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0           lubridate_1.7.9.2  webshot_0.5.2      RColorBrewer_1.1-2
 [5] httr_1.4.2         rprojroot_2.0.2    tools_4.0.3        backports_1.2.0   
 [9] utf8_1.1.4         R6_2.5.0           DBI_1.1.1          colorspace_2.0-0  
[13] withr_2.4.0        tidyselect_1.1.0   mnormt_2.0.2       compiler_4.0.3    
[17] git2r_0.28.0       cli_2.2.0          rvest_0.3.6        xml2_1.3.2        
[21] labeling_0.4.2     scales_1.1.1       digest_0.6.27      pbivnorm_0.6.0    
[25] rmarkdown_2.6      pkgconfig_2.0.3    htmltools_0.5.1    dbplyr_2.0.0      
[29] htmlwidgets_1.5.3  rlang_0.4.10       rstudioapi_0.13    farver_2.0.3      
[33] visNetwork_2.0.9   generics_0.1.0     jsonlite_1.7.2     magrittr_2.0.1    
[37] Rcpp_1.0.6         munsell_0.5.0      fansi_0.4.2        lifecycle_0.2.0   
[41] visdat_0.5.3       stringi_1.5.3      whisker_0.4        yaml_2.2.1        
[45] plyr_1.8.6         grid_4.0.3         parallel_4.0.3     promises_1.1.1    
[49] crayon_1.3.4       haven_2.3.1        hms_1.0.0          tmvnsim_1.0-2     
[53] knitr_1.30         ps_1.5.0           pillar_1.4.7       reshape2_1.4.4    
[57] stats4_4.0.3       reprex_0.3.0       glue_1.4.2         evaluate_0.14     
[61] modelr_0.1.8       vctrs_0.3.6        httpuv_1.5.5       cellranger_1.1.0  
[65] gtable_0.3.0       assertthat_0.2.1   xfun_0.20          broom_0.7.3       
[69] later_1.1.0.1      viridisLite_0.3.0  workflowr_1.6.2    DiagrammeR_1.0.6.1
[73] ellipsis_0.3.1